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ABSTRACT. We investigate the evolution of the area of multi-dimensional sur-
faces along the flow of a dynamical system with known first integrals, and we
formulate sufficient conditions for area contraction.

These results, together with known results about the Hausdorff dimension
and the box-counting dimension of invariant sets, are applied to systems ex-
hibiting almost global convergence/asymptotic stability. This leads to a gen-
eralization of a well-known result on almost global convergence of a system,
based on the use of density functions. We conclude with an example.

1. Introduction. Consider a region in the state space of a dynamical system.
The changes in its volume, when moving along the flow of the dynamical system,
are determined by the divergence of the vector field. If the divergence is positive
(resp. negative) in the entire state space, then the volumes of all regions will be
increasing (resp. decreasing) along the vector field and this implies that an invariant
(measurable) region must have either zero or infinite volume. By introducing a
density function, one can redefine volumes in this state space, and as a consequence
the volume changes are determined by the divergence of the product of this density
function with the vector field. This product can also be considered as a modified
vector field with the same trajectories as the original vector field. The possibility of
finding a density function for which the aforementioned divergence is positive (resp.
negative) will thus allow to derive properties of the invariant sets of the vector field
of the dynamical system.

In [6], A. Rantzer used this fact to investigate systems which exhibit almost
global convergence of the origin, which means that the set of points in the state
space that will not converge to the origin has zero volume. He showed that if one can
find a density function such that the associated divergence is positive everywhere
(except for the origin) and the volume of the entire state space (except for some
neighborhood of the origin) has a finite volume, then almost all trajectories converge
to the origin. The set of points that do not converge to the origin is invariant and
if the origin is locally asymptotically stable this set is also bounded away from the
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origin. It then has a finite volume and it follows that this volume must be zero.
In the case that the origin is not asymptotically stable, the considered set can be
written as a (countable) union of invariant sets that are bounded away from the
origin. It follows that each set has volume zero and so has their union. In case the
origin is not stable, other techniques can be used to prove almost global convergence
to the origin.

In an analogous way as for n-dimensional subsets of the (n-dimensional) state
space, one can investigate the behavior of k-dimensional surfaces (k < n) when they
move along with the flow of the system. The contraction or expansion of the area
of k-dimensional surfaces everywhere in the state space implies that no invariant
surfaces can exist with a finite area of a(n) (integer) dimension larger than or
equal to k (as we will show in this paper). However, for the application to the
aforementioned class of systems exhibiting almost global convergence, considering
the area of regular surfaces is not sufficient. There is no way to make sure that any
regular surface will have a finite area, even when one can freely choose a metric for
the state space. Furthermore invariant sets need not be regular surfaces. The use
of an extension of the notion of area to Hausdorff measures avoids these problems
I, 8, B, [4]. A condition similar to the one for the contraction/expansion of the area
of k-dimensional surfaces can be derived to guarantee that Hausdorff d-measures (d
not necessarily integer) decrease/increase along the flow of the vector field, implying
that the Hausdorff dimension of a bounded invariant set cannot be larger than d.
Similar results can be obtained for the boz-counting dimension [3), B].

Physical systems often exhibit symmetries and conservation laws, allowing us to
derive stronger results. In this paper we will generalize a result of [2] by showing
that, if a system has p conservation laws, the contraction (resp. expansion) of k-
dimensional surfaces will lead to contraction (resp. expansion) of k — p-dimensional
surfaces in an arbitrary level set of the conservation laws. The previously mentioned
results can then be applied to give an upper bound for the dimension of invariant
sets in this level set.

Consider a system exhibiting almost global convergence to some invariant set.
We will use the aforementioned results to give an upper bound for the Hausdorff
dimension or the box-counting dimension of the set of points that do not converge
to this attractive set. We discuss a problem that may arise and we show that for
a certain class of systems with first integrals we are able to avoid this problem as
will be illustrated with an example.

2. Outline and preliminaries. We will consider a dynamical system in R", given
by the continuously differentiable vector field f. Its flow is denoted by ¢¢. (We
assume that the dynamical system has no finite escape time and thus ¢, is defined
everywhere in R” for all t € R.) There is a (positive definite) C® metric g, taking
the form
g= Z gijdxidxj.
i,J

(We let g denote both the metric and the (symmetric) matrix consisting of the
elements g;;.) For a vector function v(x) we will use the notation % to denote the
g;;ﬁ on the ith row and jth column.

In the following section we will derive an expression for the area of a k-dimensional
parallelepiped with respect to a time-dependent metric, and we will give an upper
bound for its time-derivative. In section Bl we will apply these results to give an

matrix with
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expression for the area of a k-dimensional surface and an upper bound for its time-
derivative when evolving under the flow of the dynamical system. This results in
an upper bound for the dimension of regular bounded invariant sets. In order to
extend this result to arbitrary bounded invariant sets, we will introduce the concept
of Hausdorff measure in section Bl after which we will discuss its evolution under
the flow of the dynamical system and the consequences for the Hausdorff dimension
of invariant sets. Similar results will then be stated concerning the box-counting
dimension. In section [ we assume that the dynamical system has p first integrals
and we show how the evolution of k-dimensional surfaces is related to the evolution
of k — p-dimensional surfaces in the level set of the first integrals.

In section B we explain the result of [7] (which is a generalization of the result of
[6]) and we relate it to the contraction/expansion of the area of multi-dimensional
surfaces. Then we give an extension by using the results of the previous sections
and we indicate a subtlety that can cause a practical problem and we show how, for
some systems with first integrals, this problem can be avoided. We conclude with
an example.

3. Evolution of the volume of a parallelepiped. In this section we will con-
sider R™ as a vector space with a metric, represented by the symmetric, positive
definite matrix G. We consider a parallelepiped Py spanned by k (k < n) linearly
independent vectors wy, ..., wg. The length of a vector w; equals

First we will assume a standard metric: G = I,,. Let By, be an orthonormal basis
in the k-dimensional subspace spanned by the vectors w;. Define W,, € R"** and
Wi € RExE by

Wy =lw - wi, Wi = [[wile, - [wklB.],

where [w;]p, is the column vector containing the coordinates of w; with respect to
the basis By. Then the k-dimensional area/volume oy, s(Fy) (with respect to the
standard metric) of the aforementioned parallelepiped can be written as

Uk,s(Pk) = |det Wk| = \/det(Wng),

and since the element on row i, column j, equals [w;] g [w;]p, = (wi, w;) = w] w;,

0ra(Pk) = Jdet({wi, wy)) = \/det(WIT,W,).

From now on we let the metric be arbitrary. The expression 4/det({w;,w;)) also
defines the k-dimensional area for a general metric G:

ok(Py) = \Jdet((wi, w;)) = \/det(WT GW,).

Assume that G is time-varying and consider the time-derivative of (o (Py))? for
the case k =1 (W, = w):

d(Ul(Pl))2 o d T o TdG

—x = &(w Gw) =w Ew,
which we rewrite as

d(o1(P1))?

_ T
T =w" GSw,
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with § = G’l%. We will show that we can bound this expression by the product
of 01(P1)? = wTGw and the largest eigenvalue of S. First note that G~z dd—?G’%
is symmetric (GZ is the positive definite matrix satisfying (G2)2 = @), such that
there exists a Qg € R"*™ with
—1dG s
GG 2Qo = QoA, Q4 Qo = In,

where A is diagonal (and real) with Aj; > -+ > A,,. Setting Q1 = G*%QO we
obtain

SQ1 = Q1A, QTGQ1 = I,

and the columns of ()1 form a basis of orthonormal (with respect to G) eigenvectors
of §. By writing w as a linear combination of these eigenvectors we obtain

2
Lalg D T Gsw = wTQTCSQru! (with w' = Q7 'w)
=w"QTGQ1AW = w'"Aw' =) "2\ (with \; = %Aii)

< Z 20w = 220w w = 22w QT GQ 1w

= 2)\1’UJTGU} = 2)\10’%(P1),
and thus
dUl (Pl)
dt
For general k-values we could write

d(ak (Pk))2 d

G = 3 des(WlGw) ngn HW GWa)ir i)

< o1 (Pr).

(where the summation is over all permutations 7 of (1,...,k) and the product is
taken over all i € {1,...,k})

d

=Y sen(r)) &(WTGW )iei) LIV GWo)ir)
T Jj=1 i#£j
k
= _sen(r) Y (W GSWa);ei) [[W 6GWa)ira)
T 7j=1 i#]

= ngn( )Z(WITQTGSQIW JT(J) H W/TQTGQIW/ )17’ (i)

T j=1 i£]
k
= Z Sgn( )Z(W/TAW i(4) H W/ /)rr(z
T j=1 i#£j

Now we cannot just bound (W/TAW,);-(;y by 221 (W)W} ;- (;) since sgn(r) can
be negative. But note that we have some freedom left in the choice of W,, or
W)/ . We can perform column operations on W,,, since this corresponds to a right
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multiplication with some matrix Qo € R¥** with |det Q2| = 1, which has no effect
in the formula for o4 (Py). We can use these column operations to make sure that
the columns are orthogonal at some time ty3. (We don’t want the column operations,
or the matrix )2, to be time-dependent to avoid problems when taking the time-
derivative.) Then, in the expressions for (o4 (Py))? and W at t = to, the only
permutation that needs to be considered is the identity permutation, which has a
positive sign. Even more, we can use these column operations to make sure that,
at t = tp, the jth column will only contain eigenvectors of %S corresponding to
eigenvalues smaller than or equal to )\;, leading eventually to a bound of the form

(WITAW!)j5 < 20(WITW!) 5.

Redefine A and @ as the time-invariant matrices associated with Gg = G|i=¢,
and SO = S|t:t0 (Sle = QlA, Q,{G()Ql = In) and set )\1 = %A”, Vie {1, . .,TL}.
Mathematically, the existence of the aforementioned column operations comes down
to the following lemma, of which the proof is given in the appendix (section [B]).

Lemma 1. With the notations introduced above we can find matrices W/ € R"¥F
and Qy € R¥** such that

|det Q2] =1, WnQ2 = Q1W,),

and W' has the form

x 0 0
X X 0
W= |- : . :
n X X e x|’
[ X X X |

and the property that if i # j, then
(W W)y =0
After applying the lemma, it follows that
(0k(Pr))? = det((Qz )W QT GQIW, Q3 ") = det(W,T QT G W),
and we can now derive that

d(oy(Pr))?
det

k
= > sen(r) D (WTAWY) iy [TV Wi

=7 =1 ]

(only when 7 is the identity permutation we get something different from zero,
because of the properties of W)/)

k
Z W//TAW// ]j H(W:TW;L/)“
j=1 i#j
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(using the special structure of W)/)

Zn:ml WL [TV Wi

[
™M=

j=11=j i#]
k n
< o Y Wi T[T Wil
Jj=1 I=j i#]
k
=23 NI Wi

J

3

—

(and since Hz(erL/TWﬁ/)u = det(Wr/z/TW#) - (Uk(Pk))2|t:t0)
=2(A1+ -+ M) (or(Pr)) |t:t0 ’

or
dow(Py)

i <A+ 4 M) Uk(Pk)|t:t0'

t=to

Equality is reached for instance when w; is the eigenvector of %S corresponding to
Ai (1< <k).
This result can be formulated as follows.

Proposition 1. Let G be a symmetric, positive definite and time-dependent matriz
and let Ay > --- > A\, denote the eigenvalues of% G ! dG|t iy Then

4 et (WTGW
max r det ) =2(A1 4+ k).
t=to

WER™ Xk det (WTGW)
det(WT G(to)W)#£0

4. Evolution of the area of k-dimensional surfaces. In the standard metric,
the length o1 s of a curve (V) in R™, represented by the function ¢ : V. — R",
V CR, is given by the well-known expression

o= [ R = [V E ()

For a general metric the length o1 equals

8 i
/o Dosle tdas = [ S astot D)) ).

This formula can be extended to an expression for the area of surfaces of larger
dimensions in the following way. Let V be a region in R* such that the function v :
V — R"™ defines a (smooth) k-dimensional surface in R™. Then the k-dimensional
area oy (U) (with U = (V) can be found by replacing W,, by g—f(y)dy and G by
g(1(y)) in the previous section and integrating over V:

%@ZL(H@zWWW%U%y
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Now we let U evolve under the flow of the given dynamical system to obtain the
time-variant surface ¢:(U) = ¢ 0 (V) and we consider its area:

() = [ dt(‘;j 0% ) 2w 2 >>dy.

To calculate the time-derivative %ak(gbt(U)), we first consider the matrix
d 0 0
SU0)(w) = 07 (2) o ((8—‘i< >) olon(e) 22 <x>>

oy ofT af
=g 1(30)8—35 (2)g( Zf 8x1 %(3@),

t=0

and denote the eigenvalues of $S(f,g) in z € R” by Ay(z) > -+ > Ay (z). Then it
follows from section Bl (with W, = 52 (y)dy and G(t) = (%(x))Tg((bt(x))%(aj))
that

%Jdet (gj () w(y))g(@w(ym%Wy))g—j(y))

o o
< M@@) + -+ Ae(¥(y)) 4| det <3y W)@ () 5 a9 (y ))
Notice that for k = n the inequality becomes an equality and we retrieve Liouville’s
theorem. Integrating the inequality over V leads to

d
—ok(@e(U))| < sup (Ai(x) +--- + Ap(@)) ox (U).
dt +=0 zeU
This means that the supremum of the sum A\ (z) +- - -+ Ax(x) gives an upper bound
for the rate at which k-dimensional surfaces can increase.
Assume that for some region Q C R™, it is true that

M(z) + -+ M(z) <0, Ve

Then the area of any k-dimensional surface lying in €2 cannot increase under ¢;. This
implies that if the k-dimensional surface under consideration is invariant under the
flow of the dynamical system, then on this surface we must have that Ay (x)+---+
Ak(z) = 0. Under some extra conditions on the set {x € Q: Ay (x)+-- -+ A (x) = 0}
(e.g. demanding that its dimension is smaller than k) we can conclude that there
can be no invariant k-dimensional surfaces in €2 with a finite area.
If also

sup Ay (x) 4 - - + () <0,

e
then there is uniform contraction of k-dimensional surfaces and the previous result
can be extended to arbitrary (but still bounded) sets by using a result of Reitmann
[ (which is based on an article by Douady and Oesterlé [I]). To explain this
result, we first need to recall the definition of the Hausdorff dimension and the
box-counting dimension.
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5. The Hausdorff dimension and the evolution of Hausdorff measures.
Consider a totally bounded set S in R™. (A totally bounded set is a bounded set
that can be covered with a finite number of balls of any predetermined radius ¢ > 0.)
Cover S with a countable number of balls of radius r; < €, with € > 0. For a given
d € [0,n] and € > 0, the Hausdorff outer measure pg(S,d,¢€) is defined as follows:

w(S,d,e) = ianrf,

where the infimum is taken over all possible covers satisfying r; < €, Vi. Keeping d
fixed, up(S,d,€) as a function of € is decreasing and non-negative. Therefore, the
Hausdorff d-measure, equal to

MH(S7 d) = hn(lJ,uH(Sv d? 6) € RJF U {+OO}7

is well-defined. If S is a smooth k-dimensional surface, this measure has the property
that pg (S, k) is proportional to the k-dimensional area of the surface and therefore
it can be considered as an extension to the notion of length, (k-dimensional) area
and volume. It also follows that for a general set S there exists a d* such that

d<d = pp(S,d) =+oo,
d>d* = pg(S,d)=0.

By definition, d* = dimg S, the Hausdorff dimension of S. For instance, a two-
dimensional surface in R3 will have d* = 2 and the above inequalities can be inter-
preted by stating that it has an infinite length and zero (3-dimensional) volume.

For explaining the evolution of Hausdoff d-measures we will split d in an integer
part k and a fractional part s and consider the linear interpolation between the sum
of the k largest eigenvalues A; and the sum of the k + 1 largest \;-values. From
results in [§] and [B] one can then obtain the following:

Theorem 1. Let 2 be a subset of R™ with
sup M1 (z) + -+ + A () + s 1 (z) <0,
€N

where k € {1,...,n—1} and s € [0,1], and let S be a totally bounded set, satisfying
0:(S) C Q, Vt € R. Then, if we set d =k + s, for each ¢ > 0, there exists a T >0
and a €9 > 0, such that for all t > T and e € (0, €)

MH(¢t(S)7 d? 6) < CILLH(S7 dv 6),
implying that
e (9e(S), d) < cpu (S, d).
Since we can choose ¢ as small as we want, this means that, under similar con-
ditions as for the contraction of k-dimensional surfaces, we also have that the d-
dimensional Hausdorff outer measure will decrease under the flow of the dynamical

system (for sufficiently large values of T'). If S is invariant under ¢;, then we can
choose ¢ < 1 to obtain that for sufficiently small values of e

wr(S,d,e) =0 and thus ug(S,d) =0,
implying that

Therefore there can be no bounded invariant sets in 2 with a Hausdorfl dimension
higher than d.
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Remark 1. Although the condition of S being bounded and the definition of Haus-
dorff measure will depend on the chosen metric, under some mild conditions the
Hausdorff dimension will not. This allows for deriving better upper bounds for the
Hausdorff dimension by choosing an appropriate metric. The same holds for the
box-counting dimension, which is treated in the next section.

6. The box-counting dimension. We will define the box-counting dimension (or
capacity dimension) more directly, although by introducing capacitive d-measures
a similar definition can be obtained as for the Hausdorff dimension. For a totally
bounded set S in R™ and a given € > 0 the covers considered now consist of a finite
number of balls with radii equal to e. Let N(€) be the minimum number of balls of
radius € needed to cover S. The upper box dimension dimpS is defined as

S log N
dimpgS = lim sup L(E).
o —log(e)
An analogous definition holds for the lower box dimension dimp.S:
log N (e)

dimp 5 = 111611)%11’ —log(e)”

If both are equal they are called the box(-counting) dimension. From the definitions
it follows that dimy S < dimpS < dimpS.
From [3] now follows:

Theorem 2. Let S C R™ be compact and invariant under ¢; with
M(x) 4+ -+ M (2) + sheya(z) <O, Vzels,
where k € {1,...,n— 1} and s € [0,1]. Then
dimpS < k + s.
This implies that if
M(z) 4+ -+ A (z) + sheya(z) <0, Vo e,

for some compact set 2 C R™ then there can be no invariant sets in {2 with a box
dimension higher than k + s. (This follows from the fact that S C © implies that
the closure S is compact (and of course S is invariant under f), and from the fact
that dimpS = dimpgS, which can be derived from the definition of box-counting
dimension.)

Note that the condition of theorem B is equivalent to

sup Ar(x) + -+ + Ap(x) + sApr1(x) <0,
€S

since S is compact.

7. The presence of first integrals. Assume there are p first integrals of the
dynamical system, denoted by the column vector h, such that

i Oh _
;f o =0

and the matrix % has full row rank everywhere in some region 2 C R™. Then the
level set

Lo ={z: h(z) =C},



144 D. AEYELS, F. DE SMET AND B. LANGEROCK

with C' € RP, is invariant under ¢; and we can consider the restriction of the
dynamical system to Lc. Let g be a metric in Lo N Q which has to be determined
yet.

For a neighborhood U, C Lc N of some 2z € Lo N Q we can define a (n —
p) x (n — p)-matrix S(f,§) for g, such that 1S(f,g) determines how the area of
higher dimensional surfaces evolves under ¢; in U, with respect to §. Let M () >
R ;\n_p(:zc) denote the eigenvalues of this matrix in x. Choose an integer k with
p <k <nandan s € (0,1]. Then we can prove the following.

Theorem 3. Under the above conditions, one can choose g in such a way that
M (@) 44 My (@) + sMhpp (@) < M (@) + - + Me(@) + Mg (@),
Vre LN, VC € RP.

This means that, in the presence of p first integrals, the contraction of k-dimen-
sional surfaces (resp. Hausdorff d-measures) leads to contraction of k—p-dimensional
surfaces (resp. Hausdorff d — p-measures) in any level set of the p first integrals (but
with respect to another metric). The proof is given in the appendix (section [O).

FIGURE 1. An example with one first integral h.

We will try to provide some intuition. In figure[lla system is shown that contracts
the area of 2-dimensional surfaces (e.g. the shaded ones) with respect to the standard
metric. In this standard metric though, 1-dimensional curves are not contracted
(e.g. the thicker lines). However the system has a first integral h and we can
define a new metric in the level surface h = Cy by setting the length equal to (or
proportional to) the area of the 2-dimensional surface that is formed by extending
the curve (an infinitesimally small amount) in the direction of Vi (again the shaded
surfaces). Since this area decreases under the flow of the system, so will the (newly
defined) length of 1-dimensional curves lying in the level sets of h.

8. Application to almost global convergence. The criterion from [6] men-
tioned in the introduction was generalized in [7] to include almost global conver-
gence to an invariant set S, i.e. the set R of points not converging to .S has measure
zero. Consider again a C! vector field f with no finite escape time. Let d denote



k-DIMENSIONAL AREA CONTRACTION 145

the distance function associated with the standard metric and let S denote a closed
set, invariant under f. Set S, = {z € R™ : d(z,S) < €}. The theorem in [7] can
then be formulated as follows:

Theorem 4. Assume that p € C*(R"\ S,R)NLY(R™\S,) for all e > 0. If p(x) >0
and V - (pf)(x) > 0 for almost all x € R™\ S and f is bounded in S, for some
r >0, then limy_.o d(¢ (), S) =0 for almost all x € R™.

(Some property holds for almost all z € R™ if the set of points where it does
not hold has (Lebesgue) measure zero.) The density function p can be viewed as
a new way to define volumes. For instance, by using the (not necessarily positive
definite) metric g = p# I, (with p satisfying the properties from theorem H), the
(n-dimensional) volume of a region U C R™ would become (with the notations from
section I 1) the identity function, and V' = U)

:/U\/mdyz/[]p(y)dy

For this metric the behavior of n-dimensional volumes is determined by the sum of
all n eigenvalues of S(f,g), which equals its trace (assume p(x) > 0):

A(@) 4+ M(z) =tr S(f, 9)

_tr(gf()+g—£ Zfl )

2
=—V - (pf)(z).
Y N
The fact that f expands n-dimensional volumes, together with the fact that p €
LY(R™\S,) ( f]R"\ s p(z)dx is finite) for all € > 0 will guarantee that all invariant sets
lying in R™ \ S, for some ¢ > 0 have n-dimensional volume (or Lebesgue measure)
zZero.
If the set S is (Lyapunov) stable, then it follows that the set R, with

R. = {x e R" : limsupd(¢¢(x),S) > €},
t—o0

is contained in R™ \ Ss, for some § > 0. Since the set R, is invariant under f it
follows that it has Lebesgue measure zero and so has the set R, with

R=|JRc={zeR": lim d(¢y(z), 5) # 0}.

e>0

We will not consider the case where S is not stable, since the arguments we will use
for our extension do not apply in this case.

From now on assume that the set S is stable. Let g be a positive definite C® metric
for which R™\ S, is bounded for all € > 0 and assume that (with A;(x) > -+ > A, (2)
again the eigenvalues of 1S(f,g) in z € R")

elﬂ]élf SAn—k(2) + An—kg1(x) + - + A (z) >0,
zeRn
or equivalently, f expands Hausdorff £ 4+ s-measures, for some integer k£ and some
s € [0,1]. (This condition is the same as the condition for contraction of Hausdorff
k + s-measures under —f.) Since R, C R™\ Ss for some § > 0 (by the stability of



146 D. AEYELS, F. DE SMET AND B. LANGEROCK

S) and R, is invariant under f, it follows from section Bl that pugy(Re, k + s) = 0.
From the definition of the Hausdorff measure it follows that

pa (R k+s) :MH<U R;,k—i—s) < Z WH (R;,k—i—s) =0,
i€Ng ' 1€Ng '
and thus dimg R < k + s.

If in addition R™\ S, is compact for all € > 0 and S is asymptotically stable (i.e.
Je > 0: limy o0 d(¢y(x),S) =0,V € Sc), then R C R™\ S and from theorem [
we obtain

EBR <k+s.

As aresult, if there is almost global convergence to .S, then this approach allows to
provide more information on the set R. An important difference with the approach
in [7] however, is the condition needed for the expansion of Hausdorff k+ s-measures.
While the condition for the expansion of n-dimensional volumes comes down to

M(x)+ -+ A(2) >0, for almost all z € R™\ S,
we now need

inf  sAp—p(z) + Ap—pr1(x) + - + An(x) >0,
z€ER™\S
which can be hard to obtain, since often it may happen that lim ;. Ai(z) = 0,
for all 4 € {1,...,n}. (This is due to the fact that one might want to multiply the
vector field of a system with a finite escape time with some function to make sure
that for the new vector field f the ratio % is bounded, which would guarantee
that the system determined by f has no finite escape time. This puts restrictions
on the behavior of f(x) and S(f,g)(x) as |z| — o0.) It is not clear to us whether
the condition for contraction/expansion of Hausdorff k + s-measures can be relaxed
or not for obtaining the same results concerning the Hausdorff dimension. For the
box dimension however we were able to construct an example of a vector field f

and an invariant set C where
A1 (JJ) + 02)\2($) <0, VzeCl,

suggesting that the box dimension of C would not exceed 1.2 (if this condition
would have been sufficient), while it can be proven to be at least %. This example
is described and investigated in the appendix (section [Al).

A class of systems where this problem does not arise is the set of systems with first
integrals of which the level sets are compact. Then we can consider the restriction
of the system to one of the level sets and derive results for the set of points lying in
this level set and not converging to S. Since the level sets are compact there are no
problems with finite escape times and there is no problem if A;(z) — 0 as |z| — oo,
for some ¢ (since we need to consider the supremum over a level set). Because of
the result of the previous section, we do not need to find coordinate systems for the
level sets, but we can use contraction/expansion properties in the n-dimensional
state space.

Assume that f is a C' vector field with flow ¢; and with p first integrals h;, such
that % has full row rank everywhere in Q C R™. Choose a C' € RP and assume
that the level set Lo = {z : h(x) = C} is compact and lies entirely in Q. Let S
denote a closed set, invariant under f and stable. Denote by R¢ the set

Re = {z € L¢ : limsupd(¢:(z), S) # 0}.
t—o0
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From the previous results immediately follows:
Theorem 5. If there exists a C® metric g defined on Q\ S such that

inf  sh,_p(z) + An—gr1() + -+ An(x) >0,
z€Lc\S

for some integer k € [p,n — 1] and some s € (0,1], (Mi(z) > --- > A, (x) are the
eigenvalues of 3S(f,g)), then
pa(Re, k+s—p) =0,
implying that dimyg Ro < k+ s — p. If in addition S is asymptotically stable, then
dimpRc < k+s—p.
We will now illustrate this theorem with an example.

Example 1. Consider the following vector field f in R3:

fi(z1, 2, m3) = woa] — w123,

fQ(xlu:EQu CE?,) = _xlxg - ./L'Q.'L%,

fg(Il, 2, Ig) = (.I% + I%)Ig
One can easily verify that the function h, with

h(z) = a1 + 25 + a3,
is a first integral for the system & = f(z), and % has full row rank everywhere
in Q = R3\ {0}. The level sets Lc = {z € R : h(z) = C}, with C > 0, are
compact and lie entirely in 2. From the expression for f; and f it follows that the
set S ={z € R3: (z1,22) = (0,0)} is stable. With the metric
1

— I
2 2
Ty + x5

g=
one can derive that the eigenvalues of %S (f,g) satisfy

A (N = (2] 4+ 23 + 23X — (2] + 23)23) =0,
and that, with k = 2 and s > s9 = 3 — 2v/2 ~ 0.17,
inf\S sA1(x) + Aa(z) + Az(z) > 0.

x€Lc

We can conclude that Rc has a Hausdorff dimension smaller than or equal to
k+sg—p=4—2v2~1.17.

Indeed, from the differential equations it follows that

(et + 2d) = ~(at + )t
such that the only points in R? that will not converge to S lie in the plane {z €
R3 : 23 = 0}, and thus R¢ is the circle in this plane around the origin with radius
V/C and has a Hausdorff dimension of 1. Figure B shows 10 different trajectories
belonging to the same level set (C' = 1). They all start near the circle R¢ in the
(1, x2)-plane and converge to the xs-axis.
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FIGURE 2. A plot of 10 different trajectories in the same level set.
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Appendix A. Counter-example for relaxing the conditions for an upper
bound on the box dimension. Consider the vector field f in the z, y-plane, given
by the following equations:

i = —y—2x(z*+y?) +22*
§ = x—2y(®+y?) -2’12y + 1),
or, in polar coordinates:
0 = 1—r?cos*f(14rsinf +1)
7 o= —13(2+ cos® Osin ) + 27" cos® H(cos® 6 — 6sin? 9).

We will consider the part C of the unstable manifold of the saddle point (1,0)
that spirals towards the origin (see figure Bl). We take g = I, (standard metric),
and numerically calculate the eigenvalues A1 (z) and Ag(x) (A (x) > A2(x)) of the
matrix S(f,I,) along the curve C. From figure B, where we have plot the ratio

—iigig, together with the fact that

M(z) + Xo(z) = V- f(z) = —82% — 8y? — 423 < 0, Y (z,y) € C,
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FIGURE 3. The part of the unstable manifold of (1,0) that spirals
towards the origin.

we can conclude that Ai(x) + 0.2X\2(x) < 0 everywhere on C. Note that A\ (0,0) =
A2(0,0) = 0, such that this condition does not hold anymore for the closure C, and
sup,ce(A1(x) + 0.2X2(x)) = 0. This also implies that theorem Plis not applicable.
If the condition for this theorem could be relaxed to

A(x) + -+ Ap(@) + sApa(x) <0, Ve,

for non-compact sets S, then we would be able to conclude that dimpC < 1.2,
contradicting the fact that dimzC > %, which we will now show. Since this is a
bit technical, we prefer to give a more intuitive approach before giving the rigorous
proof. (Note that dimy C = 1 < 1.2, leaving open whether or not a relaxation of
the conditions for bounding the Hausdorff dimension is possible.)

It is clear that we only need to consider the part of C close to the origin, so
we could say that 6~ 1 (0 is chosen such that it increases along the spiral in
the inward direction) and, after averaging out the goniometric term, we have that
i ~ —r3. This leads to 7 ~ 1/v/t ~ 1/3/0. Now we consider the spiral as consisting
of different arcs, each of them described by 6 € [n2w, (n+ 1)27] for some n € N and
look at the part » > R; of the spiral in which the space between the arcs is large
enough (of the order of €, the radius of the covering discs) such that two discs, from
coverings of different arcs, do not touch each other. For this to happen R; must be
large enough, and can be approximated as the solution of: |27wdr/df| ~ e. When
substituting 0 ~ 1,7 ~ —r3 and r ~ 0~1/2 in this estimate, we obtain 93% ~r3~e
or Ry ~ €'/3. The length of the part of C for which r > R; can be approximated
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FIGURE 4. The ratio —\1(x)/A2(x), calculated along C.

by:
e 2 )
1 dr 1 1
r24+(—) df ~ —df ~ /O] ~ — ~ /3,
/1 <d9> 1 Vo ! Ry

Thus, the part of C satisfying » > R; can be covered by a number of discs of the
order e~ 1/3 /e = e=%/3, We estimate the number of discs of radius ¢, needed to cover
the part of C in r < Ry, by the number needed to cover a disc of radius Ry:

2
TRy —4/3
— ~€ .
me2

Therefore, the box dimension can be estimated by

, . Ine™?/3 4
dlmBCNl% “ne —§>1.2,

what we wanted to show. Below we give a rigorous proof of the fact that dimzC > %.

Note that | cos®@sinf| < 1/2. Choose C;, O3, C3 and Cy such that 0 < C; <
1< Cy 0<C3<3/2and 5/2 < Cy. Now there exists an Ry > 0, such that for
r < Ry:

Cl<é<02,
C3<—%<C4.
T

Denote the r-value of the ith intersection of C with the negative x-axis for which
r < Rg by r;, such that r; > r;41, Vi € Ng. (This also defines the values 6; and ¢,
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satisfying ¢; < t;+1.) From the above inequalities we obtain:

Cl(ti+1 — ti) <2 < CQ(tH_l — ti),
1 1

Coltips — ) < —— — —
sltiyr —t) 2r2., 2r?

< Cy(tig1 —ti),

and thus
471'03 li Ti2+1 < 471'%
sy T?T§+1 cy’
or
Cy rir Cy T3r
47T—371 i+l <Ti—7‘i+1<4ﬂ'—4 ¢ itd
Cyr; + Tit1 Cir; + Tit1
and since r; > 141
Cs Cy
2770—27“5’_,_1 <ri—rig < 277617“1-27"”1. (1)
It follows that
C
7 < Tig1 + 2WC_jT?Ti+17
or
! < 1 + 2#27"'
Tiy1 Ty c
11 C4<O4)21 C4<O4>2
— < 44—+ (27r—=1r; | < 5 +4dr—+ (20—=11) .
rig i " r? q 4

2
If we set a = 4775—;1 + (277%7“1) and 3 = 1/r? — «a, by induction we obtain:
L <ia+B=r > !
— <ia Ty > —.
r? = "= Via+ 3

For € > 0 sufficiently small, we have that

v (22) - 50 ®

Then, from equation () it follows that for i € {1,...,2n}

Cs 4 Cs
i — Tigl > 27TF2T1-+1 > QWFQTMJA

Cs 1 S
A 32 =
2(2n+1a+0)

>

If we denote by C; the piece of C between the ith and the ¢ 4+ 1th intersection with
the negative z-axis (for which r < Ryp), then r;y1 < r(z,y) < r;, V(x,y) € C;.
Thus for i € {1,...,2n — 1} the covers with discs of radius € of C; and C;12 will be
disjunct, while, from simple geometric arguments, one can see that the number of
discs needed to cover C; is larger than 7r; 4o /€.
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To cover all C; with i € {1,3,5,...,2n — 1} we will need at least
im”m DECI Ezn: 1
i=1 e o V@it Da+ 8
n+1

S f/ dx
= J@iDais
- (\/(2n—|—3)a+5 \/3044—5)

(0%

discs. The total number of discs N (e) needed to cover C satisfies
Nz = (VEn+3la+B-+3a+h),
and thus, considering equation (@), we can conclude that

logN(e) _ 4
= =T S S
dimpC = h?L%If —loge — 3

Appendix B. Proof of lemma [l Define the column vectors ¢¢ (i € {1,...,n})
by setting Q1 = [q} e qﬂ. Let W' be the k-dimensional subspace of R" that
consists of all linear combinations of the w;’s. The subspace W!Ngi (orthogonality
is considered with respect to Gy) is at least k — 1-dimensional; let W2 be a k —1-
dimensional subspace of W' N ¢i. (In the generic case W2 = W1 Ngqi.) We apply
a column transformation on W,,, represented by the matrix Q1, leading to a matrix
of which the first column vector is in W' N (W?)4 and the other column vectors
are in W?2.

We now repeat this procedure, in the next step starting from W?2. In general, at
step m, we will consider the intersection of the k —m+ 1-dimensional subspace W™
(where W™ L{q1,...,qm—1}) with ¢;-, in which we choose the k — m-dimensional
subspace W™*1. (Again, in the generic case W™+ = W™ N ¢L.) We apply a col-
umn transformation, represented by the matrix Q4*, on the matrix W, Q3 - - - ;”_1,
such that the first m — 1 columns of the latter matrix remain unchanged, the mth
column belongs to W™ N (W™*1)L and the other columns belong to W™+,

Setting Q2 = Q3 - - k 1 we obtain the desired properties for the matrix W” =
1
Qp WnQo.

Appendix C. Proof of theorem Bl Let y¢, with i € {1,...,n — p}, denote
coordinate functions for the level set L¢ in some region U C Lo N €L Let x denote
the vector function that maps y € R"™? to the corresponding * € R™ and let y
denote the vector function that maps a z € U C R™ to the corresponding y € R"7P.
Define Ay by

T
An(e) = det(?’j( o~ (@) e ))

Since 2% has full row rank in Q, Ay(z) is positive in U. For a given d € (p,n],
consider the metric, represented by the matrix gq € R("~?)*("=P) with respect to
the y'’s, given by



k-DIMENSIONAL AREA CONTRACTION 153

We will prove that this metric satisfies the condition of the previous theorem. Set
¢r =y o ¢ ox and define G4 by

~ T N
Gl t) = S WG 0) S )
which can be rewritten as
A 1 BétT ox ™. o0x O
Ga(y,t) = An(x(dr(y )))*_a—y(y)a—y ¢t(y))g(><(¢t(y)))ay (De(y) a9y (y)
T ~
(e dul) = 22 g0 ) 2272
(with x 0 ¢y = ¢4 0 x)
XT tT t X
= Bl o x(1) 77 () e Ge(0)) g x(0) G ) 5 ()
. oxT ox
= Ah(@(X(y)))_ma—y y)G(X(y),t)a—y(y)-

where we define G by

T
G 1) = P2 )g(6u() 2 ().

o First we will consider the case d = k, where k is an integer satisfying p < k <
n. From proposition [l and the derivation in section B, we obtain that

2 det (WTGk(y, t)W)

2 (M) + -+ M (x(0)) ) =

(o =) A
WeR(—P)x(k—p T
det(WT Gy, (y,0)W)£0 det (W Gk(y,t)W) t=0
Define H by

H(ot) = 31(60) # (slona) G2 @) FhiGo),

and consider the matrix

[BW Hxw.0)] G0 [F0W Hix).0)]

%

lWTa"T@ (x().1)5 <> W E <y G(x(y). 1) H (x(y).1)
t

)G (x(y),
H(x(y), )" G(x(y).t) 5y

(noticing that H(x(y),t)" G(x(y),t) 5 (y) = %(@(X(y)))%(X(y))g—’;(y) =
hediox) (y) = 0)

Q;|Q§’
EE
=
A
A
\/
\_/
S
Q
X
S
:—/\.
=
=
—
™
—
S
}/\.
-~
S~—
| I

| Aw(e) WG (y, )W 0
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(where x; = ¢¢(x(y))), of which the determinant equals

T
det (Ah(xt)ﬁWTék(y, t)W) det <Ah(:vt)127 %(mt)gfl(xt)% (:Ct)>

= det (WTGk(y, t)W) .

Thus we obtain

8 N
57 det (WTGk(yvt>W) o
— et ([F@W 16x).0]" G0 [Fow H(X(y)’“Dt_o'

One can easily verify that in general, for time-dependent (and differentiable)
matrices A(t), B(t) and C(t) for which the product A(¢)B(t)C(t) is well-
defined, the following holds:

d d
s det (A(t)B(t)C(t)) L = Edet (A(t)B(0)C(0)) L
+ %det (A(O)B(t)C(O)) + %det (A(0)B(0)C(t)) N

(This follows immediately from the formula det(A) = > sen0[[; Aisi)-)
This allows us to write

%det (WTGk(y,t)W) _

- et ([ Hex.0] G0 [Bs0w Hew0])]

+ g ([ HOw0] G0 [F0W Hxw.0)])|

+ et ([ 16x).0)]" Gx(.0) W Hx(0).0)] )

t=0
We will prove that the second term is zero (and so is the third term, which is
obviously equal to the second term).

Notice that again H(x(y),0)T G (x(y), O)‘g—’;(y) = 8(g;x) (y)=0.

gret ([0w 1)) G0 [F0W H6x,0)])|
_ 9t lW”x (y)G(x(y),0) 2 ()W 0 ]
ot | H(x(y), )T G(x(y), 005 ()W H(x(y), 1) G(x(y),0)H(x(y),0)|| _,
T
= etV 2% () Glx(0): 0) - W) g let(H Gx(0), )G x(0),0)H (). 0) .
From ¢_;(¢:(x)) = z it follows that
8(;5 ¢ 0oy

(60(a)) 5t (x) = L,
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and we obtain that

det (H(x(y),t)" G(x(y),0)H (x(y),0))

T Lo
= det (Ah<x<y>>éah<xt>é%wgl(m (%@c(y») %wy)))

T
= Anx(y) ™ A ar) et (%m)g-%m (Sr0-rto %t o) )

(with 52 (9—t(20)) G5t () = X520 (1) = 2 (w0))

T
= A (x(y) ™ A ) det (a—ﬁmt)g%x»a—ﬁmt))

= An(x(y) ™,
which is independent of time. It follows that in the previously derived expres-

sion for % det (WTGk (y, t)W)‘ o only the first term remains, and, setting
t=
W' (W,y) = [g—’;(y)W H(x(y), O)} € R™*F we eventually obtain

2 (4 e(w)) -+ Ay (x(0))

2 det (WTGk(y, t)W)
= max

WeR(n—p)x(k=p) ( A )
det(WT Gy, (y,0) W)#£0 det (WTGy(y, )W

t=0
e & det (W'T (W, y)G(x(y), )W’ (W, y))
wer-nxt-n  det (WT(W,y)G(x(y), )W (W, y))
det(WT Gy (y,0)W)#£0
<2(Mx() + -+ Mlx(®)) )

e Now we will consider the case where d = k + s, with s € [0,1] and p < k < n.
From proposition [ it follows that

t=0

2 (M x(®) + -+ Aemp (X)) + 5hepra (x(1) )
=2(1—s) (Aalx() + -+ Ap (x(0)) + 25 (M) + -+ Aepia (x(9)) )

% <(det WlTGd(y,t)Wl)l_s (det WzTéd(y,t)Wz)s)

1—s

max
W, eR(m—P)x(k=p) T A A s

Aot (W G a(y,0)W1)£0 (det Wi Galy, tWVl) (det W3 Galy, t)Wz)

WaeR(—P) X (k—p+1) t=0

det(Wi' G (y,0)W2)7£0

With the previously derived expression for Gd(y, t) and the fact that

(1-s)k=2  shoptl (1-9)4=2  sp=ztd

B s =2 5
P d—p E—p E—p+1
Ah Ah =A, = Ah Ah
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we can rewrite this in terms of Gy and Gy41:

2 (M x(®) + -+ Aemp (X)) + 5hepra (x(3) )

% ((det WlTék(y,t)Wl)l_s (det Wgék+1(y,t)w2)s)

- 1—s

max
7% E]R("*P)X(kfp)
det(W{ Gy, (y,0) W1)#0
W2€R(”*P)X(7€7P+1)
det(WF Gy (y,0)Wa)#£0

(det WGy, t)Wl) (det W G (y, t)Wz) ’

t=0

B T A
L det WG )W
= max (1-29) or det Wy Gi(y, )W

W, R )X (k=) det WGy (y, t)Wh
det(W{ G (y,0)W1)70

t=0

N . 9 det WY Gy (y, t)Wo

S =
W2€]R(A"7”)X(k’p+l) det WQTGkJrl(y, t)WQ
det(Wy G y1(y,0)W2)7£0

(1—s)

t=0

Wr RO X (-p) det (WT(Wr, ) G(x(y), )W (Wi, y))

2 det (W'T (W1, y)G(x(y), ) W' (Wi, y)) |
det(WT G (y,0)W1)#0 0

gr det (W' (Wa, y) G (x(y), ) W' (W, y))

Waertmtopin  det (W (Wa, y)G(x(y), )W (Wa, y))
det(W5 Gry1(y,0)W2)#£0

<201 = ) (M) + -+ Mlx(w)) ) + 25 (M (x(y)) + - + M (x()))

= 2(Alx(y)) + -+ + Mlx(w) + sh(x())).

t=0

e The case that remains to be investigated is k = p and s € (0,1]. Intuitively,
one could try to give a meaning to the previous derivations for the case k = p
by considering the limit k& — p in the terms where this is possible. This would
lead to the same reasoning as described below.

% ((det WQTGd(y,t)Wg)S)

max =
W eR(—P) X (h=p+1) (d WL (v. YW, )
det (W Ca(y,0)Wa2)#0 et Wy Galy, )W

25A1(x(y)) =
t=0

We can rewrite this as

0 C(1—s R s
“ ot (Ah(l )(It) (det WzTGk+1(yvt)W2) )
2sA1(x(y)) = w eR(nIPpa)J)X((kfp+l) PR e s
det(évgékﬂ(%o)wz#o h () (det Wy Gk+1(y7t)W2) .
Since
Ay () = det (HT (x(y), )G (x(y), t) H(x(y), 1)) ,
and again

2 et (H" (x(y), HG(x(y), 0 H(x(1), ) = 0,



(1]
(2]
(3]
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we obtain that
g (A @) | & (H (x(), 0)G(x(y), H H (x(y),0))
A |, HT(x(y).0)G(x(y), ) H(x(y),0))

t= t=0
< 2(N () -+ Ay (x(w)))-

The remainder of the proof is the same as before.
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