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The development of hypercomplex Fourier transforms and wavelets has
taken place in several different threads, reflected in the overview of the sub-
ject presented in this chapter. We present in Section 1 an overview of the
development of quaternion Fourier transforms, then in Section 2 the develop-
ment of Clifford Fourier transforms. Finally, since wavelets are a more recent
development, and the distinction between their quaternion and Clifford al-
gebra approach has been much less pronounced than in the case of Fourier
transforms, Section 3 reviews the history of both quaternion and Clifford
wavelets.

We recognise that the history we present here may be incomplete, and
that work by some authors may have been overlooked, for which we can only
offer our humble apologies.

1. Quaternion Fourier Transforms (QFT)

1.1. Major Developments in the History of the Quaternion Fourier Trans-
form

Quaternions [51] were first applied to Fourier transforms by Ernst [49, § 6.4.2]
and Delsuc [41, Eqn. 20] in the late 1980s, seemingly without knowledge of the
earlier work of Sommen [90, 91] on Clifford Fourier and Laplace transforms
further explained in Section 2.2. Ernst and Delsuc’s quaternion transforms
were two-dimensional (that is they had two independent variables) and pro-
posed for application to nuclear magnetic resonance (NMR) imaging. Written
in terms of two independent time variables1 t1 and t2, the forward transforms

1The two independent time variables arise naturally from the formulation of two-

dimensional NMR spectroscopy.
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were of the following form2:

F(ω1, ω2) =

∞∫
−∞

∞∫
−∞

f(t1, t2)eiω1t1ejω2t2dt1dt2 . (1.1)

Notice the use of different quaternion basis units i and j in each of the two
exponentials, a feature that was essential to maintain the separation between
the two dimensions (the prime motivation for using a quaternion Fourier
transformation was to avoid the mixing of information that occurred when
using a complex Fourier transform – something that now seems obvious, but
must have been less so in the 1980s). The signal waveforms/samples measured
in NMR are complex, so the quaternion aspect of this transform was essential
only for maintaining the separation between the two dimensions. As we will
see below, there was some unused potential here.

The fact that exponentials in the above formulation do not commute
(with each other, or with the ‘signal’ function f), means that other formu-
lations are possible3, and indeed Ell in 1992 [45, 46] formulated a transform
with the two exponentials positioned either side of the signal function:

F(ω1, ω2) =

∞∫
−∞

∞∫
−∞

eiω1t1f(t1, t2) ejω2t2 dt1dt2 . (1.2)

Ell’s transform was a theoretical development, but it was soon applied to the
practical problem of computing a holistic Fourier transform of a colour image
[84] in which the signal samples (discrete image pixels) had three-dimensional
values (represented as quaternions with zero scalar parts). This was a major
change from the previously intended application in nuclear magnetic reso-
nance, because now the two-dimensional nature of the transform mirrored
the two-dimensional nature of the image, and the four-dimensional nature of
the algebra used followed naturally from the three-dimensional nature of the
image pixels.

Other researchers in signal and image processing have followed Ell’s
formulation (with trivial changes of basis units in the exponentials) [27, 24,
25], but as with the NMR transforms, the quaternion nature of the transforms
was applied essentially to separation of the two independent dimensions of
an image (Bülow’s work [24, 25] was based on greyscale images, that is with
one-dimensional pixel values). Two new ideas emerged in 1998 in a paper by
Sangwine and Ell [86]. These were, firstly, the choice of a general root µ of
−1 (a unit quaternion with zero scalar part) rather than a basis unit (i, j or
k) of the quaternion algebra, and secondly, the choice of a single exponential

2Note, that Georgiev et al use this form of the quaternion Fourier transform (QFT) in
Chapter ?? to extend the Bochner-Minlos theorem to quaternion analysis. Moreover, the
same form of QFT is extended by Georgiev and Morais in Chapter ?? to a quaternion

Fourier-Stieltjes transform.
3See Chapter ?? by Ell in this volume with a systematic review of possible forms of qua-
ternion Fourier transformations.
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rather than two (giving a choice of ordering relative to the quaternionic signal
function):

F(ω1, ω2) =

∞∫
−∞

∞∫
−∞

eµ(ω1t1+ω2t2)f(t1, t2)dt1dt2 . (1.3)

This made possible a quaternion Fourier transform of a one-dimensional sig-
nal:

F(ω) =

∞∫
−∞

eµωtf(t)dt . (1.4)

Such a transform makes sense only if the signal function has quaternion
values, suggesting applications where the signal has three or four independent
components. (An example is vibrations in a solid, such as rock, detected
by a sensor with three mutually orthogonal transducers, such as a vector
geophone.)

Very little has appeared in print about the interpretation of the Fourier
coefficients resulting from a quaternion Fourier transform. One interpretation
are components of different symmetry, as explained by Ell in Chapter ??.
Sangwine and Ell in 2007 published a paper about quaternion Fourier trans-
forms applied to colour images, with a detailed explanation of the Fourier
coefficients in terms of elliptical paths in colour space (the n-dimensional
space of the values of the image pixels in a colour image) [48].

1.2. Splitting Quaternions and the QFT

Following the earlier works of Ernst, Ell, Sangwine (see Section 1.1), and
Bülow [24, 25], Hitzer thoroughly studied the quaternion Fourier transform
(QFT) applied to quaternion-valued functions in [54]. As part of this work a
quaternion split

q± =
1

2
(q ± iqj), q ∈ H, (1.5)

was devised and applied, which led to a better understanding of GL(R2)
transformation properties of the QFT spectrum of two-dimensional images,
including colour images, and opened the way to a generalization of the QFT
concept to a full spacetime Fourier transformation (SFT) for spacetime alge-
bra C`3,1-valued signals.

This was followed up by the establishment of a fully directional (op-
posed to componentwise) uncertainty principle for the QFT and the SFT
[58]. Independently Mawardi et al [77] established a componentwise uncer-
tainty principle for the QFT.

The QFT with a Gabor window was treated by Bülow [24], a study
which has been continued by Mawardi et al in [1].

Hitzer reports in [59] initial results (obtained in co-operation with Sang-
wine) about a further generalization of the QFT to a general form of orthog-
onal 2D planes split (OPS-) QFT, where the split (1.5) with respect to two
orthogonal pure quaternion units i, j is generalized to a steerable split with
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respect to any two pure unit quaternions f, g ∈ H, f2 = g2 = −1. This ap-
proach is fully elaborated upon in a contribution to the current volume (see
Chapter ??). Note that the Cayley-Dickson form [87] of quaternions and the
related simplex/perplex split [47] are obtained for f = g = i (or more general
f = g = µ), which is employed in Chapter ?? for a novel spectral analysis of
non-stationary improper complex signals.

2. Clifford Fourier Transformations in Clifford’s Geometric
Algebra

W.K. Clifford introduced (Clifford) geometric algebras in 1876 [28]. An intro-
duction to the vector and multivector calculus, with functions taking values
in Clifford algebras, used in the field of Clifford Fourier transforms (CFT)
can be found in [53, 52]. A tutorial introduction to CFTs and Clifford wavelet
transforms can be found in [55]. The Clifford algebra application survey [65]
contains an up to date section on applications of Clifford algebra intergral
transforms, including CFTs, QFTs and wavelet transforms4.

2.1. How Clifford Algebra Square Roots of −1 Lead to Clifford Fourier
Transformations

In 1990 Jancewicz defined a trivector Fourier transformation

F3{g}(ω) =

∫
R3

g(x)e−i3x·ωd3x, i3 = e1e2e3, g : R3 → C`3,0, (2.1)

for the electromagnetic field5 replacing the imaginary unit i ∈ C by the
trivector i3, i23 = −1, of the geometric algebra C`3,0 of three-dimensional
Euclidean space R3 = R3,0 with ortho-normal vector basis {e1, e2, e3}.

In [50] Felsberg makes use of signal embeddings in low dimensional
Clifford algebras R2,0 and R3,0 to define his Clifford-Fourier transform (CFT)
for one-dimensional signals as

Ffe1 [f ](u) =

∫
R

exp (−2πi2ux) f(x) dx, i2 = e1e2, f : R→ R, (2.2)

where he uses the pseudoscalar i2 ∈ C`2,0, i22 = −1. For two-dimensional
signals6 he defines the CFT as

Ffe2 [f ](u) =

∫
R2

exp (−2πi3 < u, x >) f(x) dx, f : R2 → R2, (2.3)

4Fourier and wavelet transforms provide alternative signal and image representations. See

Chapter ?? for a spinorial representation and Chapter ?? by Li and Qian for a sparse

representation of signals in a Hardy space dictionary (of elementary wave forms) over a
unit disk.
5Note also Chapter ?? in this volume, in which Bernstein considers optical coherence to-

mography, formulating the Maxwell equations with the Dirac operator and Clifford algebra.
6 Note in this context the spinor representation of images by Batard and Berthier in Chap-

ter ?? of this volume. The authors apply a CFT in C`3,0 to the spinor represenation, which
uses in the exponential kernel an adapted choice of bivector, that belongs to the orthonor-
mal frame of the tangent bundle of an oriented two-dimensional Riemannian manifold,

isometrically immersed in R3.
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where he uses the pseudoscalar i3 ∈ C`3,0. It is used a.o. to introduce a
concept of two-dimensional analytic signal. Together with Bülow and Som-
mer, Felsberg applied these CFTs to image stucture processing (key-notion:
structure multivector) [50, 24].

Ebling and Scheuermann [44, 43] consequently applied to vector sig-
nal processing in two- and three dimensions, respectively, the following two-
dimensional CFT

F2{f}(ω) =

∫
R2

f(x)e−i2x·ωd2x, f : R2 → R2, (2.4)

with Clifford Fourier kernel

exp (−e1e2(ω1x1 + ω2x2)), (2.5)

and the three-dimensional CFT (2.1) of Jancewicz with Clifford Fourier kernel

exp (−e1e2e3(ω1x1 + ω2x2 + ω3x3)). (2.6)

An important integral operation defined and applied in this context by Ebling
and Scheuermann was the Clifford convolution. These Clifford-Fourier trans-
forms and the corresponding convolution theorems allow Ebling and Scheuer-
mann for a.o. the analysis of vector-valued patterns in the frequency domain.

Note that the latter Fourier kernel (2.6) has also been used by Mawardi
and Hitzer in [78, 63, 78] to define their Clifford-Fourier transform of three-
dimensional multivector signals: that means, they researched the properties
of F3{g}(ω) of (2.1) in detail when applied to full multivector signals g :
R3 → C`3,0. This included an investigation of the uncertainty inequality for
this type of CFT. They subsequently generalized F3{g}(ω) to dimensions
n = 3(mod 4), i.e. n = 3, 7, 11, . . .,

Fn{g}(ω) =

∫
Rn

g(x)e−inx·ωdnx, g : Rn → C`n,0, (2.7)

which is straight-forward, since for these dimensions the pseudoscalar in =
e1 . . . en squares to −1 and is central [64], i.e., it commutes with every other
multivector belonging to C`n,0. A little less trivial is the generalization of
F2{f}(ω) of (2.4) to

Fn{f}(ω) =

∫
Rn

f(x)e−inx·ωdnx, f : Rn → C`n,0, (2.8)

with n = 2(mod 4), i.e. n = 2, 6, 10 . . ., because in these dimensions the
pseudoscalar in = e1 . . . en squares to −1, but it ceases to be central. So the
relative order of the factors in Fn{f}(ω) becomes important, see [66] for a
systematic investigation and comparison.

In the context of generalizing quaternion Fourier transforms (QFT) via
algebra isomorphisms to higher dimensional Clifford algebras, Hitzer [54] con-
structed a spacetime Fourier transform (SFT) in the full algebra of spacetime
C`3,1, which includes the CFT (2.1) as a partial transform of space. Imple-
mented analogous (isomorphic) to the orthogonal 2D planes split of quaterni-
ons, the SFT permits a natural spacetime split, which algebraically splits the
SFT into right- and left propagating multivector wave packets. This analysis
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allows to compute the effect of Lorentz transformations on the spectra of
these wavepackets, as well as a 4D directional spacetime uncertainty formula
[58] for spacetime signals.

Mawardi et al extended the CFT F2{f}(ω) of (2.4) to a windowed
CFT in [76]. Fu et al establish in Chapter ?? a strong version of Heisenberg’s
uncertainty principle for Gabor-windowed CFTs.

In Chapter ?? in this volume, Bujack, Scheuermann, and Hitzer, expand
the notion of Clifford Fourier transform to include multiple left and right
exponential kernel factors, in which commuting (or anticommuting) blades,
that square to −1, replace the complex unit i ∈ C, thus managing to include
most practically used CFTs in a single comprehensive framework. Based on
this they have also constructed a general CFT convolution theorem [23].

Spurred by the systematic investigation of (complex quaternion) bi-
quaternion square roots of −1 in C`3,0 by Sangwine [85], Hitzer and Ablam-
owicz [62] systematically investigated the explicit equations and solutions for
square roots of −1 in all real Clifford algebras C`p,q, p+q ≤ 4. This investiga-
tion is continued in the present volume in Chapter ?? by Hitzer, Helmstetter
and Ablamowicz for all square roots of −1 in all real Clifford algberas C`p,q
without restricting the value of n = p + q. One important motivation for
this is the relevance of the Clifford algebra square roots of −1 for the gen-
eral construction of CFTs, where the imaginary unit i ∈ C is replaced by a√
−1 ∈ C`p,q, without restriction to pseudoscalars or blades.

Based on the knowlege of square roots of −1 in real Clifford algebras
C`p,q, [60] develops a general CFT in C`p,q, wherein the complex unit i ∈ C
is replaced by any square root of −1 chosen from any component and (or)
conjugation class of the submanifold of square roots of−1 in C`p,q, and details
its properties, including a convolution theorem. A similar general approach is
taken in [61] for the construction of two-sided CFTs in real Clifford algebras
C`p,q, freely choosing two square roots from any one or two components and
(or) conjugation classes of the submanifold of square roots of −1 in C`p,q.
These transformations are therefore generically steerable.

This algebraically motivated approach may in the future be favorably
combined with group theoretic, operator theoretic and spinorial approaches,
to be discussed in the following.

2.2. The Clifford Fourier Transform in the Light of Clifford Analysis

Two robust tools used in image processing and computer vision for the
analysis of scalar fields are convolution and Fourier transformation. Sev-
eral attempts have been made to extend these methods to two- and three-
dimensional vector fields and even multi-vector fields. Let us give an overview
of those generalized Fourier transforms.

In [25] Bülow and Sommer define a so-called quaternionic Fourier trans-
form of two-dimensional signals f(x1, x2) taking their values in the algebra
H of real quaternions. Note that the quaternion algebra H is nothing else
but (isomorphic to) the Clifford algebra C`0,2 where, traditionally, the basis

vectors are denoted by i and j, with i2 = j2 = −1, and the bivector by
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k = ij. In terms of these basis vectors this quaternionic Fourier transform
takes the form

Fq[f ](u1, u2) =

∫
R2

exp (−2πiu1x1) f(x1, x2) exp (−2πju2x2) dx (2.9)

Due to the non-commutativity of the multiplication in H, the convolution
theorem for this quaternionic Fourier transform is rather complicated, see
also [23].

This is also the case for its higher dimensional analogue, the so-called
Clifford-Fourier transform7 in C`0,m given by

Fcl[f ](u) =

∫
Rm

f(x) exp (−2πe1u1x1) . . . exp (−2πemumxm) dx (2.10)

Note that for m = 1 and interpreting the Clifford basis vector e1 as the
imaginary unit i, the Clifford-Fourier transform (2.10) reduces to the stan-
dard Fourier transform on the real line, while for m = 2 the quaternionic
Fourier transform (2.9) is recovered when restricting to real signals.

Finally Bülow and Sommer also introduce a so-called commutative hy-
percomplex Fourier transform given by

Fh[f ](u) =

∫
Rm

f(x) exp
(
−2π

∑m
j=1ẽjujxj

)
dx (2.11)

where the basis vectors (ẽ1, . . . , ẽm) obey the commutative multiplication
rules ẽj ẽk = ẽkẽj , j, k = 1, . . . ,m, while still retaining ẽ2j = −1, j = 1, . . . ,m.
This commutative hypercomplex Fourier transform offers the advantage of a
simple convolution theorem.

The hypercomplex Fourier transforms Fq, Fcl and Fh enable Bülow
and Sommer to establish a theory of multi-dimensional signal analysis and
in particular to introduce the notions of multi-dimensional analytic signal8,
Gabor filter, instantaneous and local amplitude and phase, etc.

In this context the Clifford Fourier transformations by Felsberg [50]
for one- and two-dimensional signals, by Ebling and Scheuermann for two-
and three-dimensional vector signal processing [44, 43], and by Mawardi and
Hitzer for general multivector signals in C`3,0 [78, 63, 78], and their respective
kernels, as already reviewed in Section 2.1, should also be considered.

The above mentioned Clifford-Fourier kernel of Bülow and Sommer

exp (−2πe1u1x1) · · · exp (−2πemumxm) (2.12)

was in fact already introduced in [19] and [89] as a theoretical concept in
the framework of Clifford analysis. This generalized Fourier transform was
further elaborated by Sommen in [90, 91] in connection with similar general-
izations of the Cauchy, Hilbert and Laplace transforms. In this context also
the work of Li, McIntosh and Qian should be mentioned; in [72] they general-
ize the standard multi-dimensional Fourier transform of a function in Rm, by

7Note that in this volume Mawardi establishes in Chapter ?? a windowed version of the

CFT (2.10).
8See also Chapter ?? by Girard et al and Chapter ?? by Bernstein et al in this volume.
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extending the Fourier kernel exp
(
i
〈
ξ, x
〉)

to a function which is holomorphic

in Cm and monogenic9 in Rm+1.

In [15, 16, 18] Brackx, De Schepper and Sommen follow another philos-
ophy in their construction of a Clifford–Fourier transform. One of the most
fundamental features of Clifford analysis is the factorization of the Laplace
operator. Indeed, whereas in general the square root of the Laplace operator
is only a pseudo-differential operator, by embedding Euclidean space into a
Clifford algebra, one can realize

√
−∆m as the Dirac operator ∂x. In this

way Clifford analysis spontaneously refines harmonic analysis. In the same
order of ideas, Brackx et al decided to not replace nor to improve the clas-
sical Fourier transform by a Clifford analysis alternative, since a refinement
of it automatically appears within the language of Clifford analysis. The key
step to making this refinement apparent is to interpret the standard Fourier
transform as an operator exponential:

F = exp
(
−iπ

2
H
)

=

∞∑
k=0

1

k!

(
−iπ

2

)k
Hk , (2.13)

where H is the scalar operator

H =
1

2

(
−∆m + r2 −m

)
. (2.14)

This expression links the Fourier transform with the Lie algebra sl2 generated
by ∆m and r2 = |x|2 and with the theory of the quantum harmonic oscilla-
tor determined by the Hamiltonian − 1

2

(
∆m − r2

)
. Splitting the operator H

into a sum of Clifford algebra–valued second order operators containing the
angular Dirac operator Γ, one is led, in a natural way, to a pair of trans-
forms FH± , the harmonic average of which is precisely the standard Fourier
transform:

FH± = exp

(
iπm

4

)
exp

(
∓ iπΓ

2

)
exp

(
iπ

4

(
∆m − r2

))
. (2.15)

For the special case of dimension two, Brackx et al obtain a closed form
for the kernel of the integral representation of this Clifford–Fourier transform
leading to its internal representation

FH± [f ](ξ) = FH± [f ](ξ1, ξ2) =
1

2π

∫
R2

exp
(
±e12(ξ1x2 − ξ2x1)

)
f(x) dx ,

(2.16)
which enables the generalization of the calculation rules for the standard
Fourier transform both in the L1 and in the L2 context. Moreover, the
Clifford-Fourier transform of Ebling and Scheuermann

Fe[f ](ξ) =

∫
R2

exp (−e12(x1ξ1 + x2ξ2)) f(x) dx , (2.17)

9See also in this volume chapter ?? by Moya-Sánchez and Bayro-Corrochano on the appli-
cation of atomic function based monogenic signals.
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can be expressed in terms of the Clifford-Fourier transform:

Fe[f ](ξ) = 2πFH± [f ](∓ξ2,±ξ1) = 2πFH± [f ](±e12ξ) , (2.18)

taking into account that, under the isomorphism between the Clifford al-
gebras C`2,0 and C`0,2, both pseudoscalars are isomorphic images of each
other.

The question whether FH± can be written as an integral transform is
answered positively in the case of even dimension by De Bie and Xu in [39].
The integral kernel of this transform is not easy to obtain and looks quite
complicated. In the case of odd dimension the problem is still open.

Recently, in [35], De Bie and De Schepper have studied the fractional
Clifford–Fourier transform as a generalization of both the standard fractional
Fourier transform and the Clifford–Fourier transform. It is given as an oper-
ator exponential by

Fα,β = exp

(
iαm

2

)
exp (iβΓ) exp

(
iα

2

(
∆m − r2

))
(2.19)

For the corresponding integral kernel a series expansion is obtained, and, in
the case of dimension two, an explicit expression in terms of Bessel functions.

The above, more or less chronological, overview of generalized Fourier
transforms in the framework of quaternionic and Clifford analysis, gives the
impression of a medley of ad hoc constructions. However there is a structure
behind some of these generalizations, which becomes apparent when, as al-
ready slightly touched upon above, the Fourier transform is linked to group
representation theory, in particular the Lie algebras sl2 and osp(1|2). This
unifying character is beautifully demonstrated by De Bie in the overview pa-
per [34], where, next to an extensive bibliography, also new results on some
of the transformations mentioned below can be found. It is shown that using
realizations of the Lie algebra sl2 one is lead to scalar generalizations of the
Fourier transform, such as:

(i) the fractional Fourier transform, which is, as the standard Fourier trans-
form, invariant under the orthogonal group; this transform has been
reinvented several times as well in mathematics as in physics, and is
attributed to Namias [81], Condon [30], Bargmann [2], Collins [29],
Moshinsky and Quesne [80]; for a detailed overview of the theory and re-
cent applications of the fractional Fourier transform we refer the reader
to [82];

(ii) the Dunkl transform, see e.g. [42], where the symmetry is reduced to
that of a finite reflection group;

(iii) the radially deformed Fourier transform, see e.g. [71], which encom-
passes both the fractional Fourier and the Dunkl transform;

(iv) the super Fourier transform, see e.g. [33, 31], which is defined in the con-
text of superspaces and is invariant under the product of the orthogonal
with the symplectic group.

Realizations of the Lie algebra osp(1|2), on the contrary, need the framework
of Clifford analysis, and lead to:
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(v) the Clifford–Fourier transform and the fractional Clifford–Fourier trans-
form, both already mentioned above; meanwhile an entire class of Clifford–
Fourier transforms has been thoroughly studied in [36];

(vi) the radially deformed hypercomplex Fourier transform, which appears
as a special case in the theory of radial deformations of the Lie algebra
osp(1|2), see [38, 37], and is a topic of current research, see [32].

3. Quaternion and Clifford Wavelets

3.1. Clifford Wavelets in Clifford Analysis

The interest of the Ghent Clifford Research Group for generalizations of the
Fourier transform in the framework of Clifford analysis, grew out from the
study of the multidimensional Continuous Wavelet Transform in this par-
ticular setting. Clifford-wavelet theory, however restricted to the continuous
wavelet transform, was initiated by Brackx and Sommen in [20] and further
developed by N. De Schepper in her PhD thesis [40]. The Clifford–wavelets
originate from a mother wavelet not only by translation and dilation, but
also by rotation, making the Clifford–wavelets appropriate for detecting di-
rectional phenomena. Rotations are implemented as specific actions on the
variable by a spin element, since, indeed, the special orthogonal group SO(m)
is doubly covered by the spin group Spin(m) of the real Clifford algebra C`0,m.
The mother wavelets themselves are derived from intentionally devised or-
thogonal polynomials in Euclidean space. It should be noted that these or-
thogonal polynomials are not tensor products of one–dimensional ones, but
genuine multidimensional ones satisfying the usual properties such as a Ro-
drigues formula, recurrence relations, and differential equations. In this way
multidimensional Clifford wavelets were constructed grafted on the Hermite
polynomials [21], Laguerre polynomials [14], Gegenbauer polynomials [13],
Jacobi polynomials [17], and Bessel functions [22].

Taking the dimension m to be even, say m = 2n, introducing a complex
structure, i. e. an SO(2n)–element squaring up to −1, and considering func-
tions with values in the complex Clifford algebra C2n, so–called Hermitian
Clifford analysis originates as a refinement of standard or Euclidean Clifford
analysis. It should be noticed that the traditional holomorphic functions of
several complex variables appear as a special case of Hermitian Clifford anal-
ysis, when the function values are restricted to a specific homogeneous part of
spinor space. In this Hermitian setting the standard Dirac operator, which is
invariant under the orthogonal group O(m), is split into two Hermitian Dirac
operators, which are now invariant under the unitary group U(n). Also in
this Hermitian Clifford analysis framework, multidimensional wavelets have
been introduced by Brackx, H. De Schepper and Sommen [11, 12], as kernels
for a Hermitian Continuous Wavelet Transform, and (generalized) Hermitian
Clifford–Hermite polynomials have been devised to generate the correspond-
ing Hermitian wavelets [9, 10].
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3.2. Further Developments in Quaternion and Clifford Wavelet Theory

Clifford algebra multiresolution analysis (MRA) has been pioneered by M.
Mitrea [79]. Important are also the electromagnetic signal application ori-
ented developments of Clifford algebra wavelets by G. Kaiser [70, 67, 68, 69].

Quaternion MRA Wavelets with applications to image analysis have
been developed in [92] by Traversoni. Clifford algebra multiresolution analy-
sis has been applied by Bayro-Corrochano [5, 3, 4] to: Clifford wavelet neu-
ral networks (information processing), also considering quaternionic MRA, a
quaternionic wavelet phase concept, as well as applications to (e.g. robotic)
motion estimation and image processing.

Beyond this Zhao and Peng [94] established a theory of quaternion-
valued admissible wavelets. Zhao [93] studied Clifford algebra-valued admis-
sible (continuous) wavelets using the complex Fourier transform for the spec-
tral representation. Mawardi and Hitzer [74, 75] extended this to continuos
Clifford and Clifford-Gabor wavelets in C`3,0 using the CFT of (2.1) for the
spectral representation. They also studied a corresponding Clifford wavelet
transform uncertainty principle. Hitzer [56, 57] generalized this approach to
continous admissible Clifford algebra wavelets in real Clifford algebras C`n,0
of dimensions n = 2, 3(mod 4), i.e. n = 2, 3, 6, 7, 10, 11, . . .. Restricted to
C`n,0 of dimensions n = 2(mod 4) this approach has also been taken up in
[73].

Kähler et al [26] treated monogenic (Clifford) wavelets over the unit
ball. Bernstein studied Clifford continuous wavelet transforms in L0,2 and
L0,3 [6], as well as monogenic kernels and wavelets on the three-dimensional
sphere [7]. Bernstein et al [8] further studied Clifford diffusion wavelets on
conformally flat cylinders and tori. In the current volume Soulard and Carré
extend in Chapter ?? the theory and application of monogenic wavelets to
colour image denoising.
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