ENHANCED EM SOFTWARE FOR PLANAR CIRCUITS

An efficient Multilevel Fast Multipole Algorithm based on the use of Perfectly Matched Layers

D. Vande Ginste¹, F. Olyslager¹, D. De Zutter¹ and E. Michielssen²
¹Ghent University, Belgium; ²University of Illinois at Urbana-Champaign, USA

Abstract: The most successful simulation technique for planar circuits embedded in layered media is the integral equation approach solved with the Method of Moments (MoM). The kernel in the integral equation is a Green’s function of the layered medium. The MoM leads to the solution of a dense linear system of equations. For large and complex circuits this soon leads to systems with a huge number of unknowns \(N \). Storing and solving the linear system requires \(O(N^2) \) memory and \(O(N^3) \) CPU time respectively. Using iterative solution techniques the cost for solving the linear system can be reduced to \(O(PN^2) \), with \(P \) the number of iterations. The calculation of the Green’s functions for layered media demands the numerical evaluation of Sommerfeld-integrals. By making use of the excellent absorbing properties of Perfectly Matched Layers (PML) it is possible to obtain a series representation for these Green’s functions. The terms in this series allow for the application of a Multilevel Fast Multipole Algorithm (MLFMA) which can reduce the memory and computational complexity of the algorithm to \(O(N) \) for dense geometries. In this chapter the combined PML-MLFMA is outlined. It is numerically demonstrated that this technique allows for the analysis of very large planar structures. An extension to small circuits with much geometric detail is also presented.

Key words: Microstrip Structure; Planar Antenna Array; Perfectly Matched Layer; Multilevel Fast Multipole Algorithm.

6. HYBRID MoM/FDTD TECHNIQUE ALGORITHM 112
 6.1 Theoretical Formulation 113
 6.2 Multiple-Source Scattering Problems 116
7. NEC/FDTD HYBRID PROGRAM 120
8. FAR FIELD CALCULATIONS USING THE HYBRID CODE 123
9. NUMERICAL EXAMPLES USING THE HYBRID MoM/FDTD
 TECHNIQUE 123
10. SUMMARY 140

7. Enhanced EM software for Planar Circuits 147
 D. Vande Ginste, F. Olyslager, D. De Zutter and E. Michielssen

1. INTRODUCTION 148
 1.1 Setting and Definition of the Research Topic 148
 1.1.1 High-Frequency Applications and Design 148
 1.1.2 Planar Circuits and Planar Solvers 149
 1.1.3 Some Advantages and Drawbacks of BIE-MoM Based
 Planar Solvers 150
 1.2 Methodology 151
 1.2.1 Perfectly Matched Layer (PML) Based Green’s
 Functions 151
 1.2.2 Iterative Solvers 153
 1.2.3 Fast Multipole Method (FMM) 154
 1.3 Outline 155

2. CLASSICAL SOLUTION TECHNIQUE FOR MICROSTRIP
 STRUCTURES 156
 2.1 Geometry of the Problem 156
 2.2 The EFIE Description 157
 2.3 The Green’s Dyadic $\mathbf{G}_{\text{ee}}(\mathbf{r} | \mathbf{r'})$ 158
 2.3.1 Integral Representation 158
 2.3.2 Sommerfeld-Integrals 160
 2.4 The Method of Moments 161

3. PERFECTLY MATCHED LAYER BASED GREEN’S
 FUNCTIONS FOR LAYERED MEDIA 163
 3.1 The Perfectly Matched Layer Concept 163
 3.1.1 The Split Field Formalism 163
 3.1.2 Complex Coordinate Stretching Formalism 164
 3.2 Closure of Open Microstrip Substrates 165
 3.2.1 Procedure and Influence on the Green’s Functions 165
 3.2.2 Complex Thickness 166
 3.2.3 Dispersion Relations 167
3.3 Series Expansion for the Green's Dyadic \bar{G}_{ee}

3.3.1 Integral Representation 168
3.3.2 $G_{ee,xx}$ 168
3.3.3 $G_{ee,xy}$ 172
3.3.4 Closed-Form Expression for \bar{G}_{ee} 172
3.3.5 Important Remarks Concerning the Series Expansion 173

4. A PML-MLMFA FOR THE MODELING OF LARGE PLANAR MICROSTRIP STRUCTURES 174
4.1 Introduction and Outline 174
4.2 Formulation of the Technique

4.2.1 The moment Matrix Written as Interactions Between Elementary Current Sources 175
4.2.2 Plane Wave Decomposition of the Hankel Function 176
4.2.3 Core Equation of the PML-MLFMA for Microstrip Structures 178

4.3 Implementation of the Technique 180
4.3.1 Construction of the MLFMA Tree 180
4.3.2 The Matrix-Vector Multiplication 185

4.4 Some Important Remarks about the Complexity of the PML-MLFMA

4.4.1 Memory and Computational Complexity 195
4.4.2 Mode Trimming 195
4.4.3 Determination of the Sampling Rates $2Q_{tx,n}^l + 1$ 196

4.5 Numerical Results 197
4.5.1 Validation of the Method 197
4.5.2 Computational and Memory Efficiency 204
4.5.3 Application Examples 206

5. EXTENSIONS AND CONCLUSIONS 210
5.1 Extensions

5.1.1 Development of a Low-Frequency Algorithm 210
5.1.2 Combination of the HF- and the LF-Technique 213
5.1.3 Extension to General Multilayered Structures 214

5.2 Conclusions 215

8 Parallel Grid-enabled FDTD for the Characterization of Metamaterials 223
L. Catarinucci, G. Monti, P. Palazzari and L. Tarricone

1. INTRODUCTION 223
2. INTRODUCTION TO METAMATERIALS 224
2.1 DNG Metamaterials 225
The impressive growth in Information Technology (IT) is opening new challenging frontiers for computational electromagnetics (EM). Indeed, parallel and distributed computing play a relevant role in the solution of large or complex EM numerical problems. They also represent the ideal starting point to approach the world of grid computing and service-oriented architectures, probably the most attractive and promising area of IT research in the next future.

Advances in Information Technologies for Electromagnetics offers a broad panorama on recently achieved and potentially obtainable advances in electromagnetics with innovative IT technologies.

Simple tutorial chapters introduce the reader to cutting edge technologies, such as parallel and distributed computing, object-oriented technologies, grid computing, semantic grids, agent based computing and service-oriented architectures.

On such bases, a variety of EM applications is proposed:
- parallel FDTD codes (both for antenna analysis and for metamaterial applications),
- grid computing for computational EM (CEM) (with applications to antenna arrays, wireless and remote-sensing systems)
- mobile agents for parametric CEM modeling
- complex/hybrid EM software environments (with applications to planar circuits, quasi-optical systems,...)
- semantic grids for CAE of antennas arrays.

This way the reader, after learning from very schematic tutorials the most relevant features of IT tools, has an immediate feeling of their impact on daily EM research.

Throughout the book, the reader is also stimulated to infer other potential new EM applications for IT, thus maturing a critical attitude to estimate the appeal of possible future IT innovations for EM research.