The Failing Heart Under Stress: Echocardiography is an Essential Monitoring Tool in the Intensive Care Unit

Jan Poelaert

Semin Cardiothorac Vasc Anesth 2006; 10; 111
DOI: 10.1177/108925320601000118

The online version of this article can be found at:
http://scv.sagepub.com/cgi/content/abstract/10/1/111

Published by:
SAGE Publications
http://www.sagepublications.com

Additional services and information for Seminars in Cardiothoracic and Vascular Anesthesia can be found at:

Email Alerts: http://scv.sagepub.com/cgi/alerts

Subscriptions: http://scv.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations (this article cites 28 articles hosted on the SAGE Journals Online and HighWire Press platforms):
http://scv.sagepub.com/cgi/content/abstract/10/1/111#BIBL
The Failing Heart Under Stress: Echocardiography is an Essential Monitoring Tool in the Intensive Care Unit

Jan Poelaert, MD, PhD

Echocardiography has been evolving to play a pivotal role in hemodynamic management, both intraoperatively and at the bedside. A full assessment of hemodynamics necessitates the use of all of the options available on modern echocardiographs. This introductory review provides insight into three important issues of hemodynamic monitoring by echocardiography: evaluation of preloading conditions, assessment of systolic function, and contractility and estimation of afterload. Mastering these three features will help in a minimally invasive approach of hemodynamic instability.

Three variables determine left ventricular systolic performance: (1) the Frank Starling mechanism, provided by pressures and volumes, (2) heart rate, and (3) contractility as a load-independent descriptor of systolic function. Pressure monitoring is still routinely used when a patient with hemodynamic deterioration is evaluated. Nevertheless, pressures only provide a rudimentary approach of the three physiologically important features of contractility, preload, and afterload. The combined use of pressures and flows, obtained with Doppler echocardiography, provides elementary and far more interesting data on hemodynamics than pressures alone. The assessment of hemodynamics in the ICU is strongly based on these characteristics and is the main topic of this review.

Assessment of Preloading Conditions

As already stated, intracardiac and intrapulmonary pressures provide only a limited part of the correct assessment of preload. Nevertheless, it is important to correctly characterize preloading conditions, especially in patients with large fluid shifts. Optimal preload is the first measure to be taken when stabilizing a hemodynamically unstable patient, and this is a relatively inexpensive measure. Pressure can definitively be estimated by Doppler echocardiography, as described previously in the literature.

The short-axis view with two-dimensional echocardiography offers an immediate visualiza-
tion of the filling of the left and right ventricles. The presence of kissing walls of the left ventricle in an adequately sedated patient, in the absence of sympathetic stimulation and without any support of inotropic drugs, is the signature of a low filling status. In that case, a fluid challenge is the first choice of therapy, which can be readily obtained in a sedated patient by raising the legs.

Several drawbacks of the short-axis view as a measure of preloading condition have to be taken into account. The presence of regional wall motion abnormalities will certainly hamper the correct interpretation of the preloading conditions related to the end-diastolic area of the left ventricle. Another issue is the presence of dilated cardiomyopathy. In this particular case, passive leg raising could be a dangerous maneuver.

However, ventilation-induced systolic variation of pressure or flow across the aortic valve could be of significant help, suggesting a sign of fluid responsiveness.

The value of systolic pressure and stroke volume variation is well established and has been assessed by many authors. Cyclic altering of intrathoracic pressure induces this variation of pressure and flow. It was clearly shown that the variation of the transaortic flow velocity integral increased considerably with a graded hemorrhage in an animal experimental setting.

Finally, the variation of the inferior vena cava flow with transthoracic echocardiography and superior caval vein flow with transesophageal echocardiography during (spontaneous) ventilation is another signature of low preloading conditions. Nevertheless, inferior caval vein collapsibility works only in conventionally ventilated patients and not in patients who are receiving high-frequency oscillatory ventilation.

Contractility

Ventricular function can be described in terms of load-dependent and load-independent variables (Table 2). As described previously, the short-axis view of the left ventricle is the basic view and start of each echocardiographic examination. This basic view allows the assessment of three important features of hemodynamics: global contractility, left ventricular preload, and the presence of regional wall motion abnormalities.

Table 1. Examples of Causes of Pump Failure of One or Both Ventricles

- Ischemic heart disease
- Myocardial disease
- Pericardial disease
- Pressure overload
 - Left ventricle: high afterload: stress, high dose of vasopressor
 - Right ventricle: pulmonary hypertension, pulmonary emboli, adult respiratory distress syndrome; asthma bronchial, chronic obstructive lung disease exacerbation
- Volume overload
 - Presence of intracardiac shunts (atrial septum defect, ventricular septal defect)

Table 2. Load-Dependent and Load-Independent Descriptors of Ventricular Function

<table>
<thead>
<tr>
<th>Load-dependent variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejection fraction: EF = (LVEDA–LVESA)/LVEDA</td>
<td></td>
</tr>
<tr>
<td>Cardiac index: CO = (HR x SV)/BSA</td>
<td></td>
</tr>
<tr>
<td>Stroke volume: SV = TVI x CSA</td>
<td></td>
</tr>
<tr>
<td>(+dP/dt)max, when a leakage of the mitral or aortic valve is present</td>
<td></td>
</tr>
<tr>
<td>Myocardial performance index: MPI = (ICT + IRT)/ET</td>
<td></td>
</tr>
<tr>
<td>S wave (tissue Doppler imaging)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load-independent variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity of circumferential fiber shortening</td>
<td></td>
</tr>
<tr>
<td>Preload-adjusted maximal power and preload-adjusted peak power</td>
<td></td>
</tr>
<tr>
<td>Maximal elastance Emax</td>
<td></td>
</tr>
<tr>
<td>Preload recruitable stroke work</td>
<td>(dP/dt)max/EDV</td>
</tr>
</tbody>
</table>

EF, ejection fraction of the left ventricle (%); LVEDA, left ventricular end-diastolic area, taken at the short axis view (cm²); LVESA, left ventricular end-systolic area (same view as LVEDA)(cm²); CO, cardiac output (L/min.m²); HR, heart rate (beats/min); SV, stroke volume (mL); BSA, body surface area (m²); TVI, time velocity integral (cm); CSA, cross-sectional area (cm²); MPI, myocardial performance index; ICT, isovolumic contraction time (milliseconds); IRT, isovolumic relaxation time (milliseconds); ET, ejection time (milliseconds); (dP/dt)max/EDV, maximal dP/dt, corrected for end-diastolic volume (mm Hg/s.cm³).
Although the variables explained in Table 2 provide more extensive information, it is evident that these parameters also have more scientific merits than direct routine monitoring.

In clinical practice, the intensivist relies more on direct observation to clearly identify differences between normal function, hypercontractile ventricles, and ventricles with decreased function. In any hemodynamic deterioration, an arterial pressure is warranted, offering information concerning global systolic function, stroke volume, and filling. If hypotension is combined with a normal left ventricular function in a hemodynamically unstable patient, it is evident that other causes of this hemodynamic deterioration should be explored. Furthermore, hypotension in conjunction with a hyperdynamic left ventricle suggests either an overdose of inotropic support or low filling status.

Finally, hypotension and decreased left ventricular function warrants further echocardiographic investigation, as described in Figure 1. In any case, right ventricular function also has to be assessed. A complete echocardiogram, comprising evaluation of regional wall motion abnormalities and valvular function is then justified.

After initial treatment, guided by both arterial pressure tracing and an echocardiogram, more continuous hemodynamic monitoring can be established, when appropriate. A central venous catheter, including oximetry, or a pulmonary artery catheter, including mixed venous oximetry, could further help to monitor the critically ill patient.

Afterload

The combined use of arterial pressure monitoring and echocardiography provides important information for determining left ventricular systolic function.

Figure 1. Working scheme to utilize echocardiography as a monitoring tool in a hypotensive patient.

TTE, transthoracic echocardiography; TEE, transesophageal echocardiography; LV, left ventricle; RV, right ventricle.
function. In particular, various contractility indices and afterload can be readily described by combining pressure and flow, derived easily from these two features.

Because total arterial compliance is shown to be an important cardiovascular risk factor, the importance of determination of afterload cannot be denied. The main determinants of afterload are systemic vascular resistance and total arterial compliance, which reflect the static and pulsatile components of arterial load, respectively. Recently, Heerman et al demonstrated that thoracic aortic compliance can be determined off-line by using local pressure and flow and by applying the arctangent model of Langewouters in vivo.

Conclusions

Although echocardiography provides significant help in the diagnosis of most cardiac diseases, the combined use of pressure values and echo Doppler offers pivotal information on hemodynamics in a rapid manner. The weakest factor is probably estimation of preload in a dilated left ventricle, although a positive answer to the rapid filling test with a decrease of the systolic respiratory flow variation across the aortic valve is indicative of fluid responsiveness. It is important to combine systemic pressure values and flow across the aortic valve to obtain extensive information about systolic function parameters and afterloading conditions in critically ill patients.

References

