Providing Survivable Interdomain Connections over an Optical Backbone Network

DIMITRI STAESSENS, Dept. of Information Technology (INTEC), Ghent University - IBBT - IMEC, G. Crommenlaan 8, bus 201, 9050 Gent, Belgium

PIETER AUDENAERT, same affiliation
DIDIER COLLE, same affiliation
ILSE LIEVENS, same affiliation
MARIO PICKAVET, same affiliation
PIET DEMEESTER, same affiliation

Keywords: survivability, multidomain IP networks, IP-over-WDM

1. Introduction

When we examine today’s internet architecture, we notice that the IP layer network is divided into multiple domains, managed by different service providers, operating different architectures, providing different services, handling different business strategies. In order to provide survivable inter-domain connections which ensure connectivity in case of the most prevalent failures, different strategies can be followed [2]. In this work, we present how these multidomain resilience schemes can be useful in providing critical communications, based on a real life example of tele-surgery. We then present a quantitative study of the network capacity required for the domain interconnecting the different hospitals.

2. Multidomain IP recovery scenarios

![Multidomain recovery diagram]

Figure 1: Multidomain recovery

In Figure 1 we present the terminology used for recovery in a multidomain environment. The routers connecting different domains are called gateways. In order to provide full recovery of any single failure, it is obvious that every IP domain will need at least two IP gateways, each connecting to its own dedicated optical gateway. We can distinguish several sections in an end-to-end recoverable connection. Inside both IP
domains, we need to protect the connection between the router and the gateway in use and this will be called IP network recovery. Multilayer IP network recovery inside a single domain based upon IP and GMPLS protocols has been the subject of extensive research, and an overview can be found in [3]. The remaining part of the connection will be recovered using gateway-to-gateway recovery. In order to provide gateway-to-gateway recovery we can use existing optical network recovery [3] and gateway recovery techniques, and the remaining issue is how to combine these techniques in order to provide efficient resilience options [2].

We studied how different strategies presented compare to each other with respect to the capacity required in a pan-European optical backbone for a symmetrical demand between different European countries. We concluded that the most viable options are providing two optically unprotected node-disjoint lightpaths connecting the gateway-pairs, protecting the primary IP connection optically, pre-empting the backup IP connection, and providing dynamic optical protection [2]. Dynamical protection will require ASON functionality [6] or an intelligent optical network (ION).

In the first scenario we computed the node-disjoint routes on a slightly modified network. We compress the source and target domain into single temporary nodes, connected in star topology with the gateways. On this modified network, we use a node-disjoint shortest cycle algorithm between the two temporary nodes. If we then remove the two temporary nodes from the cycle we get two node-disjoint paths for the original network. This algorithm performs faster than using a recursive Dijkstra algorithm (i.e. computing a shortest path between two gateways, and removing this from the network before computing a second shortest path), because it is not susceptible to blocking situations. From a networking point of view, this scenario is most useful in a protection case, i.e. we send all traffic simultaneous over both links. This is because, in case of a failure, the recovery must be done in the IP domains, and IP or MPLS recovery is not as fast as optical recovery [5].

For the second mechanism, we computed shortest paths using the Dijkstra algorithm [1], as they need not be disjoint. In fact, the more links they share, the better due to the use of an adapted common pool strategy[4]. This is depicted in Figure 2: all traffic is routed over the primary IP connection, which is optically protected. Only in case of a gateway failure, we switch over to the backup IP connection. In case of the failure of a link or node in the optical domain, we switch to the optical protection path (saving the primary IP connection) and signal that the backup IP connection is no longer valid (because the optical protection path has common links with the lightpath reserved for the backup IP connection). In the dynamic case, the signalling will be the main issue, making design of a robust and efficient protocol a challenging task.

Figure 2: Multidomain recovery based on common pool
3. Optimization towards network capacity usage

After all this preliminary work, we are now concentrating on optimization in the mentioned example of tele-surgery, using the NSFNET (slightly adapted, as we require two gateways for each hospital) as a backbone network connecting different hospitals. We use this example because of some attractive properties, namely that this is a critical service, requiring high levels of reliability of the network and that streaming of high-definition video, voice and patient vital stats and information requires a lot of bandwidth in the upstream direction. Another property is that the traffic is asymmetrical: in the downstream direction, there is only a small bandwidth requirement for voice and some data communication. There are therefore 2 types of hospitals: server hospitals and client hospitals. We therefore suggest STM-4 (OC-12) traffic in the upstream direction and STM-1 (OC-3) traffic in the downstream direction, the backbone network is considered an STM-64 (OC-192) network, with grooming capability. What we are researching now, is how much capacity it will require for the backbone to provide this service. We will use the strategies explained above, and compute lower bounds for the network capacity in each case using Integer Linear Programming techniques, with different capabilities of the network. We expect very low requirements if we assume grooming is possible, so we can use the "spare" capacity in the downstream direction as backup capacity. With this as a reference, we can compare how the non-optimized shortest-path and shortest-cycle algorithms perform. We are also considering the option of setup of multicast trees in the optical domain, further reducing the bandwidth requirement.

References

The Eighth INFORMS Telecommunications Conference
March 30 - April 1, 2006
Dallas, Texas

Program

Plenary Presentations

<table>
<thead>
<tr>
<th>Thursday, March 30</th>
<th>Friday, March 31</th>
<th>Saturday, April 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session 1: 8:00 - 10:45</td>
<td>Session 6: 8:30 - 10:00</td>
<td>Session 11: 8:30 - 10:00</td>
</tr>
<tr>
<td>Workshop A: Mobile Networks</td>
<td>Workshop B: Optical Networks</td>
<td>Workshop A: Mobile Networks</td>
</tr>
<tr>
<td>Network Optimization for a Mobile-network Operator, Koster and Wessälly</td>
<td>Tutorial: Designing DWDM Networks with Service Availability, Tergeda, Spire</td>
<td>Presentation: Pricing and Policy Chair, Nicolas Sier-Moses</td>
</tr>
<tr>
<td>Tutorial: Multilayer recovery mechanisms in backbone networks, Pickavet et al.</td>
<td>Discrete models for content distribution, Bekas</td>
<td>Session 11: 8:30 - 10:00</td>
</tr>
<tr>
<td>Dynamic scheduling in queuing systems with applications to communication networks, Ross</td>
<td>The distance constrained MST: Models and solution procedures, Gouveia, Paías and Sharma</td>
<td>Session 12: 10:15 - 11:45</td>
</tr>
<tr>
<td>Models and algorithms for effective traffic engineering of tunnel-based backbone networks, Srivastava</td>
<td>Hop-constrained spanning trees: The jump formulation and a relax and cut, Gouveia, Dahl, Flatberg and Foldnes</td>
<td>Network Games with Atomic Players, Stier-Moses, Cominetti and Correa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hop-constrained node survivable network design: An application to MPLS over WDM, Gouveia, Patricio and de Sousa</td>
</tr>
</tbody>
</table>

Workshops

<table>
<thead>
<tr>
<th>Track A</th>
<th>Track B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop A: Mobile Networks</td>
<td>Workshop B: Optical Networks</td>
</tr>
</tbody>
</table>

Conference Sponsors

- at&t
- SMU
- COX

Coffee Break

<table>
<thead>
<tr>
<th>Session 2: 11:00 - 12:30</th>
<th>Session 7: 10:15 - 11:45</th>
<th>Session 12: 10:15 - 11:45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Models in Network Operation</td>
<td>Dissertation Competition 2</td>
<td>Carrier Network Design and Performance</td>
</tr>
<tr>
<td>Chair: Stephan Eidenbenz</td>
<td>Chair: S. Raghavan</td>
<td>Chair: Bob Doverstake</td>
</tr>
<tr>
<td>DWDM Chair: Gran Birakay</td>
<td>Optimization Based Design Tools: Models and Algorithms</td>
<td>Location Problems in Network Design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determining loss without simulation, Van Brausegern and Pickavet

Routing and wavelength assignment and transmission capacity allocation for all-optical networks based on wavelength groups, Scheffel

Regenerator location problem, Chen and RagHAVan

IP/WDM optical network testbed: Design and implementation, Crispim, Pastor, Abdalla Jr. and Soares

Practical integrated design and shared restoration strategies for DWDM networks, Birkan

Selfish versus coordinated routing in network games, Ster-Moses

Efficiency loss in market mechanisms for resource allocation, Johari

Designing survivable networks: Polyhedral analysis and algorithms, Rajan

Computing minimum cost h-independent paths with reliability considerations, Andreas, Smith and Kuckuyavuz

Meeting service availability targets using DWDM dedicated protection, Spinde

Reliable W-CDMA network design with sectization, Cal

Why is IP network design so difficult?, Kleinwicz

Locating servers and dimensioning circuits to reduce delay in an enterprise data network, Berger, Hartman and Trump

Robust tower location for CDMA networks, Rosenberger and Clinic

Simultaneous object placement and request routing in content distribution networks, Bektas, Cordeau, Erkut and Laporte

FTTH-PON splitter location-allocation problem, Lee, Kim and Han

Lunch

Session 3: 13:30 - 15:00
Simulation and Queueing
Chair: Natarajan Gautam

First exceed level theory application for networked server management, Kim

Performance analysis of a heterogeneous mobile network based on "wrap-up" cell structure, Luo and Aifa

On using fluid flow models for performance analysis of computer networks, Goel and Gautam

Session 8: 13:00 - 14:30
Plenary Talk

Advances in Modeling and Solving Network Design Problems, Anantaram Balakrishnan

Optimization of resilient networks with column generation, Gruber and Klase

Enhancing traffic grooming in WDM networks through λ-monitoring, Solano, Caro, Fabregat, Marzo and Stidssen

Shortcut span protection, Stidssen and Ruepp

Session 13: 13:00 - 14:30
Plenary Talk

Creating New Services and Service-Level Agreements (SLAs) in Telecom Networks, Biswarathi Mukherjee

Coffee Break

Session 4: 15:15 - 16:45
Session 9: 14:45 - 16:15
Session 14: 14:45 - 16:15
Coffee Break

Session 5: 17:00 - 18:00
Keynote Address
Delivering Multimedia Home Entertainment: Services and Technologies, Michael Grasso (assistant vice president, Consumer Marketing, AT&T U-verse), bio
Reception: 18:00-19:30
Sponsored by

Session 10: 16:30 - 18:00
Market Analysis
Chair: John Hopkins
Optimization Models for Network Design and Management
Chair: Mauricio Resende
Digital multimedia broadcasting market analysis: S-DMB vs. T-DMB, Shin
Partition inequalities for survivable network design using p-cycles, Atamturk and Rajan
Economic effects of the indirect access regime in the ML communications market in Korea, Kim, Seal and Kim
Fair capacity provision for multicore processors, Cao
Traffic routing and onboard configuration planning in satellite networks, Srinivasan, Raghavan and Rao
An integer programming model for optimizing network expansion problem, Srinivasan, Raghavan and Rao

Session 15: 18:30 - 18:00
Satellite Networks
Chair: Olivier Goldschmidt
Opportunities for network design and revenue management in satellite communication networks, Fromont, Gouvieux, Seitz
Traffic routing and on-demand revenue management in satellite networks, Gouvieux, Seitz and Brikker
Cross decomposition of the capacitated minimum spanning tree problem, Kim and Seitz

Local Access and Tree Networks
Chair: Luis Gouvieux
Flow models for local access network expansion problem, Corte-Real and Gouvieux

SMU-COX

at&t
The value distribution of the telecommunications supply network in Ireland, Hopkins and Fynes

A new state generation algorithm for evaluating performability of networks with multi-mode components, Qikonomou and Sinha

A GRASP for PBX telephone migration scheduling, Resende and Andrade

Satellite and terrestrial network configuration and routing, Chandran, Fromont and Srikan

SatPack - optimal transponder capacity re-allocation for operational contingency planning, Fromont, Srikan and Goldschmidt

Performance evaluation of solution strategies for TKP and ETKP problems in LATN design, van der Merwe and Hattingh

©2005 INFORMS TST. Please direct any questions and comments regarding this page to Joakim Kalvenes