The impact of mycotoxin co-occurrence on necrotic enteritis in broilers

Gunther Antonissen1,2, Filip Van Immerseel1, Frank Pasmans1, Richard Ducatelle1, Freddy Haesebrouck1, Leen Timbermont1, Marc Verlinden1, Mia Eeckhout3, Sarah De Saeger4, Evelyne Delezie5, Sabine Hessenberger6, An Martel1, Siska Croubels2

1Department of Pathology, Bacteriology and Poultry Diseases, 2Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, 3Department of Food Science and Technology, Faculty of Biosciences and Landscape Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, 4Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, 5Institute for Agricultural and Fisheries Research (ILVO), Animal Sciences Unit, Scheldeweg 68, 9090 Melle, Belgium, 6Biomin Research Center, Technopark 1, 3430 Tulln, Austria

E-mail: Gunther.Antonissen@UGent.be

Deoxynivalenol (DON) and fumonisins (FB) are important mycotoxins produced by \textit{Fusarium} species and commonly co-occur in animal diets. Over 54\% of cereal samples collected from European countries were contaminated with both DON and FB (Monbaliu et al., 2010). Previously, we showed a predisposing effect of DON on subclinical necrotic enteritis (NE) in broilers. \textit{Clostridium perfringens} induced NE is a major problem in the worldwide broiler industry, leading to significant production losses. The predisposing effect could be contributed to DON affecting the intestinal barrier function. Fumonisins on their behalf, inhibit the glycosphingolipid biosynthesis, and as such have a negative effect on the intestinal integrity and intestinal epithelial renewal. The objective of this study was to evaluate the effect of co-occurrence of the mycotoxins DON and FB, at concentrations approaching the European guidance levels, on the predisposing effect on NE.

The study was conducted in triplicate using a subclinical necrotic enteritis model (Gholamiandehkordi et al., 2007). Per replicate 120 one-day-old Ross 308 broilers were randomly divided into four groups. Throughout the entire experiment, group 1 received a mycotoxin blank diet, while groups 2, 3 and 4 received a mycotoxin contaminated diet. The diet of group 2 was experimentally contaminated with approximately 20,000 µg FB1+FB2/kg feed, group 3 was fed a diet contaminated with DON at a concentration of approximately 5,000 µg/kg feed. The last group was fed the combination of both mycotoxins at similar dosages. All birds were challenged orally with \textit{C. perfringens} NetB positive strain 56 for four consecutive days starting at day 17. At 1, 2 and 3 days after the final challenge with \textit{C. perfringens}, 10 chickens per group per day were euthanized and scored macroscopically for intestinal NE lesions (Keyburn et al., 2006).

Results will be presented at the conference.

References

