Intercellular Pectic Protuberances in Asplenium: New Data on their Composition and Origin

OLIVIER LEROUX1, J. PAUL KNOX2, FREDERIC LEROUX3, ALEXANDER VRIJDAGHS4, ELKE BELLEFROID1, GAËTAN BORGONIE3 and RONALD L. L. VIANE1,∗

1Pteridology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium, 2Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK, 3Nematology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium and 4Laboratory of Plant Systematics, Institute of Botany and Microbiology, K.U. Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium

Received: 23 May 2007 Returned for revision: 10 July 2007 Accepted: 16 July 2007

INTRODUCTION

Aspleniaceae, with over 720 terrestrial, lithophytic or epiphytic species distributed throughout the world, is one of the largest families within the Filicopsida. During a comparative anatomical study of Asplenium species, projections on cell wall surfaces into intercellular spaces in the cortical parenchyma of the petioles were noted. According to Kissker (1928), De Vriese and Harting were the first to report such excrescences in 1853. Subsequently, similar structures were found in the intercellular spaces of seeds, leaves, stems and roots of many monocotyledons, dicotyledons, ferns and fern allies (for a review see Potgieter and van Wyk, 1992). These have been referred to as intercellular wall projections (Potgieter and van Wyk, 1992), pectic filaments (Carr and Carr, 1975; Carr and Carr, 1980a, b), pectic filaments (Carr and Carr, 1975; Potgieter and van Wyk, 1992), pectic warts (Kisser, 1928; Carlquist, 1956, 1957), scala (Potgieter and van Wyk, 1992), pectic projections (Davies and Lewis, 1981; Veys et al., 1999, 2000, 2002), micro-projections (Rolleri, 1993), beads (Jeffree and Yeoman, 1983; Barnett and Weatherhead, 1988), bead-like projections (Miller and Barnett, 1993), papilla-like structures (Suske and Acker, 1989), protuberances (Donaldson and Singh, 1984), intercellular protuberances (Butterfield et al., 1981; Machado et al., 2000), and intercellular pectic protuberances (IPP) (Potgieter and van Wyk, 1992; Machado and Sajo, 1996; Rolleri, 2002; Mengascini, 2002; Prada and Rolleri, 2005; Rolleri and Prada, 2006). Besides Asplenium, protuberances in ferns and fern allies have been studied in Angiopteris (Carr and Carr, 1975; Rolleri, 2002; Mengascini, 2002), Pteridium (Carr and Carr, 1975), Pteris (Schenck, 1886), Blechnum (Schenck, 1886), Christensenia (Rolleri, 1993), Isoetes (Prada and Rolleri, 2005), Equisetum (Vidal, 1896), Azolla (Veys et al., 1999, 2000, 2002) and Marattia (Lavalle, 2003).

Infraspecific variability in the occurrence, form and distribution of IPPs has been reported for some Hawaiian Asteraceae (Carlquist, 1957), some southern African Icacinaceae (Potgieter and van Wyk, 1992), some Isoetes species (Prada and Rolleri, 2005), and for some Blechnum species (Rolleri and Prada, 2006). Nevertheless, Potgieter and van Wyk (1992) emphasized the need for more anatomical study to assess the variability at lower taxonomic levels.

Based on tests using different dyes, such as methylene blue and naphthaleine blue, the pectic nature of the protuberances was first postulated by Mangin (1892, 1893). Since then many authors identified pectin as the main constituent of IPPs (Table 1). However, ‘pectins’ constitute a family of polysaccharides rich in galacturonic acid (GalA), and subdivided into three main classes: homogalacturonan (HG), rhamnogalacturonan-1 (RGI) and
rhamnogalacturonan-II (RGII) (Willats et al., 2006). HG is a linear polymer consisting of 1,4-linked α-D-GalA that can carry varying patterns and densities of methyl esterification. RGII consists of the repeating disaccharide \([\alpha-1,4]-\alpha-D-GalA-(1\rightarrow2)-\alpha-L-rhamnose-(1\rightarrow]\) on which a variety of different glycan chains (principally arabinan and galactan) can be attached to the rhamnose residues. RGII has a backbone of HG rather than RG, with a linear polymer consisting of 1,4-linked D-GalA that can carry varying patterns and densities of methyl esterification.

The interest in cell walls has increased over the last decennia, and aspects of pteridophyte and other non-angiosperm plants were studied by Popper and Fry (2003), Popper et al. (2004), Matsunaga et al. (2004), Popper and Fry (2004), Carafa et al. (2006), Popper (2006) and Johnson and Renzaglia (2007). However, only Carafa et al. (2006) and Johnson and Renzaglia (2007) used monoclonal antibodies to investigate cell wall composition in pteridophytes.

Apart from the composition of IPPs, many uncertainties concerning their development remain. Are they formed from materials of the middle lamella during the formation of intercellular spaces, or do they consist of material secreted onto cell walls after the formation of intercellular spaces? The pectic nature of IPPs led most researchers (e.g. Carr and Carr, 1975; Carr et al., 1980a; Potgieter and van Wyk, 1992; Tiné et al., 2000) to conclude that IPPs are most probably formed during cell separation.

Table 1. Chronological review of studies including test(s) to identify putative chemical component(s) and origin of IPPs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Taxon</th>
<th>Dye(s) or histochemical test(s)</th>
<th>Putative chemical composition</th>
<th>Postulated origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangin (1892, 1893)</td>
<td>Blechnum, Pteris, Equisetum, Vitis, Yucca</td>
<td>Methylen blue, Naphtalene blue, etc.</td>
<td>Pectin</td>
<td>–</td>
</tr>
<tr>
<td>Carré and Horne (1927)</td>
<td>Malus</td>
<td>Ruthenium red</td>
<td>Pectin</td>
<td>Secretion</td>
</tr>
<tr>
<td>Kisser (1928)</td>
<td>Aconitum, Helleborus, Saxifraga, Daphne, Ernobryotyra, Fatsia, Erica, Yucca, Dieffenbachia, Asplenium</td>
<td>Ruthenium red</td>
<td>Pectin</td>
<td>Secretion</td>
</tr>
<tr>
<td>Carlquist (1956)</td>
<td>Fitchia, Wyethia</td>
<td>Ruthenium red</td>
<td>Pectin</td>
<td>Secretion</td>
</tr>
<tr>
<td>Carlquist (1957)</td>
<td>Argyroxiphium, Wilkesia</td>
<td>Ruthenium red</td>
<td>Pectin</td>
<td>Secretion</td>
</tr>
<tr>
<td>Carr and Carr (1975)</td>
<td>Eucalyptus</td>
<td>Pectin</td>
<td>Rearranged middle lamella</td>
<td>–</td>
</tr>
<tr>
<td>Carr and Carr (1975)</td>
<td>Angiopteris, Pteridium</td>
<td>–</td>
<td>Possibly secretion</td>
<td>–</td>
</tr>
<tr>
<td>Carr et al. (1980a)</td>
<td>Vicia, Scilla, Iresin, Helianthus</td>
<td>Pectinase</td>
<td>Rearranged middle lamella</td>
<td>Secretion</td>
</tr>
<tr>
<td>Butterfield et al. (1981)</td>
<td>Cocos</td>
<td>Ruthenium red</td>
<td>Pectin</td>
<td>–</td>
</tr>
<tr>
<td>Davies and Lewis (1981)</td>
<td>Daucus</td>
<td>Ruthenium red</td>
<td>Pectin</td>
<td>–</td>
</tr>
<tr>
<td>Jeffree and Yeoman (1983)</td>
<td>Lycopersicon</td>
<td>Ruthenium red and hydroxylamine/ ferric chloride</td>
<td>–</td>
<td>Secretion</td>
</tr>
<tr>
<td>Potgieter and van Wyk (1992)</td>
<td>Pyrenacantha</td>
<td>Ruthenium red and hydroxylamine/ ferric chloride</td>
<td>–</td>
<td>Rearranged middle lamella</td>
</tr>
<tr>
<td>Miller and Barnett (1993)</td>
<td>Picea</td>
<td>Ruthenium red and hydroxylamine/ ferric chloride</td>
<td>–</td>
<td>Secretion</td>
</tr>
<tr>
<td>Rolleri (1993)</td>
<td>Christensenia</td>
<td>Ruthenium red</td>
<td>Pectin</td>
<td>–</td>
</tr>
<tr>
<td>Machado and Sajo (1996)</td>
<td>Xyris</td>
<td>Ruthenium red</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Veys et al. (1999)</td>
<td>Azolla</td>
<td>Ruthenium red</td>
<td>Pectin</td>
<td>Secretion</td>
</tr>
<tr>
<td>Machado et al. (2000)</td>
<td>Paepalanthus</td>
<td>Ruthenium red</td>
<td>Pectin</td>
<td>Secretion</td>
</tr>
<tr>
<td>Tiné et al. (2000)</td>
<td>Hymenaea</td>
<td>Neutral lipid</td>
<td>Neutral lipid</td>
<td>Rearranged middle lamella</td>
</tr>
<tr>
<td>Rolleri (2002)</td>
<td>Angiopteris</td>
<td>Ruthenium red</td>
<td>–</td>
<td>Secretion</td>
</tr>
<tr>
<td>Veys et al. (2002)</td>
<td>Azolla</td>
<td>Ruthenium red</td>
<td>–</td>
<td>Secretion</td>
</tr>
<tr>
<td>Prada and Rolleri (2005)</td>
<td>Isoetes</td>
<td>Toluidine blue O</td>
<td>–</td>
<td>Possibly secretion</td>
</tr>
<tr>
<td>Leroux (2005)</td>
<td>Asplenium anisophyllum-complex</td>
<td>Ruthenium red/pectinase</td>
<td>–</td>
<td>Possibly secretion</td>
</tr>
</tbody>
</table>

–, Authors did not provide data.
They suggest that when cells are pulled apart during parenchyma expansion, the pectin of the middle lamella becomes stretched and forms strands between adjacent cells. Protuberances then form after the rupture of these strands as parenchyma development proceeds. In contrast to this view, other authors stress the possibility that the pectic filaments observed in ferns (Potgieter and van Wyk 1992; Carr and Carr, 1975) and other plant groups (Machado et al., 2000; Butterfield et al., 1981; Davies and Lewis, 1981) may be derived from new materials laid down after interfibrillar space formation. According to Veys et al. (2002) protuberances appear both under stress conditions, such as wounding (Davies and Lewis, 1981) and grafting (e.g. Donaldson and Singh, 1983; Miller and Barnett, 1993), and unstressed conditions (e.g. Carliquist, 1956; Potgieter and van Wyk, 1992).

Mostly based on their pectic nature, several possible functions of the intercellular protuberances have been suggested, such as cell wall hydration, storage, cell adhesion, defence and apoplastic transport (Potgieter and van Wyk, 1992), but none has been confirmed.

Although many authors have described morphological aspects of IPPs, many uncertainties concerning their origin and composition remain. In this paper, the intercellular protuberances in Asplenium are described. Using immunohistochemistry and electron microscopy, new data on their origin and composition are presented.

MATERIALS AND METHODS

Plant material

Sporophyte material was sampled from plants cultivated at Ghent University Botanical Garden. After examining Asplenium aethiopicum, A. anisophyllum, A. balense, A. decompositum, A. javorkeanum, A. nitens, A. normale, A. onopteris, A. protensum, A. scolopendrium, A. simii, A. smedsi, A. splendidens, A. trichomanes and A. uhligii, one specimen (Viane 8539; pers. Herb. R. Viane, GENT) was selected from the A. aethiopicum complex for a more detailed analysis. Sections of both juvenile uncurling crosiers and mature leaves were made.

Light microscopy

Tissues were embedded using the Technovit 7100 embedding kit (Heraeus Kulzer, Wehrheim, Germany). Small pieces of plant material (root, rhizome, petiole and lamina), measuring approx. 4 mm on all sides, were excised using razor blades, and fixed in FAA (90 % ethanol 50 %, 5 % acetic acid and 5 % commercial formalin). Dehydration was performed using 30 %, 50 %, 70 %, 85 % and 94 % ethanol. After the last alcohol step, the tissue was infiltrated with hydroxyethylmethacrylate-based resin. Since the samples used in this study are larger than those mentioned in Beeckman and Viane (2000), longer infiltration steps were required. Further treatment was according to Beeckman and Viane (2000), using the one-step embedding method of De Smet et al. (2004). Some samples were embedded in custom-made Teflon moulds. Transverse sections of 5 μm were cut with a microtome (Minot 1212, Leitz, Wetzlar, Germany), dried on object glasses, and stained with an aqueous 0.05 % (w/v) solution of toluidine blue O (Merck, Darmstadt, Germany, C.I. No. 52040) in 0.1 % Na2B4O7. A histochemical test with aqueous 1 % (w/v) ruthenium red (Sigma, St Louis, MO, USA) was performed to indicate the presence of pectic material. Hand sections were treated with safranine O (Johansen, 1940) and phloroglucinol (Johansen, 1940) to test for lignin, and aniline blue (0.01 % in 0.1 M phosphate buffer, pH 9) to demonstrate callose. Micrographs were taken using a Canon EOS D10 mounted on an Olympus BH2 microscope.

Scanning electron microscopy

Material was washed twice with 70 % ethanol for 5 min and then placed in a mixture (1 : 1) of 70 % ethanol and DMM (dimethoxymethane) for 20 min. Subsequently, the material was transferred to 100 % DMM for 20 min, before it was CO2 critical point dried using a CPD 030 critical point dryer (BAL-TEC AG, Balzers, Liechtenstein). The dried samples were mounted on aluminium stubs using Leit-C and coated with gold with a SPI-ModuleTM Sputter Coater (SPI Supplies, West-Chester, PA, USA). Images were obtained on a Jeol JSM-6360 (Jeol, Tokyo) at the Laboratory of Plant Systematics (K.U. Leuven).

Transmission electron microscopy

Petiole cortex tissue was cut into blocks measuring approx. 2 mm on all sides. These were fixed with 2 % formaldehyde and 2.5 % glutaraldehyde in a cacodylate buffer 0.1 M pH 7.4 for 24 h at 4 °C, washed in the same buffer for 8 h, post-fixed with 4 % osmiumtetroxide and dehydrated in a step gradient of ethanol at room temperature. The samples were transferred to 100 % alcohol/Spurr’s resin (1 : 1) at 4 °C overnight, brought to 100 % alcohol/Spurr’s resin (1 : 2) for 8 h (4 °C), and transferred to 100 % Spurr’s resin and left overnight at 4 °C. Polymerization was performed at 70 °C for 16 h. Sections (70 nm thick) were made using a Reichert Ultracut S Ultramicrotome. Formvar-coated single slot copper grids were used. Sections were post-stained with a Leica EM stain for 30 min in uranyl acetate at 40 °C and 10 min in lead citrate stain at 20 °C. The grids were examined with a JEM 1010 Jeol electron microscope equipped with imaging plates which were scanned digitally (Ditabis, Pforzheim, Germany).

Immunohistochemistry

The molecular composition of cell walls and IPPs was determined using indirect immunofluorescence with a range of monoclonal antibodies directed against cell wall polysaccharides/glycoproteins. These included: anti-HG monoclonal antibodies JIM5, JIM7 and LM7 (Claussen et al., 2003) and PAM1 (Manfield et al., 2005); anti-xyllogalacturonan LM8 (Willats et al., 2004); anti-galactan LM5 (Jones et al., 1997), anti-arabinan LM6 (Willats et al., 2004).
et al., 1998); anti-arabinogalactan-protein antibodies LM2 (Smallwood et al., 1996), JIM4 (Knox et al., 1989), JIM13, JIM14 (Knox et al., 1991) and MAC207 (Pennell et al., 1989); anti-extensin antibodies LM1 (Smallwood et al., 1995), JIM11, JIM12, JIM19 and JIM20 (Smallwood et al., 1994); anti-xylan antibody LM11 (McCartney et al., 2005) and a new anti-xyloglucan monoclonal antibody recognizing the XXXG motif of xyloglucans (unpubl. res.).

Petioles stored in 70 % ethanol were sectioned by hand and immediately placed in a fixative of 4 % paraformaldehyde in 50 mM Pipes, 5 mM MgSO4 and 5 mM EGTA. Following overnight fixation, sections were washed in PBS and then incubated for 1 h in primary antibody diluted in 5 % milk protein in PBS. All rat monoclonal antibodies were used as a 5-fold dilution. Sections were washed in PBS prior to incubation for 1 h in secondary antibody. The secondary antibody was anti-rat IgG coupled to fluorescein isothiocyanate (FITC) (Sigma). Soluble scFV of PAM1 was incubated with sections at 20 μg mL⁻¹ followed by a 100-fold dilution of mouse anti-HIS as secondary antibody. Next, a 50-fold dilution of anti-mouse/FITC was used as tertiary antibody. After washing in PBS, all sections were mounted in anti-fade agent (Citifluor, Agar Scientific) and examined using a microscope equipped with epifluorescence irradiation and DIC optics (Olympus BX-61). Images were captured with a Hamamatsu ORCA285 camera and prepared with Improvision Volocity software. Cellulose was stained with Calcofluor White M2R fluorochrome (fluorescent brightener 28; Sigma; 0.25 μg mL⁻¹ in dH2O). In some cases plant material embedded in resin, as described above, was used for immunohistochemistry.

Peroxidase activity

In situ peroxidase activity was detected in fresh hand-cut sections of cortical parenchyma following pretreatment in 5 mg mL⁻¹ 3,3′-diaminobenzidine (DAB)-HCL, pH 3-8, re-buffered to pH 5-8 immediately before use. Subsequently 1 mM H2O2 was added and incubation was performed at room temperature for 5 min.

RESULTS

IPPs were found in all the Asplenium species studied. A cross-section of the petiole of a mature Asplenium leaf typically shows two vascular bundles (Fig. 1A), which fuse towards the rachis. The outermost layer or epidermis is followed internally by a hypodermis consisting of strongly sclerified cells. The largest part of the cortex consists of parenchyma with intercellular spaces (Fig. 1A), in which IPPs are visible at magnifications above ×200 (Fig. 1B). No regular arrangement of pectic strands connecting adjacent cells was seen.

Sections through superimposed zones of juvenile petioles bearing a crozier show that in the upper zone with undifferentiated metaxylem vessels, the minute intercellular spaces in the parenchyma lack IPPs. In sub-mature tissues IPPs are rare but intercellular space corners are frequently filled with IPP material. Mature petiole bases have large intercellular spaces with numerous IPPs. All the mature tissues studied containing intercellular spaces, i.e. the petiolar cortical parenchyma and the laminal mesophyll, possess IPPs. However, relatively few protuberances are present in the mesophyll. Rhizomes have only few and small intercellular spaces that contain very thin filamentous IPPs. Since intercellular spaces are absent in Asplenium roots, no cell wall protuberances were observed in this organ.

Ruthenium red showed a positive reaction with the protuberances, but tests for lignin and for callose were negative. The cellulose-binding fluorophor calcofluor did not label IPPs but clearly bound to neighbouring cell walls (Fig. 3C). After performing a peroxidase activity test by adding DAB and H2O2 to fresh hand-cut sections, all IPPs in the cortical parenchyma were stained.

Scanning electron micrographs of the cortical parenchyma show protuberances of irregular size and shape, without any regular arrangement or strands connecting adjacent cells (Fig. 2A). Warts and nodulated filaments are smooth and appear to be firmly attached to the surface of the cell wall (Fig. 2B).
Transmission electron microscopy shows that cell walls are clearly layered and possess simple pits (Fig. 2C, inset). The shapes of IPPs observed with transmission electron microscopy agree with those seen by scanning electron microscopy; their internal structure seems rather homogeneous and shows no variation between samples. At higher magnifications an electron-dense fibrillar network is visible within IPPs. The adjacent cell wall shows a more electron-dense outer zone or lining, but there is no continuity between the protuberances and the cell wall (Fig. 2D).

The monoclonal antibodies JIM5 and JIM7, which bind to a range of partially methyl-esterified homogalacturonan domains, clearly label the region of the cell wall lining the intercellular spaces between the cortical parenchyma cells. At higher magnifications (Fig. 3A) the abundance of the JIM5 epitope in the middle lamellae, the intercellular space linings and IPPs is evident. The blockwise de-esterified homogalacturonan epitope recognized by PAM1 binds both to the intercellular space linings and to IPPs (Fig. 3D, E). It is of interest that LM5, LM6, LM7 and LM8, monoclonal antibodies that bind to other pectic polymers, did not bind to any structure or part of the cortical parenchyma of Asplenium. However, the LM6 probe for arabinan bound to all cell walls of the vascular bundle including the endodermis (Fig. 3G).

For the non-pectic polymers it was found that none of the anti-arabinogalactan-protein antibodies LM2, JIM4, JIM13, JIM14 and MAC207 bound to cortical parenchyma of mature leaves, and that the anti-extensin monoclonal antibodies LM1, JIM11 and JIM20 bound exclusively to IPPs but not to associated cell walls or middle lamellae. However, the LM6 probe for arabinan bound to all cell walls of the vascular bundle including the endodermis (Fig. 3G).

The distribution of the LM1 extensin epitope is shown in Fig. 3H and I. The monoclonal antibody to the XXXG motif of xylan did not label IPPs, although this antibody did bind to the parenchyma cell walls (Fig. 3F). The simple pits, observed by transmission electron microscopy (Fig. 2C, inset), were also visualized by this probe. Anti-xylan LM11 bound to the secondary cell walls of tracheids in the vascular tissue but not to cortical parenchyma cell walls, IPPs or middle lamellae. An overview of the immunohistochemical observations made is shown in Table 2.

DISCUSSION

Intercellular protuberances occur in tissues of various ferns and fern allies, gymnosperms and angiosperms (Potgieter and van Wyk, 1992). Because detailed information on protuberances is restricted to relatively few taxa, we emphasize that protuberances with a similar morphology are not necessarily ontogenetically, chemically or anatomically identical.

The observations of Luerssen (1875) and Kisser (1928) were confirmed in the present study but big stalked spherical bodies were found in not only *A. scolopendrium* but in
all the *Asplenium* species studied. IPPs in *Asplenium* are more numerous in the petiole than in the mesophyll. Those in the rhizome resemble the filaments described in the rhizome parenchyma of *Pteridium esculentum* (Carr and Carr, 1975). However, intercellular spaces in the rhizome of *Asplenium* are smaller and protuberances rare.

In contrast to *Cassinopsis ilicifolia* (Potgieter and van Wyk, 1992), transmission electron microscopical observations of the samples used in the present study showed dissimilarities in electron density between IPPs and their adjacent cell walls and middle lamellae. Remarkably, the primary parenchyma cell walls in this specimen are composed of several layers. This phenomenon has been observed in primary cell walls when they consist of a series of layers in which the orientation of the microfibrils changes by a constant and usually small angle from one layer to the next (Brett and Waldron, 1996).

The protuberances in *Asplenium* show a positive reaction with ruthenium red, supporting their pectic composition. However, results based on reactions with ruthenium red should be interpreted with care because this stain may not be specific enough for pectic compounds (Krishnamurthy, 1999).

The negative tests for lignin and callose seem to indicate the absence of these compounds in IPPs, associated cell walls and middle lamellae. Although cellulose was clearly detected in associated cell walls, it is not found in the protuberances.

As a literature study showed that pectin was believed to be the main substance of intercellular protuberances of many plants, the present immunohistochemical tests...
mainly screened for pectins. The fact that monoclonal antibodies JIM5, JIM7 and PAM1 bind to cell walls and to IPPs indicates the abundance of a mixture of unesterified and methyl-esterified HG. It is of interest that LM7, which binds to a non-blockwise partially methyl-esterified epitope of HG and is restricted to corners of intercellular bodies JIM5, JIM7 and PAM1 bind to cell walls and to IPPs mainly screened for pectins. Consequently, IPPs in Asplenium do not have the same chemical nature as the xyloglucan containing protuberances in the storage cell walls in cotyledons of Hymenaea courbaril (Tiné et al., 2000). Arabinogalactan-proteins were not detected in the cortical parenchyma cell walls or IPPs of the material used in the present study, even though the same extensive range of monoclonal antibodies that was used to demonstrate their presence in angiosperms (Showalter, 2001) had been applied.

Extensins were detected exclusively in IPPs, indicating that IPP material is distinct from adjacent primary cell walls or middle lamellae. Consequently, extensins are cationic glycoproteins and therefore also have the potential to interact ionically with acidic pectins (Kieliszewski and Lamport, 1994). The distribution pattern of the PAM1 epitope indicates an abundance of unesterified pectin in the IPPs and they therefore may be structurally stabilized by an interaction with extensins.

Few articles report on localization patterns of peroxidases in fern cell walls. Ros et al. (2007) showed that structural motifs characteristic of eudicot S-peroxidases predate the radiation of tracheophytes, since they are found not only in peroxidases from ferns (Ceratopteris), lycopsods and basal gymnosperms, but also in peroxidases of mosses and liverworts.

The majority of researchers hypothesize that IPPs are remnants of the middle lamellae, most probably formed during cell separation (e.g. Potgieter and van Wyk, 1992; Tiné et al., 2000) when stretched middle lamellae strands snap and form filamentous or wart-like protuberances. However, their presence does not necessarily mean that they are derived from middle lamella components. Substances may be secreted at the site of future intercellular spaces, but prior to their development and expansion, and become incorporated in IPPs during intercellular space formation.

In Asplenium, the occasional observation of protuberances stretching completely across an intercellular space, i.e. from the outside of a wall of one parenchyma cell to the outside of another cell wall, could be consistent with the first hypothesis. However, extensins were only detected in IPPs and not in adjacent cell walls or middle lamellae, indicating a composition distinct from that of the middle lamellae. In addition, transmission electron microscope micrographs showed a clear discontinuity between the protuberances and the cell wall. Overall, these observations

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Epitope</th>
<th>Cortex cell walls</th>
<th>Intercellular space linings</th>
<th>Middle lamella</th>
<th>IPPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pectin Homogalacturonan (HG)</td>
<td>JIM 5</td>
<td>Partially methyl-esterified HG/uneстерified HG</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>JIM 7</td>
<td>Partially methyl-esterified HG</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LM7</td>
<td>Partially methyl-esterified HG</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PAM1</td>
<td>Unesterified HG</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Rhamnogalacturonan I (RG-I)</td>
<td>LM5</td>
<td>(1→4)-β-galactan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LM6</td>
<td>(1→5)-α-arabinan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Xylogalacturonan</td>
<td>LM8</td>
<td>AGP glycan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arabinogalactan-protein (AGP)</td>
<td>JIM 4</td>
<td>AGP glycan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>JIM 13</td>
<td>AGP glycan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>JIM 14</td>
<td>AGP glycan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MAC207</td>
<td>AGP glycan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extensin</td>
<td>LM1</td>
<td>Extensin</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>JIM 11</td>
<td>Extensin</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>JIM 19</td>
<td>Extensin</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>JIM 20</td>
<td>Extensin</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Xyloglucan</td>
<td>Name unpublished</td>
<td>XXXG motif</td>
<td>+</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>Xylan</td>
<td>LM11</td>
<td>Unsubstituted xylan/arabinoxylan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+, Binding; -, no binding; ?, binding has to be confirmed by immunogold microscopy.
strongly suggest that IPPs do not originate exclusively from the middle lamellae.

In summary, this is the first report on the composition of IPPs using monoclonal antibodies directed against cell wall molecules. Homogalacturonan and extensin hydroxyproline-rich glycoproteins in IPPs were identified. These results, in combination with transmission electron microscopical observations, suggest that IPPs do not have to originate exclusively from the middle lamellae because additional substances may be secreted during tissue development and become incorporated in IPPs during intercellular space formation. Further biochemical and ontogenetical research on the formation of intercellular spaces is needed to elucidate the composition and possible functions of IPPs in many vascular plants.

ACKNOWLEDGEMENTS

We thank Susan Marcus (Centre for Plant Sciences, University of Leeds) for assistance with immunohistochemistry, Myriam Claeyts (Nematology, Department of Biology, Ghent University) for her assistance with ultra-thin sectioning, Suzy Huysmans (Laboratory of Plant Systematics, K.U. Leuven) for providing SEM facilities, and two anonymous reviewers for useful comments to improve the manuscript. We also thank the staff of the Ghent University Botanical Garden for providing greenhouse facilities.

LITERATURE CITED

