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Abstract. We investigate the evolution of the area of multi-dimensional sur-
faces along the flow of a dynamical system with known first integrals, and we
formulate sufficient conditions for area contraction.

These results, together with known results about the Hausdorff dimension
and the box-counting dimension of invariant sets, are applied to systems ex-
hibiting almost global convergence/asymptotic stability. This leads to a gen-
eralization of a well-known result on almost global convergence of a system,
based on the use of density functions. We conclude with an example.

1. Introduction. Consider a region in the state space of a dynamical system.
The changes in its volume, when moving along the flow of the dynamical system,
are determined by the divergence of the vector field. If the divergence is positive
(resp. negative) in the entire state space, then the volumes of all regions will be
increasing (resp. decreasing) along the vector field and this implies that an invariant
(measurable) region must have either zero or infinite volume. By introducing a
density function, one can redefine volumes in this state space, and as a consequence
the volume changes are determined by the divergence of the product of this density
function with the vector field. This product can also be considered as a modified
vector field with the same trajectories as the original vector field. The possibility of
finding a density function for which the aforementioned divergence is positive (resp.
negative) will thus allow to derive properties of the invariant sets of the vector field
of the dynamical system.

In [6], A. Rantzer used this fact to investigate systems which exhibit almost
global convergence of the origin, which means that the set of points in the state
space that will not converge to the origin has zero volume. He showed that if one can
find a density function such that the associated divergence is positive everywhere
(except for the origin) and the volume of the entire state space (except for some
neighborhood of the origin) has a finite volume, then almost all trajectories converge
to the origin. The set of points that do not converge to the origin is invariant and
if the origin is locally asymptotically stable this set is also bounded away from the
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origin. It then has a finite volume and it follows that this volume must be zero.
In the case that the origin is not asymptotically stable, the considered set can be
written as a (countable) union of invariant sets that are bounded away from the
origin. It follows that each set has volume zero and so has their union. In case the
origin is not stable, other techniques can be used to prove almost global convergence
to the origin.

In an analogous way as for n-dimensional subsets of the (n-dimensional) state
space, one can investigate the behavior of k-dimensional surfaces (k ≤ n) when they
move along with the flow of the system. The contraction or expansion of the area
of k-dimensional surfaces everywhere in the state space implies that no invariant
surfaces can exist with a finite area of a(n) (integer) dimension larger than or
equal to k (as we will show in this paper). However, for the application to the
aforementioned class of systems exhibiting almost global convergence, considering
the area of regular surfaces is not sufficient. There is no way to make sure that any
regular surface will have a finite area, even when one can freely choose a metric for
the state space. Furthermore invariant sets need not be regular surfaces. The use
of an extension of the notion of area to Hausdorff measures avoids these problems
[1, 8, 5, 4]. A condition similar to the one for the contraction/expansion of the area
of k-dimensional surfaces can be derived to guarantee that Hausdorff d-measures (d
not necessarily integer) decrease/increase along the flow of the vector field, implying
that the Hausdorff dimension of a bounded invariant set cannot be larger than d.
Similar results can be obtained for the box-counting dimension [3, 5].

Physical systems often exhibit symmetries and conservation laws, allowing us to
derive stronger results. In this paper we will generalize a result of [2] by showing
that, if a system has p conservation laws, the contraction (resp. expansion) of k-
dimensional surfaces will lead to contraction (resp. expansion) of k− p-dimensional
surfaces in an arbitrary level set of the conservation laws. The previously mentioned
results can then be applied to give an upper bound for the dimension of invariant
sets in this level set.

Consider a system exhibiting almost global convergence to some invariant set.
We will use the aforementioned results to give an upper bound for the Hausdorff
dimension or the box-counting dimension of the set of points that do not converge
to this attractive set. We discuss a problem that may arise and we show that for
a certain class of systems with first integrals we are able to avoid this problem as
will be illustrated with an example.

2. Outline and preliminaries. We will consider a dynamical system in R
n, given

by the continuously differentiable vector field f . Its flow is denoted by φt. (We
assume that the dynamical system has no finite escape time and thus φt is defined
everywhere in R

n for all t ∈ R.) There is a (positive definite) C3 metric g, taking
the form

g =
∑

i,j

gijdx
idxj .

(We let g denote both the metric and the (symmetric) matrix consisting of the
elements gij .) For a vector function v(x) we will use the notation ∂v

∂x to denote the

matrix with ∂vi

∂xj on the ith row and jth column.
In the following section we will derive an expression for the area of a k-dimensional

parallelepiped with respect to a time-dependent metric, and we will give an upper
bound for its time-derivative. In section 4 we will apply these results to give an
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expression for the area of a k-dimensional surface and an upper bound for its time-
derivative when evolving under the flow of the dynamical system. This results in
an upper bound for the dimension of regular bounded invariant sets. In order to
extend this result to arbitrary bounded invariant sets, we will introduce the concept
of Hausdorff measure in section 5, after which we will discuss its evolution under
the flow of the dynamical system and the consequences for the Hausdorff dimension
of invariant sets. Similar results will then be stated concerning the box-counting
dimension. In section 7 we assume that the dynamical system has p first integrals
and we show how the evolution of k-dimensional surfaces is related to the evolution
of k − p-dimensional surfaces in the level set of the first integrals.

In section 8 we explain the result of [7] (which is a generalization of the result of
[6]) and we relate it to the contraction/expansion of the area of multi-dimensional
surfaces. Then we give an extension by using the results of the previous sections
and we indicate a subtlety that can cause a practical problem and we show how, for
some systems with first integrals, this problem can be avoided. We conclude with
an example.

3. Evolution of the volume of a parallelepiped. In this section we will con-
sider R

n as a vector space with a metric, represented by the symmetric, positive
definite matrix G. We consider a parallelepiped Pk spanned by k (k ≤ n) linearly
independent vectors w1, . . . , wk. The length of a vector wi equals

√

〈wi, wi〉 =
√

wTi Gwi.

First we will assume a standard metric: G = In. Let Bk be an orthonormal basis
in the k-dimensional subspace spanned by the vectors wi. Define Wn ∈ R

n×k and
Wk ∈ R

k×k by

Wn =
[

w1 · · · wk
]

, Wk =
[

[w1]Bk
· · · [wk]Bk

]

,

where [wi]Bk
is the column vector containing the coordinates of wi with respect to

the basis Bk. Then the k-dimensional area/volume σk,s(Pk) (with respect to the
standard metric) of the aforementioned parallelepiped can be written as

σk,s(Pk) = |detWk| =
√

det(WT
k Wk),

and since the element on row i, column j, equals [wi]
T
Bk

[wj ]Bk
= 〈wi, wj〉 = wTi wj ,

σk,s(Pk) =
√

det(〈wi, wj〉) =
√

det(WT
n InWn).

From now on we let the metric be arbitrary. The expression
√

det(〈wi, wj〉) also
defines the k-dimensional area for a general metric G:

σk(Pk) =
√

det(〈wi, wj〉) =
√

det(WT
n GWn).

Assume that G is time-varying and consider the time-derivative of (σk(Pk))
2 for

the case k = 1 (Wn = w):

d(σ1(P1))
2

dt
=

d

dt
(wTGw) = wT

dG

dt
w,

which we rewrite as

d(σ1(P1))
2

dt
= wTGSw,
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with S = G−1 dG
dt . We will show that we can bound this expression by the product

of σ1(P1)
2 = wTGw and the largest eigenvalue of S. First note that G− 1

2
dG
dt G

− 1
2

is symmetric (G
1
2 is the positive definite matrix satisfying (G

1
2 )2 = G), such that

there exists a Q0 ∈ R
n×n with

G− 1
2
dG

dt
G− 1

2Q0 = Q0Λ, QT0Q0 = In,

where Λ is diagonal (and real) with Λ11 ≥ · · · ≥ Λnn. Setting Q1 = G− 1
2Q0 we

obtain

SQ1 = Q1Λ, QT1GQ1 = In,

and the columns of Q1 form a basis of orthonormal (with respect to G) eigenvectors
of S. By writing w as a linear combination of these eigenvectors we obtain

d(σ1(P1))
2

dt
= wTGSw = w′TQT1GSQ1w

′ (with w′ = Q−1
1 w)

= w′TQT1GQ1Λw
′ = w′TΛw′ =

∑

i

2λiw
′2
i (with λi =

1

2
Λii)

≤
∑

i

2λ1w
′2
i = 2λ1w

′Tw′ = 2λ1w
′TQT1GQ1w

′

= 2λ1w
TGw = 2λ1σ

2
1(P1),

and thus

dσ1(P1)

dt
≤ λ1σ1(P1).

For general k-values we could write

d(σk(Pk))
2

dt
=

d

dt
det(WT

n GWn) =
d

dt

∑

τ

sgn(τ)
∏

i

(WT
n GWn)iτ(i)

(where the summation is over all permutations τ of (1, . . . , k) and the product is
taken over all i ∈ {1, . . . , k})

=
∑

τ

sgn(τ)

k
∑

j=1

d

dt
(WT

n GWn)jτ(j)
∏

i6=j

(WT
n GWn)iτ(i)

=
∑

τ

sgn(τ)

k
∑

j=1

(WT
n GSWn)jτ(j)

∏

i6=j

(WT
n GWn)iτ(i)

(setting W ′
n = Q−1

1 Wn)

=
∑

τ

sgn(τ)

k
∑

j=1

(W ′T
n QT1GSQ1W

′
n)jτ(j)

∏

i6=j

(W ′T
n QT1GQ1W

′
n)iτ(i)

=
∑

τ

sgn(τ)

k
∑

j=1

(W ′T
n ΛW ′

n)jτ(j)
∏

i6=j

(W ′T
n W ′

n)iτ(i).

Now we cannot just bound (W ′T
n ΛW ′

n)jτ(j) by 2λ1(W
′T
n W ′

n)jτ(j) since sgn(τ) can
be negative. But note that we have some freedom left in the choice of Wn or
W ′
n. We can perform column operations on Wn, since this corresponds to a right
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multiplication with some matrix Q2 ∈ R
k×k, with | detQ2| = 1, which has no effect

in the formula for σk(Pk). We can use these column operations to make sure that
the columns are orthogonal at some time t0. (We don’t want the column operations,
or the matrix Q2, to be time-dependent to avoid problems when taking the time-

derivative.) Then, in the expressions for (σk(Pk))
2 and d(σk(Pk))2

dt at t = t0, the only
permutation that needs to be considered is the identity permutation, which has a
positive sign. Even more, we can use these column operations to make sure that,
at t = t0, the jth column will only contain eigenvectors of 1

2S corresponding to
eigenvalues smaller than or equal to λj , leading eventually to a bound of the form

(W ′T
n ΛW ′

n)jj ≤ 2λj(W
′T
n W ′

n)jj .

Redefine Λ and Q1 as the time-invariant matrices associated with G0 = G|t=t0
and S0 = S|t=t0 (S0Q1 = Q1Λ, QT1G0Q1 = In) and set λi = 1

2Λii, ∀ i ∈ {1, . . . , n}.
Mathematically, the existence of the aforementioned column operations comes down
to the following lemma, of which the proof is given in the appendix (section B).

Lemma 1. With the notations introduced above we can find matrices W ′′
n ∈ R

n×k

and Q2 ∈ R
k×k such that

| detQ2| = 1, WnQ2 = Q1W
′′
n ,

and W ′′
n has the form

W ′′
n =





















× 0 · · · 0
× × · · · 0
...

...
. . .

...
× × · · · ×
...

...
...

× × · · · ×





















,

and the property that if i 6= j, then

(W ′′T
n W ′′

n )ij = 0.

After applying the lemma, it follows that

(σk(Pk))
2 = det((Q−1

2 )TW ′′T
n QT1GQ1W

′′
nQ

−1
2 ) = det(W ′′T

n QT1GQ1W
′′
n ),

and we can now derive that

d(σk(Pk))
2

dt

∣

∣

∣

∣

t=t0

=
∑

τ

sgn(τ)

k
∑

j=1

(W ′′T
n ΛW ′′

n )jτ(j)
∏

i6=j

(W ′′T
n W ′′

n )iτ(i)

(only when τ is the identity permutation we get something different from zero,
because of the properties of W ′′

n )

=
k
∑

j=1

(W ′′T
n ΛW ′′

n )jj
∏

i6=j

(W ′′T
n W ′′

n )ii
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(using the special structure of W ′′
n )

=

k
∑

j=1

n
∑

l=j

2λl(W
′′
n )2lj

∏

i6=j

(W ′′T
n W ′′

n )ii

≤
k
∑

j=1

2λj

n
∑

l=j

(W ′′
n )2lj

∏

i6=j

(W ′′T
n W ′′

n )ii

= 2

k
∑

j=1

λj
∏

i

(W ′′T
n W ′′

n )ii

(and since
∏

i(W
′′T
n W ′′

n )ii = det(W ′′T
n W ′′

n ) = (σk(Pk))
2|t=t0)

= 2(λ1 + · · · + λk) (σk(Pk))
2
∣

∣

t=t0
,

or
dσk(Pk)

dt

∣

∣

∣

∣

t=t0

≤ (λ1 + · · · + λk) σk(Pk)|t=t0 .

Equality is reached for instance when wi is the eigenvector of 1
2S corresponding to

λi (1 ≤ i ≤ k).
This result can be formulated as follows.

Proposition 1. Let G be a symmetric, positive definite and time-dependent matrix
and let λ1 ≥ · · · ≥ λn denote the eigenvalues of 1

2 G
−1 dG

dt

∣

∣

t=t0
. Then

max
W∈R

n×k

det(WTG(t0)W ) 6=0

d
dt det

(

WTGW
)

det (WTGW )

∣

∣

∣

∣

∣

t=t0

= 2(λ1 + · · · + λk).

4. Evolution of the area of k-dimensional surfaces. In the standard metric,
the length σ1,s of a curve ψ(V ) in R

n, represented by the function ψ : V → R
n,

V ⊂ R, is given by the well-known expression

σ1,s(ψ(V )) =

∫

ψ(V )

√

∑

i

(dxi)2 =

∫

V

√

√

√

√

∑

i

(

∂ψi

∂y
(y)

)2

dy.

For a general metric the length σ1 equals

σ1(ψ(V )) =

∫

ψ(V )

√

∑

i,j

gij(x)dxidxj =

∫

V

√

√

√

√

∑

i,j

gij(ψ(y))
∂ψi

∂y
(y)

∂ψj

∂y
(y)dy.

This formula can be extended to an expression for the area of surfaces of larger
dimensions in the following way. Let V be a region in R

k such that the function ψ :
V → R

n defines a (smooth) k-dimensional surface in R
n. Then the k-dimensional

area σk(U) (with U = ψ(V )) can be found by replacing Wn by ∂ψ
∂y (y)dy and G by

g(ψ(y)) in the previous section and integrating over V :

σk(U) =

∫

V

√

√

√

√det

(

∂ψ

∂y

T

(y)g(ψ(y))
∂ψ

∂y
(y)

)

dy.
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Now we let U evolve under the flow of the given dynamical system to obtain the
time-variant surface φt(U) = φt ◦ ψ(V ) and we consider its area:

σk(φt(U)) =

∫

V

√

√

√

√det

(

∂ψ

∂y

T

(y)
∂φt
∂x

T

(ψ(y))g(φt(ψ(y)))
∂φt
∂x

(ψ(y))
∂ψ

∂y
(y)

)

dy.

To calculate the time-derivative d
dtσk(φt(U)), we first consider the matrix

S(f, g)(x) = g−1(x)
d

dt

(

(

∂φt
∂x

(x)

)T

g(φt(x))
∂φt
∂x

(x)

)∣

∣

∣

∣

∣

t=0

= g−1(x)
∂f

∂x

T

(x)g(x) + g−1(x)
∑

i

f i(x)
∂g

∂xi
(x) +

∂f

∂x
(x),

and denote the eigenvalues of 1
2S(f, g) in x ∈ R

n by λ1(x) ≥ · · · ≥ λn(x). Then it

follows from section 3 (with Wn = ∂ψ
∂y (y)dy and G(t) = (∂φt

∂x (x))
T
g(φt(x))

∂φt

∂x (x))

that

∂

∂t

√

√

√

√det

(

∂ψ

∂y

T

(y)
∂φt
∂x

T

(ψ(y))g(φt(ψ(y)))
∂φt
∂x

(ψ(y))
∂ψ

∂y
(y)

)

∣

∣

∣

∣

∣

∣

t=0

≤ (λ1(ψ(y)) + · · · + λk(ψ(y)))

√

√

√

√det

(

∂ψ

∂y

T

(y)g(ψ(y))
∂ψ

∂y
(y)

)

.

Notice that for k = n the inequality becomes an equality and we retrieve Liouville’s
theorem. Integrating the inequality over V leads to

d

dt
σk(φt(U))

∣

∣

∣

∣

t=0

≤ sup
x∈U

(λ1(x) + · · · + λk(x)) σk(U).

This means that the supremum of the sum λ1(x)+ · · ·+λk(x) gives an upper bound
for the rate at which k-dimensional surfaces can increase.

Assume that for some region Ω ⊂ R
n, it is true that

λ1(x) + · · · + λk(x) ≤ 0, ∀x ∈ Ω.

Then the area of any k-dimensional surface lying in Ω cannot increase under φt. This
implies that if the k-dimensional surface under consideration is invariant under the
flow of the dynamical system, then on this surface we must have that λ1(x) + · · ·+
λk(x) = 0. Under some extra conditions on the set {x ∈ Ω : λ1(x)+ · · ·+λk(x) = 0}
(e.g. demanding that its dimension is smaller than k) we can conclude that there
can be no invariant k-dimensional surfaces in Ω with a finite area.

If also

sup
x∈Ω

λ1(x) + · · · + λk(x) < 0,

then there is uniform contraction of k-dimensional surfaces and the previous result
can be extended to arbitrary (but still bounded) sets by using a result of Reitmann
[8] (which is based on an article by Douady and Oesterlé [1]). To explain this
result, we first need to recall the definition of the Hausdorff dimension and the
box-counting dimension.
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5. The Hausdorff dimension and the evolution of Hausdorff measures.

Consider a totally bounded set S in R
n. (A totally bounded set is a bounded set

that can be covered with a finite number of balls of any predetermined radius ǫ > 0.)
Cover S with a countable number of balls of radius ri < ǫ, with ǫ > 0. For a given
d ∈ [0, n] and ǫ > 0, the Hausdorff outer measure µH(S, d, ǫ) is defined as follows:

µH(S, d, ǫ) = inf
∑

i

rdi ,

where the infimum is taken over all possible covers satisfying ri < ǫ, ∀ i. Keeping d
fixed, µH(S, d, ǫ) as a function of ǫ is decreasing and non-negative. Therefore, the
Hausdorff d-measure, equal to

µH(S, d) = lim
ǫ→0

µH(S, d, ǫ) ∈ R
+ ∪ {+∞},

is well-defined. If S is a smooth k-dimensional surface, this measure has the property
that µH(S, k) is proportional to the k-dimensional area of the surface and therefore
it can be considered as an extension to the notion of length, (k-dimensional) area
and volume. It also follows that for a general set S there exists a d∗ such that

d < d∗ ⇒ µH(S, d) = +∞,

d > d∗ ⇒ µH(S, d) = 0.

By definition, d∗ = dimH S, the Hausdorff dimension of S. For instance, a two-
dimensional surface in R

3 will have d∗ = 2 and the above inequalities can be inter-
preted by stating that it has an infinite length and zero (3-dimensional) volume.

For explaining the evolution of Hausdoff d-measures we will split d in an integer
part k and a fractional part s and consider the linear interpolation between the sum
of the k largest eigenvalues λi and the sum of the k + 1 largest λi-values. From
results in [8] and [5] one can then obtain the following:

Theorem 1. Let Ω be a subset of R
n with

sup
x∈Ω

λ1(x) + · · · + λk(x) + sλk+1(x) < 0,

where k ∈ {1, . . . , n− 1} and s ∈ [0, 1], and let S be a totally bounded set, satisfying
φt(S) ⊂ Ω, ∀ t ∈ R. Then, if we set d = k + s, for each c > 0, there exists a T > 0
and a ǫ0 > 0, such that for all t > T and ǫ ∈ (0, ǫ0)

µH(φt(S), d, ǫ) ≤ cµH(S, d, ǫ),

implying that

µH(φt(S), d) ≤ cµH(S, d).

Since we can choose c as small as we want, this means that, under similar con-
ditions as for the contraction of k-dimensional surfaces, we also have that the d-
dimensional Hausdorff outer measure will decrease under the flow of the dynamical
system (for sufficiently large values of T ). If S is invariant under φt, then we can
choose c < 1 to obtain that for sufficiently small values of ǫ

µH(S, d, ǫ) = 0 and thus µH(S, d) = 0,

implying that

dimH S ≤ d.

Therefore there can be no bounded invariant sets in Ω with a Hausdorff dimension
higher than d.
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Remark 1. Although the condition of S being bounded and the definition of Haus-
dorff measure will depend on the chosen metric, under some mild conditions the
Hausdorff dimension will not. This allows for deriving better upper bounds for the
Hausdorff dimension by choosing an appropriate metric. The same holds for the
box-counting dimension, which is treated in the next section.

6. The box-counting dimension. We will define the box-counting dimension (or
capacity dimension) more directly, although by introducing capacitive d-measures
a similar definition can be obtained as for the Hausdorff dimension. For a totally
bounded set S in R

n and a given ǫ > 0 the covers considered now consist of a finite
number of balls with radii equal to ǫ. Let N(ǫ) be the minimum number of balls of
radius ǫ needed to cover S. The upper box dimension dimBS is defined as

dimBS = lim sup
ǫ→0

logN(ǫ)

− log(ǫ)
.

An analogous definition holds for the lower box dimension dimBS:

dimBS = lim inf
ǫ→0

logN(ǫ)

− log(ǫ)
.

If both are equal they are called the box(-counting) dimension. From the definitions
it follows that dimH S ≤ dimBS ≤ dimBS.

From [3] now follows:

Theorem 2. Let S ⊂ R
n be compact and invariant under φt with

λ1(x) + · · · + λk(x) + sλk+1(x) < 0, ∀x ∈ S,

where k ∈ {1, . . . , n− 1} and s ∈ [0, 1]. Then

dimBS ≤ k + s.

This implies that if

λ1(x) + · · · + λk(x) + sλk+1(x) < 0, ∀x ∈ Ω,

for some compact set Ω ⊂ R
n then there can be no invariant sets in Ω with a box

dimension higher than k + s. (This follows from the fact that S ⊂ Ω implies that
the closure S̄ is compact (and of course S̄ is invariant under f), and from the fact
that dimB S̄ = dimBS, which can be derived from the definition of box-counting
dimension.)

Note that the condition of theorem 2 is equivalent to

sup
x∈S

λ1(x) + · · · + λk(x) + sλk+1(x) < 0,

since S is compact.

7. The presence of first integrals. Assume there are p first integrals of the
dynamical system, denoted by the column vector h, such that

∑

i

f i
∂h

∂xi
= 0,

and the matrix ∂h
∂x has full row rank everywhere in some region Ω ⊂ R

n. Then the
level set

LC = {x : h(x) = C},
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with C ∈ R
p, is invariant under φt and we can consider the restriction of the

dynamical system to LC . Let ĝ be a metric in LC ∩ Ω which has to be determined
yet.

For a neighborhood Ux ⊂ LC ∩ Ω of some x ∈ LC ∩ Ω we can define a (n −
p) × (n − p)-matrix S(f, ĝ) for ĝ, such that 1

2S(f, ĝ) determines how the area of

higher dimensional surfaces evolves under φt in Ux with respect to ĝ. Let λ̂1(x) ≥
· · · ≥ λ̂n−p(x) denote the eigenvalues of this matrix in x. Choose an integer k with
p ≤ k < n and an s ∈ (0, 1]. Then we can prove the following.

Theorem 3. Under the above conditions, one can choose ĝ in such a way that

λ̂1(x) + · · · + λ̂k−p(x) + sλ̂k−p+1(x) ≤ λ1(x) + · · · + λk(x) + sλk+1(x),

∀x ∈ LC ∩ Ω, ∀C ∈ R
p.

This means that, in the presence of p first integrals, the contraction of k-dimen-
sional surfaces (resp. Hausdorff d-measures) leads to contraction of k−p-dimensional
surfaces (resp. Hausdorff d−p-measures) in any level set of the p first integrals (but
with respect to another metric). The proof is given in the appendix (section C).

f

h = C1

h = C2

Figure 1. An example with one first integral h.

We will try to provide some intuition. In figure 1 a system is shown that contracts
the area of 2-dimensional surfaces (e.g. the shaded ones) with respect to the standard
metric. In this standard metric though, 1-dimensional curves are not contracted
(e.g. the thicker lines). However the system has a first integral h and we can
define a new metric in the level surface h = C1 by setting the length equal to (or
proportional to) the area of the 2-dimensional surface that is formed by extending
the curve (an infinitesimally small amount) in the direction of ∇h (again the shaded
surfaces). Since this area decreases under the flow of the system, so will the (newly
defined) length of 1-dimensional curves lying in the level sets of h.

8. Application to almost global convergence. The criterion from [6] men-
tioned in the introduction was generalized in [7] to include almost global conver-
gence to an invariant set S, i.e. the set R of points not converging to S has measure
zero. Consider again a C1 vector field f with no finite escape time. Let d denote
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the distance function associated with the standard metric and let S denote a closed
set, invariant under f . Set Sǫ = {x ∈ R

n : d(x, S) < ǫ}. The theorem in [7] can
then be formulated as follows:

Theorem 4. Assume that ρ ∈ C1(Rn \S,R)∩L1(Rn \Sǫ) for all ǫ > 0. If ρ(x) > 0
and ∇ · (ρf)(x) > 0 for almost all x ∈ R

n \ S and f is bounded in Sr for some
r > 0, then limt→∞ d(φt(x), S) = 0 for almost all x ∈ R

n.

(Some property holds for almost all x ∈ R
n if the set of points where it does

not hold has (Lebesgue) measure zero.) The density function ρ can be viewed as
a new way to define volumes. For instance, by using the (not necessarily positive

definite) metric g = ρ
2
n In (with ρ satisfying the properties from theorem 4), the

(n-dimensional) volume of a region U ⊂ R
n would become (with the notations from

section 4, ψ the identity function, and V = U)

σn(U) =

∫

U

√

det(ρ
2
n (y)In)dy =

∫

U

ρ(y)dy.

For this metric the behavior of n-dimensional volumes is determined by the sum of
all n eigenvalues of S(f, g), which equals its trace (assume ρ(x) > 0):

λ1(x) + · · · + λn(x) = trS(f, g)

= tr

(

∂f

∂x

T

(x) +
∂f

∂x
(x) +

2

n

1

ρ(x)

∑

i

f i
∂ρ

∂x
(x)In

)

=
2

ρ(x)
∇ · (ρf)(x).

The fact that f expands n-dimensional volumes, together with the fact that ρ ∈
L1(Rn\Sǫ) (

∫

Rn\Sǫ
ρ(x)dx is finite) for all ǫ > 0 will guarantee that all invariant sets

lying in R
n \ Sǫ for some ǫ > 0 have n-dimensional volume (or Lebesgue measure)

zero.
If the set S is (Lyapunov) stable, then it follows that the set Rǫ, with

Rǫ = {x ∈ R
n : lim sup

t→∞
d(φt(x), S) > ǫ},

is contained in R
n \ Sδ, for some δ > 0. Since the set Rǫ is invariant under f it

follows that it has Lebesgue measure zero and so has the set R, with

R =
⋃

ǫ>0

Rǫ = {x ∈ R
n : lim

t→∞
d(φt(x), S) 6= 0}.

We will not consider the case where S is not stable, since the arguments we will use
for our extension do not apply in this case.

From now on assume that the set S is stable. Let g be a positive definite C3 metric
for which R

n\Sǫ is bounded for all ǫ > 0 and assume that (with λ1(x) ≥ · · · ≥ λn(x)
again the eigenvalues of 1

2S(f, g) in x ∈ R
n)

inf
x∈Rn\S

sλn−k(x) + λn−k+1(x) + · · · + λn(x) > 0,

or equivalently, f expands Hausdorff k + s-measures, for some integer k and some
s ∈ [0, 1]. (This condition is the same as the condition for contraction of Hausdorff
k + s-measures under −f .) Since Rǫ ⊂ R

n \ Sδ for some δ > 0 (by the stability of
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S) and Rǫ is invariant under f , it follows from section 5 that µH(Rǫ, k + s) = 0.
From the definition of the Hausdorff measure it follows that

µH(R, k + s) = µH

(

⋃

i∈N0

R 1
i
, k + s

)

≤
∑

i∈N0

µH

(

R 1
i
, k + s

)

= 0,

and thus dimH R ≤ k + s.
If in addition R

n \Sǫ is compact for all ǫ > 0 and S is asymptotically stable (i.e.
∃ ǫ > 0 : limt→∞ d(φt(x), S) = 0, ∀x ∈ Sǫ), then R ⊂ R

n \ Sǫ and from theorem 2
we obtain

dimBR ≤ k + s.

As a result, if there is almost global convergence to S, then this approach allows to
provide more information on the set R. An important difference with the approach
in [7] however, is the condition needed for the expansion of Hausdorff k+s-measures.
While the condition for the expansion of n-dimensional volumes comes down to

λ1(x) + · · · + λn(x) > 0, for almost all x ∈ R
n \ S,

we now need

inf
x∈Rn\S

sλn−k(x) + λn−k+1(x) + · · · + λn(x) > 0,

which can be hard to obtain, since often it may happen that lim|x|→∞ λi(x) = 0,
for all i ∈ {1, . . . , n}. (This is due to the fact that one might want to multiply the
vector field of a system with a finite escape time with some function to make sure

that for the new vector field f the ratio |f(x)|
|x| is bounded, which would guarantee

that the system determined by f has no finite escape time. This puts restrictions
on the behavior of f(x) and S(f, g)(x) as |x| → ∞.) It is not clear to us whether
the condition for contraction/expansion of Hausdorff k+ s-measures can be relaxed
or not for obtaining the same results concerning the Hausdorff dimension. For the
box dimension however we were able to construct an example of a vector field f
and an invariant set C where

λ1(x) + 0.2λ2(x) < 0, ∀x ∈ C,
suggesting that the box dimension of C would not exceed 1.2 (if this condition
would have been sufficient), while it can be proven to be at least 4

3 . This example
is described and investigated in the appendix (section A).

A class of systems where this problem does not arise is the set of systems with first
integrals of which the level sets are compact. Then we can consider the restriction
of the system to one of the level sets and derive results for the set of points lying in
this level set and not converging to S. Since the level sets are compact there are no
problems with finite escape times and there is no problem if λi(x) → 0 as |x| → ∞,
for some i (since we need to consider the supremum over a level set). Because of
the result of the previous section, we do not need to find coordinate systems for the
level sets, but we can use contraction/expansion properties in the n-dimensional
state space.

Assume that f is a C1 vector field with flow φt and with p first integrals hi, such
that ∂h

∂x has full row rank everywhere in Ω ⊂ R
n. Choose a C ∈ R

p and assume
that the level set LC = {x : h(x) = C} is compact and lies entirely in Ω. Let S
denote a closed set, invariant under f and stable. Denote by RC the set

RC = {x ∈ LC : lim sup
t→∞

d(φt(x), S) 6= 0}.
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From the previous results immediately follows:

Theorem 5. If there exists a C3 metric g defined on Ω \ S such that

inf
x∈LC\S

sλn−k(x) + λn−k+1(x) + · · · + λn(x) > 0,

for some integer k ∈ [p, n − 1] and some s ∈ (0, 1], (λ1(x) ≥ · · · ≥ λn(x) are the
eigenvalues of 1

2S(f, g)), then

µH(RC , k + s− p) = 0,

implying that dimH RC ≤ k + s− p. If in addition S is asymptotically stable, then

dimBRC ≤ k + s− p.

We will now illustrate this theorem with an example.

Example 1. Consider the following vector field f in R
3:

f1(x1, x2, x3) = x2x
2
3 − x1x

2
3,

f2(x1, x2, x3) = −x1x
2
3 − x2x

2
3,

f3(x1, x2, x3) = (x2
1 + x2

2)x3.

One can easily verify that the function h, with

h(x) = x2
1 + x2

2 + x2
3,

is a first integral for the system ẋ = f(x), and ∂h
∂x has full row rank everywhere

in Ω = R
3 \ {0}. The level sets LC = {x ∈ R

3 : h(x) = C}, with C > 0, are
compact and lie entirely in Ω. From the expression for f1 and f2 it follows that the
set S = {x ∈ R

3 : (x1, x2) = (0, 0)} is stable. With the metric

g =
1

x2
1 + x2

2

I3

one can derive that the eigenvalues of 1
2S(f, g) satisfy

λ
(

λ2 − (x2
1 + x2

2 + x2
3)λ− (x2

1 + x2
2)x

2
3

)

= 0,

and that, with k = 2 and s > s0 = 3 − 2
√

2 ≈ 0.17,

inf
x∈LC\S

sλ1(x) + λ2(x) + λ3(x) > 0.

We can conclude that RC has a Hausdorff dimension smaller than or equal to
k + s0 − p = 4 − 2

√
2 ≈ 1.17.

Indeed, from the differential equations it follows that

d

dt
(x2

1 + x2
2) = −(x2

1 + x2
2)x

2
3,

such that the only points in R
3 that will not converge to S lie in the plane {x ∈

R
3 : x3 = 0}, and thus RC is the circle in this plane around the origin with radius√
C and has a Hausdorff dimension of 1. Figure 2 shows 10 different trajectories

belonging to the same level set (C = 1). They all start near the circle RC in the
(x1, x2)-plane and converge to the x3-axis.
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Figure 2. A plot of 10 different trajectories in the same level set.
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Appendix A. Counter-example for relaxing the conditions for an upper

bound on the box dimension. Consider the vector field f in the x, y-plane, given
by the following equations:

ẋ = −y − 2x(x2 + y2) + 2x4

ẏ = x− 2y(x2 + y2) − x3(12y + 1),

or, in polar coordinates:

θ̇ = 1 − r2 cos4 θ(14r sin θ + 1)

ṙ = −r3(2 + cos3 θ sin θ) + 2r4 cos3 θ(cos2 θ − 6 sin2 θ).

We will consider the part C of the unstable manifold of the saddle point (1, 0)
that spirals towards the origin (see figure 3). We take g = In (standard metric),
and numerically calculate the eigenvalues λ1(x) and λ2(x) (λ1(x) ≥ λ2(x)) of the
matrix S(f, In) along the curve C. From figure 4, where we have plot the ratio

−λ1(x)
λ2(x) , together with the fact that

λ1(x) + λ2(x) = ∇ · f(x) = −8x2 − 8y2 − 4x3 < 0, ∀ (x, y) ∈ C,
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Figure 3. The part of the unstable manifold of (1,0) that spirals
towards the origin.

we can conclude that λ1(x) + 0.2λ2(x) < 0 everywhere on C. Note that λ1(0, 0) =
λ2(0, 0) = 0, such that this condition does not hold anymore for the closure C̄, and
supx∈C(λ1(x) + 0.2λ2(x)) = 0. This also implies that theorem 2 is not applicable.
If the condition for this theorem could be relaxed to

λ1(x) + · · · + λk(x) + sλk+1(x) < 0, ∀x ∈ S,

for non-compact sets S, then we would be able to conclude that dimBC ≤ 1.2,
contradicting the fact that dimBC ≥ 4

3 , which we will now show. Since this is a
bit technical, we prefer to give a more intuitive approach before giving the rigorous
proof. (Note that dimH C = 1 < 1.2, leaving open whether or not a relaxation of
the conditions for bounding the Hausdorff dimension is possible.)

It is clear that we only need to consider the part of C close to the origin, so
we could say that θ̇ ≈ 1 (θ is chosen such that it increases along the spiral in
the inward direction) and, after averaging out the goniometric term, we have that

ṙ ∼ −r3. This leads to r ∼ 1/
√
t ∼ 1/

√
θ. Now we consider the spiral as consisting

of different arcs, each of them described by θ ∈ [n2π, (n+1)2π] for some n ∈ N and
look at the part r > R1 of the spiral in which the space between the arcs is large
enough (of the order of ǫ, the radius of the covering discs) such that two discs, from
coverings of different arcs, do not touch each other. For this to happen R1 must be
large enough, and can be approximated as the solution of: |2πdr/dθ| ∼ ǫ. When

substituting θ̇ ∼ 1, ṙ ∼ −r3 and r ∼ θ−1/2 in this estimate, we obtain 1
θ3/2 ∼ r3 ∼ ǫ

or R1 ∼ ǫ1/3. The length of the part of C for which r > R1 can be approximated
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Figure 4. The ratio −λ1(x)/λ2(x), calculated along C.

by:

∫ Θ1

1

√

r2 +

(

dr

dθ

)2

dθ ∼
∫ Θ1

1

1√
θ
dθ ∼

√

Θ1 ∼ 1

R1
∼ ǫ−1/3.

Thus, the part of C satisfying r > R1 can be covered by a number of discs of the
order ǫ−1/3/ǫ = ǫ−4/3. We estimate the number of discs of radius ǫ, needed to cover
the part of C in r < R1, by the number needed to cover a disc of radius R1:

πR2
1

πǫ2
∼ ǫ−4/3.

Therefore, the box dimension can be estimated by

dimB C ∼ lim
ǫ→0

ln ǫ−4/3

− ln ǫ
=

4

3
> 1.2,

what we wanted to show. Below we give a rigorous proof of the fact that dimBC ≥ 4
3 .

Note that | cos3 θ sin θ| ≤ 1/2. Choose C1, C2, C3 and C4 such that 0 < C1 <
1 < C2, 0 < C3 < 3/2 and 5/2 < C4. Now there exists an R0 > 0, such that for
r < R0:

C1 < θ̇ < C2,

C3 < − ṙ

r3
< C4.

Denote the r-value of the ith intersection of C with the negative x-axis for which
r < R0 by ri, such that ri > ri+1, ∀ i ∈ N0. (This also defines the values θi and ti,
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satisfying ti < ti+1.) From the above inequalities we obtain:

C1(ti+1 − ti) < 2π < C2(ti+1 − ti),

C3(ti+1 − ti) <
1

2r2i+1

− 1

2r2i
< C4(ti+1 − ti),

and thus

4π
C3

C2
<
r2i − r2i+1

r2i r
2
i+1

< 4π
C4

C1
,

or

4π
C3

C2

r2i r
2
i+1

ri + ri+1
< ri − ri+1 < 4π

C4

C1

r2i r
2
i+1

ri + ri+1
,

and since ri > ri+1

2π
C3

C2
r3i+1 < ri − ri+1 < 2π

C4

C1
r2i ri+1. (1)

It follows that

ri < ri+1 + 2π
C4

C1
r2i ri+1,

or

1

ri+1
<

1

ri
+ 2π

C4

C1
ri

1

r2i+1

<
1

r2i
+ 4π

C4

C1
+

(

2π
C4

C1
ri

)2

≤ 1

r2i
+ 4π

C4

C1
+

(

2π
C4

C1
r1

)2

.

If we set α = 4πC4

C1
+
(

2πC4

C1
r1

)2

and β = 1/r21 − α, by induction we obtain:

1

r2i
≤ iα+ β ⇐⇒ ri ≥

1√
iα+ β

.

For ǫ > 0 sufficiently small, we have that

n :=

⌊

1

2α

(

(

2ǫC2

πC3

)−2/3

− β − α

)⌋

> 0. (2)

Then, from equation (1) it follows that for i ∈ {1, . . . , 2n}

ri − ri+1 > 2π
C3

C2
r3i+1 ≥ 2π

C3

C2
r32n+1

≥ 2π
C3

C2

1

((2n+ 1)α+ β)
3/2

≥ 4ǫ.

If we denote by Ci the piece of C between the ith and the i+ 1th intersection with
the negative x-axis (for which r < R0), then ri+1 ≤ r(x, y) ≤ ri, ∀ (x, y) ∈ Ci.
Thus for i ∈ {1, . . . , 2n− 1} the covers with discs of radius ǫ of Ci and Ci+2 will be
disjunct, while, from simple geometric arguments, one can see that the number of
discs needed to cover Ci is larger than πri+2/ǫ.
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To cover all Ci with i ∈ {1, 3, 5, . . . , 2n− 1} we will need at least

n
∑

i=1

πr(2i−1)+2

ǫ
≥ π

ǫ

n
∑

i=1

1
√

(2i+ 1)α+ β

≥ π

ǫ

∫ n+1

1

dx
√

(2x+ 1)α+ β

=
π

ǫα

(

√

(2n+ 3)α+ β −
√

3α+ β
)

discs. The total number of discs N(ǫ) needed to cover C satisfies

N(ǫ) ≥ π

ǫα

(

√

(2n+ 3)α+ β −
√

3α+ β
)

,

and thus, considering equation (2), we can conclude that

dimBC = lim inf
ǫ→0

logN(ǫ)

− log ǫ
≥ 4

3
.

Appendix B. Proof of lemma 1. Define the column vectors qi1 (i ∈ {1, . . . , n})
by setting Q1 =

[

qi1 · · · qn1
]

. Let W 1 be the k-dimensional subspace of R
n that

consists of all linear combinations of the wi’s. The subspace W 1∩q⊥1 (orthogonality
is considered with respect to G0) is at least k − 1-dimensional; let W 2 be a k − 1-
dimensional subspace of W 1 ∩ q⊥1 . (In the generic case W 2 = W 1 ∩ q⊥1 .) We apply
a column transformation on Wn, represented by the matrix Q1

2, leading to a matrix
of which the first column vector is in W 1 ∩ (W 2)⊥ and the other column vectors
are in W 2.

We now repeat this procedure, in the next step starting from W 2. In general, at
step m, we will consider the intersection of the k−m+1-dimensional subspace Wm

(where Wm⊥{q1, . . . , qm−1}) with q⊥m, in which we choose the k −m-dimensional
subspace Wm+1. (Again, in the generic case Wm+1 = Wm ∩ q⊥m.) We apply a col-
umn transformation, represented by the matrix Qm2 , on the matrix WnQ

1
2 · · ·Qm−1

2 ,
such that the first m− 1 columns of the latter matrix remain unchanged, the mth
column belongs to Wm ∩ (Wm+1)⊥, and the other columns belong to Wm+1.

Setting Q2 = Q1
2 · · ·Qk−1

2 , we obtain the desired properties for the matrix W ′′ =

Q−1
1 WnQ2.

Appendix C. Proof of theorem 3. Let yi, with i ∈ {1, . . . , n − p}, denote
coordinate functions for the level set LC in some region U ⊂ LC ∩Ω. Let x denote
the vector function that maps y ∈ R

n−p to the corresponding x ∈ R
n and let y

denote the vector function that maps a x ∈ U ⊂ R
n to the corresponding y ∈ R

n−p.
Define ∆h by

∆h(x) = det

(

∂h

∂x
(x)g−1(x)

∂h

∂x

T

(x)

)

.

Since ∂h
∂x has full row rank in Ω, ∆h(x) is positive in U . For a given d ∈ (p, n],

consider the metric, represented by the matrix ĝd ∈ R
(n−p)×(n−p) with respect to

the yi’s, given by

ĝd(y) = ∆
− 1

d−p

h (x(y))
∂x

∂y

T

(y)g(x(y))
∂x

∂y
(y).
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We will prove that this metric satisfies the condition of the previous theorem. Set

φ̂t = y ◦ φt ◦ x and define Ĝd by

Ĝd(y, t) =
∂φ̂t
∂y

T

(y)ĝk(φ̂t(y))
∂φ̂t
∂y

(y),

which can be rewritten as

Ĝd(y, t) = ∆h(x(φ̂t(y)))
− 1

k−p
∂φ̂t
∂y

T

(y)
∂x

∂y

T

(φ̂t(y))g(x(φ̂t(y)))
∂x

∂y
(φ̂t(y))

∂φ̂t
∂y

(y)

= ∆h(x ◦ φ̂t(y))−
1

k−p
∂(x ◦ φ̂t)

∂y

T

(y)g(x ◦ φ̂t(y))
∂(x ◦ φ̂t)

∂y
(y)

(with x ◦ φ̂t = φt ◦ x)

= ∆h(φt ◦ x(y))−
1

k−p
∂x

∂y

T

(y)
∂φt
∂x

T

(x(y))g(φt ◦ x(y))
∂φt
∂x

(x(y))
∂x

∂y
(y)

= ∆h(φt(x(y)))−
1

k−p
∂x

∂y

T

(y)G(x(y), t)
∂x

∂y
(y).

where we define G by

G(x, t) =
∂φt
∂x

T

(x)g(φt(x))
∂φt
∂x

(x).

• First we will consider the case d = k, where k is an integer satisfying p < k ≤
n. From proposition 1 and the derivation in section 3, we obtain that

2
(

λ̂1(x(y)) + · · · + λ̂k−p(x(y))
)

= max
W∈R

(n−p)×(k−p)

det(WT Ĝk(y,0)W ) 6=0

∂
∂t det

(

WT Ĝk(y, t)W
)

det
(

WT Ĝk(y, t)W
)

∣

∣

∣

∣

∣

∣

t=0

.

Define H by

H(x, t) = ∆h(φt(x))
− 1

p

(

g(φt(x))
∂φt
∂x

(x)

)−1
∂h

∂x

T

(φt(x)),

and consider the matrix

[

∂x
∂y (y)W H(x(y), t)

]T

G(x(y), t)
[

∂x
∂y (y)W H(x(y), t)

]

=

[

WT ∂x
∂y

T
(y)G(x(y), t)∂x∂y (y)W WT ∂x

∂y

T
(y)G(x(y), t)H(x(y), t)

H(x(y), t)TG(x(y), t)∂x∂y (y)W H(x(y), t)TG(x(y), t)H(x(y), t)

]

(noticing that H(x(y), t)TG(x(y), t)∂x∂y (y) = ∂h
∂x (φt(x(y)))∂φt

∂x (x(y))∂x∂y (y) =
∂(h◦φt◦x)

∂y (y) = 0)

=

[

∆h(xt)
1

k−pWT Ĝk(y, t)W 0

0 ∆h(xt)
− 2

p ∂h
∂x (xt)g

−1(xt)
∂h
∂x

T
(xt)

]
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(where xt = φt(x(y))), of which the determinant equals

det
(

∆h(xt)
1

k−pWT Ĝk(y, t)W
)

det

(

∆h(xt)
− 2

p
∂h

∂x
(xt)g

−1(xt)
∂h

∂x

T

(xt)

)

= det
(

WT Ĝk(y, t)W
)

.

Thus we obtain

∂

∂t
det
(

WT Ĝk(y, t)W
)

∣

∣

∣

∣

t=0

=
∂

∂t
det

(

[

∂x
∂y (y)W H(x(y), t)

]T

G(x(y), t)
[

∂x
∂y (y)W H(x(y), t)

]

)∣

∣

∣

∣

t=0

.

One can easily verify that in general, for time-dependent (and differentiable)
matrices A(t), B(t) and C(t) for which the product A(t)B(t)C(t) is well-
defined, the following holds:

d

dt
det (A(t)B(t)C(t))

∣

∣

∣

∣

t=0

=
d

dt
det (A(t)B(0)C(0))

∣

∣

∣

∣

t=0

+
d

dt
det (A(0)B(t)C(0))

∣

∣

∣

∣

t=0

+
d

dt
det (A(0)B(0)C(t))

∣

∣

∣

∣

t=0

.

(This follows immediately from the formula det(A) =
∑

σ sgnσ
∏

iAiσ(i).)
This allows us to write

∂

∂t
det
(

WT Ĝk(y, t)W
)

∣

∣

∣

∣

t=0

=
∂

∂t
det

(

[

∂x
∂y (y)W H(x(y), 0)

]T

G(x(y), t)
[

∂x
∂y (y)W H(x(y), 0)

]

)∣

∣

∣

∣

t=0

+
∂

∂t
det

(

[

∂x
∂y (y)W H(x(y), t)

]T

G(x(y), 0)
[

∂x
∂y (y)W H(x(y), 0)

]

)∣

∣

∣

∣

t=0

+
∂

∂t
det

(

[

∂x
∂y (y)W H(x(y), 0)

]T

G(x(y), 0)
[

∂x
∂y (y)W H(x(y), t)

]

)∣

∣

∣

∣

t=0

.

We will prove that the second term is zero (and so is the third term, which is
obviously equal to the second term).

Notice that again H(x(y), 0)TG(x(y), 0)∂x∂y (y) = ∂(h◦x)
∂y (y) = 0.

∂

∂t
det

(

[

∂x
∂y (y)W H(x(y), t)

]T

G(x(y), 0)
[

∂x
∂y (y)W H(x(y), 0)

]

)∣

∣

∣

∣

t=0

=
∂

∂t
det

[

WT ∂x
∂y

T
(y)G(x(y), 0)∂x∂y (y)W 0

H(x(y), t)TG(x(y), 0)∂x∂y (y)W H(x(y), t)TG(x(y), 0)H(x(y), 0)

]∣

∣

∣

∣

∣

t=0

= det
(

WT ∂x

∂y

T

(y)G(x(y), 0)
∂

∂x
y(y)W

) ∂

∂t
det
(

H(x(y), t)TG(x(y), 0)H(x(y), 0)
)

∣

∣

∣

∣

t=0

.

From φ−t(φt(x)) = x it follows that

∂φ−t
∂x

(φt(x))
∂φt
∂x

(x) = In,
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and we obtain that

det
(

H(x(y), t)TG(x(y), 0)H(x(y), 0)
)

= det



∆h(x(y))−
1
p ∆h(xt)

− 1
p
∂h

∂x
(xt)g

−1(xt)

(

∂φt
∂x

T

(x(y))

)−1
∂h

∂x

T

(x(y))





= ∆h(x(y))−1∆h(xt)
−1 det

(

∂h

∂x
(xt)g

−1(xt)

(

∂h

∂x
(φ−t(xt)

∂φ−t
∂x

(xt)

)T
)

(with ∂h
∂x (φ−t(xt))

∂φ−t

∂x (xt) = ∂(h◦φ−t)
∂x (xt) = ∂h

∂x (xt))

= ∆h(x(y))−1∆h(xt)
−1 det

(

∂h

∂x
(xt)g

−1(xt)
∂h

∂x

T

(xt)

)

= ∆h(x(y))−1,

which is independent of time. It follows that in the previously derived expres-

sion for ∂
∂t det

(

WT Ĝk(y, t)W
)∣

∣

∣

t=0
, only the first term remains, and, setting

W ′(W, y) =
[

∂x
∂y (y)W H(x(y), 0)

]

∈ R
n×k, we eventually obtain

2
(

λ̂1(x(y)) + · · · + λ̂k−p(x(y))
)

= max
W∈R

(n−p)×(k−p)

det(WT Ĝk(y,0)W ) 6=0

∂
∂t det

(

WT Ĝk(y, t)W
)

det
(

WT Ĝk(y, t)W
)

∣

∣

∣

∣

∣

∣

t=0

= max
W∈R

(n−p)×(k−p)

det(WT Ĝk(y,0)W ) 6=0

∂
∂t det

(

W ′T (W, y)G(x(y), t)W ′(W, y)
)

det (W ′T (W, y)G(x(y), t)W ′(W, y))

∣

∣

∣

∣

∣

t=0

≤ 2
(

λ1(x(y)) + · · · + λk(x(y))
)

.

• Now we will consider the case where d = k + s, with s ∈ [0, 1] and p < k ≤ n.
From proposition 1 it follows that

2
(

λ̂1(x(y)) + · · · + λ̂k−p(x(y)) + sλ̂k−p+1(x(y))
)

= 2(1 − s)
(

λ̂1(x(y)) + · · · + λ̂k−p(x(y))
)

+ 2s
(

λ̂1(x(y)) + · · · + λ̂k−p+1(x(y))
)

= max
W1∈R

(n−p)×(k−p)

det(WT
1 Ĝd(y,0)W1) 6=0

W2∈R
(n−p)×(k−p+1)

det(WT
2 Ĝd(y,0)W2) 6=0

∂

∂t

(

(

detWT
1 Ĝd(y, t)W1

)1−s (

detWT
2 Ĝd(y, t)W2

)s
)

(

detWT
1 Ĝd(y, t)W1

)1−s (

detWT
2 Ĝd(y, t)W2

)s

∣

∣

∣

∣

∣

∣

∣

∣

t=0

.

With the previously derived expression for Ĝd(y, t) and the fact that

∆
(1−s) k−p

d−p

h ∆
s k−p+1

d−p

h = ∆h = ∆
(1−s) k−p

k−p

h ∆
s k−p+1

k−p+1

h
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we can rewrite this in terms of Ĝk and Ĝk+1:

2
(

λ̂1(x(y)) + · · · + λ̂k−p(x(y)) + sλ̂k−p+1(x(y))
)

= max
W1∈R

(n−p)×(k−p)

det(WT
1 Ĝk(y,0)W1) 6=0

W2∈R
(n−p)×(k−p+1)

det(WT
2 Ĝk+1(y,0)W2) 6=0

∂

∂t

(

(

detWT
1 Ĝk(y, t)W1

)1−s (

detWT
2 Ĝk+1(y, t)W2

)s
)

(

detWT
1 Ĝk(y, t)W1

)1−s (

detWT
2 Ĝk+1(y, t)W2

)s

∣

∣

∣

∣

∣

∣

∣

∣

t=0

= max
W1∈R

(n−p)×(k−p)

det(WT
1 Ĝk(y,0)W1) 6=0

(1 − s)
∂
∂t detWT

1 Ĝk(y, t)W1

detWT
1 Ĝk(y, t)W1

∣

∣

∣

∣

∣

t=0

+ max
W2∈R

(n−p)×(k−p+1)

det(WT
2 Ĝk+1(y,0)W2) 6=0

s
∂
∂t detWT

2 Ĝk+1(y, t)W2

detWT
2 Ĝk+1(y, t)W2

∣

∣

∣

∣

∣

t=0

= max
W1∈R

(n−p)×(k−p)

det(WT
1 Ĝk(y,0)W1) 6=0

(1 − s)
∂
∂t det

(

W ′T (W1, y)G(x(y), t)W ′(W1, y)
)

det (W ′T (W1, y)G(x(y), t)W ′(W1, y))

∣

∣

∣

∣

∣

t=0

+ max
W2∈R

(n−p)×(k−p+1)

det(WT
2 Ĝk+1(y,0)W2) 6=0

s
∂
∂t det

(

W ′T (W2, y)G(x(y), t)W ′(W2, y)
)

det (W ′T (W2, y)G(x(y), t)W ′(W2, y))

∣

∣

∣

∣

∣

t=0

≤ 2(1 − s)
(

λ1(x(y)) + · · · + λk(x(y))
)

+ 2s
(

λ1(x(y)) + · · · + λk−p+1(x(y))
)

= 2
(

λ1(x(y)) + · · · + λk(x(y)) + sλk(x(y))
)

.

• The case that remains to be investigated is k = p and s ∈ (0, 1]. Intuitively,
one could try to give a meaning to the previous derivations for the case k = p
by considering the limit k → p in the terms where this is possible. This would
lead to the same reasoning as described below.

2sλ̂1(x(y)) = max
W2∈R

(n−p)×(k−p+1)

det(WT
2 Ĝd(y,0)W2) 6=0

∂

∂t

((

detWT
2 Ĝd(y, t)W2

)s)

(

detWT
2 Ĝd(y, t)W2

)s

∣

∣

∣

∣

∣

∣

∣

t=0

.

We can rewrite this as

2sλ̂1(x(y)) = max
W2∈R

(n−p)×(k−p+1)

det(WT
2 Ĝk+1(y,0)W2) 6=0

∂

∂t

(

∆
−(1−s)
h (xt)

(

detWT
2 Ĝk+1(y, t)W2

)s)

∆
−(1−s)
h (xt)

(

detWT
2 Ĝk+1(y, t)W2

)s

∣

∣

∣

∣

∣

∣

∣

t=0

Since

∆−1
h (xt) = det

(

HT (x(y), t)G(x(y), t)H(x(y), t)
)

,

and again

∂

∂t
det
(

HT (x(y), t)G(x(y), 0)H(x(y), 0)
)

= 0,
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we obtain that
∂
∂t

(

∆−1
h (xt)

)

∆−1
h (xt)

∣

∣

∣

∣

∣

t=0

=
∂
∂t

(

HT (x(y), 0)G(x(y), t)H(x(y), 0)
)

(HT (x(y), 0)G(x(y), t)H(x(y), 0))

∣

∣

∣

∣

∣

t=0

≤ 2
(

λ1(x(y)) + · · · + λp(x(y))
)

.

The remainder of the proof is the same as before.
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