First experimental demonstration of a SOA/DFB-LD Feedback Scheme based all-optical flip-flop

W. D’Oosterlinck, G. Morthier, R. Baets
Department of Information Technology, Ghent University – IMEC, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
Tel.: +32 9 2648930, E-mail: wooster@imec.ugent.be

J. Buron, F. Öhman
COM-DTU Department of Communications, Optics & Materials, Technical University of Denmark

Abstract: Dynamic optical flip-flop operation is observed for the first time using a DFB laser diode connected with a SOA. Switching times of around 150ps for switch pulse energies of around 6pJ and a repetition rate of 500MHz have been measured.

©2007 Optical Society of America
OCIS codes: (250.0250) Optoelectronics; (250.5980) Semiconductor Optical Amplifiers; (250.5300) Photonic Integrated Circuits

1. Introduction
As the network traffic load keeps on increasing, all-optical networks and more in particular packet or burst switched all-optical networks start to become a viable competitor to standard networks employing optical electronic optical (OEO) conversions [1]. In these packet switched optical networks there is a need for devices such as all-optical flip-flops (AOFFs) that show latching capabilities needed for packet header buffering and routing [2].

Previously we reported static bistable operation of a semiconductor optical amplifier (SOA) bidirectionally coupled to a distributed feedback laser diode (DFB-LD) [3]. In addition to that dynamic simulations showed that the device can also be used as an AOFF, i.e. can be set and reset using optical pulses [4]. Here we present for the first time experimental results on the dynamic behaviour of this new AOFF. Switching times of about 150ps, switch pulse energies of around 6pJ and a repetition rate of 500MHz were achieved.

2. Device description and measurement setup
The device used in our experiments is a DFB laser diode integrated on a single chip with a SOA and a coupler, as can be seen schematically in Fig. 1(a). Through the coupler a part (25%) of the output power of the SOA is coupled into the laser diode and at the same time a part (25%) of the laser power is coupled into the SOA. In this way a feedback scheme between laser diode and SOA is obtained [3]. On the device used there are in fact 4 LDs, but 3 of them are not used and therefore not shown in Fig. 1(a).

![Diagram](image)

Fig.1. Schematic representation of (a) the integrated SOA/DFB laser diode feedback scheme and (b) the dynamic measurement set-up for the AOFF.

In Fig.1(b) the measurement setup used for the dynamic AOFF measurements is shown. A continuous wave (CW) signal is injected into the SOA (port 1), together with the reset pulse train. At the DFB-LD side of the device (port 2) the set pulse train is injected and also the DFB-LD’s output power is measured after passing through an optical bandpass filter (OBPF) to separate the laser signal from the CW and pulse signals.

3. Experimental results
In the experiments the CW signal and the set and reset pulses were at 1555nm while the DFB-LD operated at 1538.7nm. The drive current for the SOA was 103.5mA and for the DFB-LD 101.4mA. The CW input power was
4.4dBm but can be lower when the fibre to chip coupling is improved. The set and reset pulses had a length of 150ps and the pulse energy was 6.07pJ and 4.44pJ for the reset and set pulse respectively.

In Fig. 2(a) the static flip-flop characteristic is shown. A contrast ratio of over 35dB can be observed. Fig.2(b) shows the dynamic operation of the AOFF. A contrast ratio of 12dB is obtained and one can also see that a pulse repetition rate of 500MHz can be used.

In Fig.3(a) and (b) the rise and fall time of the AOFF are shown. It can be seen that switching times of the order of 150ps can be obtained for both the switch-off and switch-on response.

4. Conclusion
We have shown for the first time dynamic flip-flop operation using a SOA-DFB-LD feedback scheme. Using switch pulses of 150ps long with switch pulse energies of about 6pJ switching times of around 150ps and a contrast ratio of 12dB could be obtained. A pulse repetition rate of 500MHz has also been demonstrated.

5. References

6. Acknowledgments
The work is supported in part by the European network of excellence ePIXnet. Wouter D’Oosterlinck acknowledges the Flemish IWT for financial support and M.K. Smit for valuable discussions.
Getting Started

The contents of this product are designed to be viewed directly from the media (CD or DVD) using Adobe Reader or Adobe Acrobat, version 6 or newer, installed on your computer (version 7.0.5 or newer is recommended).

Hyperlinks to the Adobe website are provided in the setup file should you need to install the free Adobe Reader software.

Windows*: If the product does not open automatically, run “Setup.exe” located in the main level of your CD or DVD drive.

Macintosh*: Run the “Setup OS X” application located on this disc.

UNIX/Linux*: Using Adobe Reader, open the main PDF file located at the root of this disc.

Software Requirements

- Adobe Reader or Adobe Acrobat, version 6.0 or newer (7.0.5 or newer recommended)
- QuickTime* 7 or Windows Media* Player 9 or newer for multimedia playback
- Internet connection for help and updates

Need Help?

Refer to the ‘Readme.htm’ document located on this disc for general product support, installing Adobe Reader, and copying this product to your hard disk or network.

A complete help file is accessible from the main menu of this product (internet connection required). Omnypress technical phone support is available at 800-246-2600 (Mon-Fri 9am-5pm CST) or by e-mail at digital@omnypress.com. Limited support for UNIX and Linux systems.

This product is not supported if hosted on a web server.

This product was produced by Omnypress – leaders in conference & educational publications.

www.omnypress.com

No part of the Omn EZ Setup™ software and product ‘Help’ files may be reproduced or used without the written permission of Omnypress. ©2006 Omnypress. All rights reserved. All other trademarks are property of their respective owners.
INSTALLATION INSTRUCTIONS

MACINTOSH

Setting Up
Mac OS 8: run the Setup (OS 8 only) application and follow the instructions.
Mac OS X: run the Acrobat Reader application from this CD-ROM.

Running the CD-ROM
Double-click the Acrobat Reader icon in the main window of the CD-ROM.

UNIX

Installing Software
See the system requirements and installation instructions in /install/unix/instgud.txt.
OmniPress does not offer support for UNIX®.
To run this CD, open the PDF at the root level of the CD-ROM.

WINDOWS

Acrobat Reader 5 is not compatible with the Windows 3.1 operating system.

Setting Up
This CD-ROM features autorun software that launches the Setup program. If the installer does not run automatically, run the setup.exe program located on this CD-ROM.

CD-ROM Help: To better acquaint yourself with this product, we suggest that you spend a few minutes with the CD-ROM Help file located on the main menu. This section is very helpful and will facilitate easier, more productive use of this CD-ROM.

Technical Support: contact Adobe at 1-800-685-3652 or visit Adobe's Acrobat Reader support website: http://www.adobe.com/support/

General Support or Product Information: contact OmniPress at 1-608-246-2600 (Mon - Fri 8 am - 5 pm CST) or e-mail support at digital@omnipress.com. OmniPress does not offer support for UNIX®.