Leptosynapta minuta (Becher, 1906) (Echinodermata, Holothuroidea), a new record for Belgian marine waters

Claude Massin¹, Ward Appeltans², Gert Van Hoey³, Magda Vincx³ and Steven Degraer³

¹I.R.Sc.N.B., Section Malacologie, Rue Vautier 29, B-1000 Brussels, Belgium
²Flanders Marine Institute, Pakhuizen 45-52, B-8400 Ostend, Belgium
³Ghent University, Marine Biology Section, Campus De Sterre, s8, Krijgslaan 281, B-9000 Ghent, Belgium

Corresponding author : C. Massin : claude.massin@naturalsciences.be

ABSTRACT. *Leptosynapta minuta* Becher, 1906 is described for the first time from Belgian marine waters. This brings a new order (Apodida), family (Synaptidae), subfamily (Leptosynaptinae) and genus (*Leptosynapta*) to the Belgian holothuroid fauna. A morphological description of the specimens, the habitat characteristics and all literature records with a distribution map of *L. minuta* is given.

KEY WORDS : Apodida, *Leptosynapta minuta*, new record, Belgium, distribution.

INTRODUCTION

Until now only four holothuroid species were known from Belgian marine waters (Massin, 1988; Massin & De Rijder, 1989), all belonging to the order Dendrochirotida. The holothuroid fauna in adjacent countries is much richer (Vanden Berghe & Appeltans, 2003), including seven apodid species in France of which at least five also occur in the North Sea (Madsen & Hansen, 1994; Hansson, 2001), at times very close to the Belgian border (Van Damme & Heip, 1976). This supposed absence of apodids from Belgian marine waters is surprising because European apodids are known to live in sandy sea beds (Koehler, 1924; Mortensen, 1927; Cherbonnier, 1953; Picton, 1993), the dominant biotope along our coast. The present record fills this gap.

MATERIAL AND METHODS

The sampling station where *Leptosynapta minuta* was found is situated on the northern side of the Kwintebank (51° 18.65; 2° 40.75 (WGS84)), in the Flemish bank area. This station was investigated during a sampling expedition on 13 February 2003, using the research vessel ‘Zeeleeuw’. The sample was taken with a Van Veen grab (sampling surface area : 0.1026 m²) and sieved after fixation (with 8% formaldehyde-seawater solution) through a sieve of 1mm mesh. For granulometric analyses the dried sediment was first sieved through a 1 mm mesh-size sieve. The mass percentage relative to the total sediment sample was determined for the sediment fractions larger than 1 mm. The sediment samples smaller than 1 mm were further analysed using a LS Coulter particle size analyser and sediment fractions were expressed as volume percentage of the 0-1 mm fraction. Median grain-size was determined based on the 0-1 mm fraction.

Five pieces of holothuroid origin were found and examined. These are now held in the collections of the Royal Belgian Institute of Natural Sciences under code IG 30055.

Order Apodida Brandt, 1835
Family Synaptidae Burmeister, 1837
Subfamily Leptosynaptinae Smirnov, 1989
Genus *Leptosynapta* Verrill, 1867
Leptosynapta minuta Becher, 1906

Figs 1 A-C; Map 1

Fig. 1. – *Leptosynapta minuta* Becher, 1906. A : anchors from body wall; B : anchor plates from body wall; C : rods from tentacles.
Synapta minuta BECHER, 1906 : 507, text-Figs 1-3.

DISCUSSION

The very small size (body length less than 1 cm) of the specimens, their digitiform tentacles without lateral digits, and their small anchors (50-75 µm long) and anchor plates (60-68 µm long), are all characteristic of the species Leptosynapta minuta. The shape and size of the ossicles are similar to that described by MORTENSEN (1927) for specimens from Helgoland, by CHERBONNIER (1953) for specimens from Roscoff, by O’CONNOR (1981) for specimens from Galway, and by CHERBONNIER (1960) for specimens from Banyuls. All the other species belonging to the genus Leptosynapta have larger ossicles : longer than 120 µm and very often reaching 200-250 µm (HEDING, 1928).

Leptosynapta minuta is found amongst maerl (marine sediment made of branched calcareous red algae) and coarse gravel in areas dominated by strong currents (PICTON, 1993; PICTON & MORROW, 2002). In addition the species is often associated with “Amphioxus sand”, coarse sand present in the Mediterranean (FIZE, 1960; MONNIOT, 1962; CHERBONNIER & GUille, 1967) as well as along the European Atlantic coast (BESTEIRO & URGORRI, 1987). These habitat characteristics can also be found on the northern side of the Kwinitebank (Bonne, 2003), the Bel-

Habitat characteristic

Coarse sandy sediment, with a median grain-size of 569 µm, characterise the sampling station. The dominant sand fraction (62.5%) is the coarse fraction (500-850 µm), followed by the medium fraction (250-500 µm) with 33.4%. The gravel fraction (>2000 µm) takes up 39.91% of the total mass, while the very coarse sand fraction (1000-2000 µm) takes up 31.18%. The sample was taken at a depth of 14 meters.

3. Distribution (map 1)

Germany (Helgoland : type locality), the Netherlands, Belgium, France (Roscoff, Banyuls, Marseille, Sète), Ire-

It is surprising that L. minuta, a species with a reduced dispersal capacity (no planktonic stage due to brooding) has such a wide distribution.

It is surprising that L. minuta had not previously been reported from Belgian waters despite the huge sampling efforts over the last 30 years, both by macrobenthic (Van Veen grab) and meiobenthic (Reineck) sampling techniques. Probably, the post-sampling treatments used for macro- and meiobenthic samples caused the loss of L. minuta since, during sieving (alive) of macrobenthic samples, the species (width< 1mm) can easily pass through
the 1 mm sieve. Perhaps the species can only be found in samples which are fixed before sieving, a procedure not followed for samples taken in coarse sandy areas (Van Hoey et al., 2004). Meiobenthic samples, on the other hand, are treated with Ludox and centrifuged in order to separate the organisms and the sediment, as described in Giere (1993). Specimens of *L. minuta* are probably overlooked with such sampling techniques (except for a single specimen in the study of Van Damme & Heip, 1976) because they (1) cling to the sand grains or (2) have a different specific gravity compared to other meiobenthic taxa (e.g. Nematoda, Copepoda).

De Rycke (1982) and Denecker (1983) did report on the presence of holothuroid juveniles in Belgian marine waters but it was not possible to check whether these juveniles represented *L. minuta* as their material is no longer extant.

Data on the behaviour of *L. minuta* is scarce and somewhat contradictory. Everyone agrees that it is a brooding species, but opinions are divided regarding its position within the sand. According to Cherbonnier (1953 : 167) it does not crawl on the trivium as other synaptids but is positioned vertically in the sediment with the anus up. On the contrary, O’Connor (1981 : 248) reported “the animal lies on or within the sediment in a horizontal position. The calcareous ring is set in an oblique angle, allowing the tentacles to move over the substrate”. Similarly, Picton (1993 : 84) mentioned that “the animal moves among the coarse particles in which it lives by crawling and wrapping its arms around the pieces of gravel or maerl”. According to Swedmark (1964 : 33) the tentacles are strongly adhesive and help to move in the interstices.

These observations were most probably made using dredged specimens and not *in situ*. If this is the case it is not surprising to observe contradictory behaviours, which can be attributed to activities of disturbed animals.

ACKNOWLEDGEMENTS

The authors want to thank I. Moulaert for the analysis of the macrobenthos samples within the framework of the MSc Marine and Lacustrine Sciences thesis “Macrobenthos sampling accuracy: On board-sample”; the crew of the research vessel ‘Zeecleew’ for their help during the sampling campaign; D. Schram for the analysis of the sedimentological samples; E. Vanden Berghe from the Flanders Marine Data and Information Centre for plotting the map; V. Galloway for improving the English and two anonymous reviewers for their constructive comments.

REFERENCES

Received: November 27, 2003
Accepted: December 10, 2004