Advanced search
1 file | 408.35 KB

Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer

Hai The Pham (UGent) , Nico Boon (UGent) , Peter Aelterman (UGent) , Peter Clauwaert (UGent) , Liesje De Schamphelaire (UGent) , Lynn Vanhaecke (UGent) , Katrien De Maeyer (UGent) , Monica Höfte (UGent) , Willy Verstraete (UGent) and Korneel Rabaey (UGent)
Author
Organization
Abstract
Previous studies revealed the abundance of Pseudomonas sp. in the microbial community of a microbial fuel cell (MFC). These bacteria can transfer electrons to the electrode via self-produced phenazine-based mediators. A MFC fed with acetate where several Pseudomonas sp. were present was found to be rich in a Gram-positive bacterium, identified as Brevibacillus sp. PTH1. Remarkably, MFCs operated with only the Brevibacillus strain in their anodes had poor electricity generation. Upon replacement of the anodic aqueous part of Brevibacillus containing MFCs with the cell-free anodic supernatants of MFCs operated with Pseudomonas sp. CMR12a, a strain producing considerable amounts of phenazine-1-carboxamide (PCN) and biosurfactants, the electricity generation was improved significantly. Supernatants of Pseudomonas sp. CMR12a_Reg, a regulatory mutant lacking the ability to produce PCN, had no similar improvement effect. Purified PCN, together with rhamnolipids as biosurfactants (1 mg L-1), could clearly improve electricity generation by Brevibacillus sp. PTH1, as well as enable this bacterium to oxidize acetate with concomitant reduction of ferric iron, supplied as goethite (FeOOH). When added alone, PCN had no observable effects on Brevibacillus' electron transfer. This work demonstrates that metabolites produced by Pseudomonas sp. enable Gram-positive bacteria to achieve extracellular electron transfer. Possibly, this bacterial interaction is a key process in the anodic electron transfer of a MFC, enabling Brevibacillus sp. PTH1 to achieve its dominance.
Keywords
MICROORGANISMS, electrochemically active bacteria, STRAIN, AERUGINOSA, BIOFUEL CELLS, ELECTRICITY PRODUCTION, FE(III)-REDUCING BACTERIUM, microbial interaction, electron shuttle, phenazines, biosurfactant, synergistic effect, MICROBIAL FUEL-CELLS, GRADIENT GEL-ELECTROPHORESIS, 16S RIBOSOMAL-RNA, GENERATION

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 408.35 KB

Citation

Please use this url to cite or link to this publication:

Chicago
Pham, Hai The, Nico Boon, Peter Aelterman, Peter Clauwaert, Liesje De Schamphelaire, Lynn Vanhaecke, Katrien De Maeyer, Monica Höfte, Willy Verstraete, and Korneel Rabaey. 2008. “Metabolites Produced by Pseudomonas Sp. Enable a Gram-positive Bacterium to Achieve Extracellular Electron Transfer.” Applied Microbiology and Biotechnology 77 (5): 1119–1129.
APA
Pham, Hai The, Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Vanhaecke, L., De Maeyer, K., et al. (2008). Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 77(5), 1119–1129.
Vancouver
1.
Pham HT, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, et al. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2008;77(5):1119–29.
MLA
Pham, Hai The, Nico Boon, Peter Aelterman, et al. “Metabolites Produced by Pseudomonas Sp. Enable a Gram-positive Bacterium to Achieve Extracellular Electron Transfer.” APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 77.5 (2008): 1119–1129. Print.
@article{391629,
  abstract     = {Previous studies revealed the abundance of Pseudomonas sp. in the microbial community of a microbial fuel cell (MFC). These bacteria can transfer electrons to the electrode via self-produced phenazine-based mediators. A MFC fed with acetate where several Pseudomonas sp. were present was found to be rich in a Gram-positive bacterium, identified as Brevibacillus sp. PTH1. Remarkably, MFCs operated with only the Brevibacillus strain in their anodes had poor electricity generation. Upon replacement of the anodic aqueous part of Brevibacillus containing MFCs with the cell-free anodic supernatants of MFCs operated with Pseudomonas sp. CMR12a, a strain producing considerable amounts of phenazine-1-carboxamide (PCN) and biosurfactants, the electricity generation was improved significantly. Supernatants of Pseudomonas sp. CMR12a\_Reg, a regulatory mutant lacking the ability to produce PCN, had no similar improvement effect. Purified PCN, together with rhamnolipids as biosurfactants (1 mg L-1), could clearly improve electricity generation by Brevibacillus sp. PTH1, as well as enable this bacterium to oxidize acetate with concomitant reduction of ferric iron, supplied as goethite (FeOOH). When added alone, PCN had no observable effects on Brevibacillus' electron transfer. This work demonstrates that metabolites produced by Pseudomonas sp. enable Gram-positive bacteria to achieve extracellular electron transfer. Possibly, this bacterial interaction is a key process in the anodic electron transfer of a MFC, enabling Brevibacillus sp. PTH1 to achieve its dominance.},
  author       = {Pham, Hai The and Boon, Nico and Aelterman, Peter and Clauwaert, Peter and De Schamphelaire, Liesje and Vanhaecke, Lynn and De Maeyer, Katrien and H{\"o}fte, Monica and Verstraete, Willy and Rabaey, Korneel},
  issn         = {0175-7598},
  journal      = {APPLIED MICROBIOLOGY AND BIOTECHNOLOGY},
  keyword      = {MICROORGANISMS,electrochemically active bacteria,STRAIN,AERUGINOSA,BIOFUEL CELLS,ELECTRICITY PRODUCTION,FE(III)-REDUCING BACTERIUM,microbial interaction,electron shuttle,phenazines,biosurfactant,synergistic effect,MICROBIAL FUEL-CELLS,GRADIENT GEL-ELECTROPHORESIS,16S RIBOSOMAL-RNA,GENERATION},
  language     = {eng},
  number       = {5},
  pages        = {1119--1129},
  title        = {Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer},
  url          = {http://dx.doi.org/10.1007/s00253-007-1248-6},
  volume       = {77},
  year         = {2008},
}

Altmetric
View in Altmetric
Web of Science
Times cited: