The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that all academic publications of UGent researchers should be deposited and archived in this repository. Except for items where current copyright restrictions apply, these papers are available in Open Access.

This item is the archived peer-reviewed author-version of:

Title:

2-Triazole-Substituted Adenosines: A New Class of Selective A3 Adenosine Receptor Agonists, Partial Agonists, and Antagonists

Author[s]: Liesbet Cosyn, Krishnan K. Palaniappan, Soo-Kyung Kim, Heng T. Duong, Zhan-Guo Gao, Kenneth A. Jacobson, Serge Van Calenbergh

Source: JOURNAL OF MEDICINAL CHEMISTRY(2006), 49(25), 7373-7383, **DOI:** 10.1021/jm0608208
2-Triazole-Substituted Adenosines: A New Class of Selective

A₃ Adenosine Receptor Agonists, Partial Agonists, and Antagonists

Liesbet Cosyn†, Krishnan K. Palaniappan‡, Soo-Kyung Kim‡, Heng T. Duong‡, Zhan-Guo Gao‡,
Kenneth A. Jacobson‡*; Serge Van Calenbergh†*

† Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences (FFW), Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
‡ Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

*Corresponding authors: Prof. S. Van Calenbergh, Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences (FFW), Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium; Dr. K.A. Jacobson, Bldg. 8A, Rm. B1A-19, NIH, Bethesda, MD USA 20892-0810. Tel.: +32(0)9 264 81 24; fax: +32(0)9 264 81 46 (SVC); +1 301 496 9024; fax: +1 301 480 8422 (KAJ); e-mail address: serge.vancalenbergh@ugent.be; kajacobs@helix.nih.gov
Abstract

‘Click chemistry’ was explored to synthesize two series of 2-(1,2,3-triazolyl) adenosine derivatives (1-14). Binding affinity at the human A1, A2A and A3ARs (adenosine receptors) and relative efficacy at the A3AR were determined. Some triazol-1-yl analogues showed A3AR affinity in the low nanomolar range, a high ratio of A3/A2A selectivity and a moderate-to-high A3/A1 ratio. The 1,2,3-triazol-4-yl regiomers typically showed decreased A3AR affinity. Sterically demanding groups at the adenine C2 position tended to reduce relative A3AR efficacy. Thus, several 5’-OH derivatives appeared to be selective A3AR antagonists, i.e. 10, with 260-fold binding selective in binding in comparison to the A1AR and displaying a characteristic docking mode in an A3AR model. The corresponding 5’-ethyluronamide analogues generally showed increased A3AR affinity and behaved as full agonists, i.e. 17, with 910-fold A3/A1 selectivity. Thus, N^6-substituted-2-(1,2,3-triazolyl) adenosine analogues constitute a novel class of highly potent and selective nucleoside-based A3AR antagonists, partial agonists and agonists.
Introduction

Adenosine receptors (AR) are G protein-coupled receptors and consist of four subtypes classified as A₁, A₂A, A₂B and A₃. Among the four AR subtypes, the A₃AR is the most recently identified.¹ The distribution of A₃AR is species-dependent and in humans this subtype occurs in the lungs, liver, heart, kidneys, and brain.²⁻⁴ Activation of this receptor subtype inhibits adenylyl cyclase activity, increases phosphatidylinositol-specific phospholipase C activity, and stimulates Ca²⁺ mobilization.³ Adenosine A₃ receptor stimulation induces cardioprotection through the activation of K_{ATP} channels⁴ and is also involved in neuroprotection, suggesting the possibility of using A₃AR agonists to treat cardiac and cerebral ischemia.⁵ A₃AR agonists also exhibit systemic anticancer and chemoprotective effects.⁶ A₃AR modulators have been proposed as antiinflammatory and antiasthmatic drugs.⁷,⁸ Selective A₃AR antagonists promise to be useful in the regulation of cell growth⁸,⁹ and as cerebroprotective agents.¹⁰,¹¹ They also seem to enhance anticancer treatment by counteracting P-glycoprotein efflux in multidrug resistance.¹² A₃AR antagonists are also proposed as potential therapeutics for the treatment of glaucoma; application of A₃AR antagonists externally to the eye substantially lowers intraocular pressure in mice and monkeys.¹³⁻¹⁵

Although diverse in structure, most AR antagonists share some common structural features. In general, they are planar, aromatic or π-electron rich and nitrogen-containing heterocycles. Additionally, most AR antagonists lack the ribose moiety which seems essential for agonist activity.¹⁶ Various heterocyclic classes have been identified as promising leads for A₃AR antagonists, among them: 1,4-dihydropyridines, pyridines, deazaadenines, pyrazolopyrimidines, adenines, and 1,2,4-triazolo[4,3-a]quinoxalin-1-ones.⁴,⁷,¹⁷,¹⁸
However, the A3AR, more than other AR subtypes, is amenable to the design of nucleoside-based antagonists. The efficacy of nucleoside derivatives in activation of the A3AR is particularly sensitive to molecular substitution of the ligand. A wide range of adenosine derivatives have been shown to antagonize this receptor, including the highly potent A1AR agonist 2-chloro-N6-cyclopentyladenosine. N6-Benzyl groups are associated with reduced A3AR efficacy, leading to partial agonists and antagonists. However, many of the nucleosides so far demonstrated to be antagonists of the A3AR are not highly subtype selective. Nucleoside-based A3AR antagonists maintaining an intact ribose moiety were reported by Volpini et al., with a series of 8-alkynyl adenosine derivatives that exhibited A3AR selectivity, but suffered from weak A3AR affinity. A spirolactam derivative, in which the 5′-alkyluronamide group was cyclized onto the 4′ carbon, was found to potently and selectively antagonize the A3AR. An advantage of nucleoside-based A3AR antagonists over other heterocyclic antagonists is the ability to achieve high affinity at murine species.

Recently, researchers from CV Therapeutics described a series of 2-pyrazolyl-adenosine analogues. Several representative compounds, containing an N6-methyl substituent proved to display high affinity and selectivity for the A3AR. This study confirms the former finding that introduction of a methyl group into the N6 position increases the affinity for the human A3AR and enhances the selectivity versus A1 and A2AARs. Based on these results, we explored the versatile ‘click chemistry’ approach to synthesize two series of N6-methyl-2-(1,2,3-triazolyl) adenosine derivatives and evaluated their affinity, selectivity and efficacy at the A3AR. Although a number
of 1,2,3-triazole nucleoside derivatives have been described, most involve base replacement with 1,2,3-triazole, or introduction of 1,2,3-triazole at C-8 or at the sugar moiety.

Results and Discussion

Chemistry

The synthesis of the 1,2,3-triazol-1-yl adenosine derivatives is depicted in Scheme 1. 2-Iodo-N6-methyladenosine 22,23 was prepared by reacting 21 with 2.0 M CH\textsubscript{3}NH\textsubscript{2} in THF. Since the reaction conditions27 for a Cu(I)-catalysed nucleophilic substitution are very similar to those used in the ‘click’ variant of Huisgen’s 1,3-dipolar cycloaddition, we initially attempted to perform a one-pot conversion of 22 to the desired 1,4-disubstituted 1,2,3-triazoles. The 2-azido derivative 23 was isolated as the main reaction product and only a minor amount of the appropriate triazole was formed. This event forced us to perform the reaction in two steps. First the azido intermediate 23 was prepared in 66\% yield from 22. 1H and 13C NMR in DMSO-d\textsubscript{6} proved the presence of a tautomeric fused tetrazole form (17\%) of the 2-azido adenosine derivative 23, due to a spontaneous cyclization (Scheme 2). Such azido/tetrazole tautomerism has been previously reported for 2-azidoadenine and for 2-azidoadenosine.28,29 Next we applied a Cu(I)-catalysed 1,3-cycloaddition reaction of azide 23 with the appropriate alkyne to generate the triazole analogues \textbf{1-11} (Scheme 1).30 Generally, the use of a water:butanol mixture as a solvent for the 1,3-cycloaddition allowed simple isolation of the desired compounds, which precipitated from the reaction medium.
Similarly, the 1,2,3-triazol-4-yl analogues 12-14 (Scheme 3) were prepared by a Cu\(^+\)-catalysed Huisgen 1,3-dipolar cycloaddition reaction of 2-ethynyl-\(N^6\)-methyladenosine (25) with the appropriate azide.

The synthesis of the 5'-\(N\)-ethylcarbamoyl 2-(1,2,3)-triazol-1-yl adenosine analogues 15-19 was carried out starting from 2-iodo-9-(2',3'-\(O\)-isopropylidene-\(\beta\)-D-ribofuranosyl)-\(N^6\)-methyladenine (26). After permanganate oxidation, carboxylic acid 27 was converted into its p-nitrophenyl ester 28, which upon treatment with ethylamine gave uronamide 29. Deprotection with 80% trifluoroacetic acid yielded 5'-ethylcarbamoyl-\(N^6\)-methyl-2-iodoadenosine (30).\(^{30}\) The conversion of this 2-iodo derivative into the azido intermediate 31 was performed in 79% yield. The presence of a tautomeric fused tetrazole form (20%) of the 2-azidoadenosine derivative 31, due to a spontaneous cyclization was here also observed in the NMR spectrum. Finally we applied the Cu(I)-catalysed 1,3-cycloaddition reaction of azide 31 with the appropriate alkyne to generate the triazole analogues 15-19 (Scheme 4).

2-Azido-\(N^6\)-(5-chloro-2-methoxybenzyl)-2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl)-9-(\(\beta\)-D-ribofuranosyl)adenine (20) was prepared in 3 steps starting from intermediate 21, as depicted in Scheme 5.

Biological evaluation. The binding affinities of the newly synthesized adenosine derivatives were measured at the hA\(_1\), hA\(_{2A}\) and hA\(_3\)ARs expressed in CHO (Chinese hamster ovary) cells as previously described,\(^{20}\) and their relative efficacy in the activation of the A\(_3\)AR was determined (Table 1). The binding affinity of more potent compounds at the ARs was evaluated with full competition curves, while the weaker compounds at the hA\(_1\) and hA\(_{2A}\) ARs were measured at a
fixed concentration of 10 µM. Several compounds showed affinity for the A₃AR in the low nanomolar range, a very high ratio of A₃/A₂A selectivity and a moderate-to-high A₃/A₁ selectivity ratio. A functional assay of A₃AR activation consisted of the ability of a single, high concentration of the nucleoside (10 µM) to inhibit forskolin-stimulated adenylyl cyclase measured by the method of Nordstet and Fredholm,³² in comparison to the full agonist NECA (10 µM). Cl-IB-MECA (2-chloro-N⁶-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine) was also a full agonist (100%) in this assay.¹⁹ The range of efficacies observed depended on the nature of the groups at the 2 and N⁶ positions.

The 2-azido precursor ²³ showed high binding affinity at the A₃AR (Kᵢ = 10.8 nM) and modest selectivity in comparison to the A₁AR. The 1,2,3-triazol-1-yl derivatives obtained by 1,3-dipolar cycloaddition of azide ²³ with acetylene (1), butyne (2) and hexyne (3) maintained high affinity for the A₃AR and increased selectivity. They displayed Kᵢ values of 10.4 nM, 13.8 nM and 11.7 nM, respectively. Also, aromatic triazole substituents (6, 7, 9) resulted in similar Kᵢ values of about 10 nM and even greater selectivity. Introducing nitrogen or oxygen including substituents at position 4 of the 1,2,3-triazole ring (4, 5, and 8) reduced the A₃AR affinity. Among the investigated analogues, the 4-cyclopentylmethyl derivative ¹⁰ exhibited the highest affinity for the A₃AR (Kᵢ = 1.3 nM) and 260-fold selectivity in comparison to the A₁AR. Replacement of the cyclopentyl ring with a phenyl (9) or cyclohexyl (¹¹) moiety adversely affected A₃AR affinity. Remarkably, the 1,2,3-triazol-4-yl regiomers (¹²-¹⁴) showed decreased affinity for the A₃AR in comparison to similar 1,2,3-triazol-1-yl regiomers. In particular, a comparison of homologous compounds ¹² and ⁹ indicated a 6-fold loss of affinity at the A₃AR for the 4-yl isomer,
approximately the same affinity at the A₁AR, and no significant measurable gain in affinity at the
A₂AAR.

Replacement of the ribose 4'-hydroxymethyl moiety of the 2-azido derivative 23 by a 5’-N-
ethyluronamid did not appreciably affect affinity at any of the AR subtypes. However, a similar
substitution in the 2-(1,2,3-triazol-1-yl)-substituted series provided a modest (2 to 5-fold)
increase in A₃AR affinity and small or no changes in A₁AR affinity, as demonstrated for the
unsubstituted, 4-butyl, 4-pyridin-2-yl and 4-benzyl substituted 1,2,3-triazol-1-yl combinations
(15 – 18, in comparison to 1, 3, 7, and 9, respectively). Curiously, one 5’-uronamide, compound
19, exhibited decreased A₃AR affinity (Kᵢ = 11.5 nM) compared to its potent 5’-OH analogue 10
(Kᵢ = 1.3 nM).

Replacement of the N⁶-methyl substituent of the 2-azido precursor 23 by a sterically demanding
2-chloro-5-methoxybenzyl group yielded 33, which manifested very high A₃AR affinity (Kᵢ = 1.4
nM). A similar replacement of the N⁶-methyl group of an analogue 10, also having a bulky 2
position substituent, to yield 20, reduced A₃AR affinity, but not appreciably. This was in
accordance with previous observations that a simultaneous substitution at the 6 and 2 positions
did not improve A₃AR affinity.²²,³³ Thus, the effects of substitution at the 2 and N⁶ positions were
not independent, however it was possible to retain considerable A₃AR selectivity (46-fold in
compound 20). This was not representative of findings in a previous study in which double
substitution greatly diminished the affinity and selectivity at the human A₃AR.²²
Whereas some previously synthesized 2-substituted adenosine derivatives\(^{22,23}\) displayed selective A\(_3\)AR agonist activity, all 2-triazol-1-yl-N\(^6\)-methyl adenosine analogues synthesized with an unmodified ribose moiety (1-11 and 20) behaved as antagonists or weak partial agonists. Similar findings were reported for 2-ester derivatives of adenosine, in which a combination of 2 and N\(^6\) substitution reduced efficacy.\(^{34}\) Direct ring substitution at the 4-position of the 1,2,3-triazole with alkyl or aryl groups resulted in weak partial agonists (1, 2, 4-8), but subtle changes of structure resulted in a loss of efficacy, e.g. the 4-butyl derivative 3. 2-Triazol-1-yl-N\(^6\)-methyl-adenosine analogues with a methylene spacer between the 1,2,3-triazole moiety and a ring system yielded full A\(_3\)AR antagonists (9-11, 20), since they bound to the receptor but did not activate it. The 2-triazol-4-yl-N\(^6\)-methyl-adenosine derivatives (12-14) also behaved as full A\(_3\)AR antagonists.

Thus, the 5''-OH derivatives 3, 9-14, and 20 appeared to be A\(_3\)AR antagonists with the following order of decreasing selectivity for the A\(_3\)AR in comparison to the A\(_1\)AR: 4-cyclopentylmethyl-N\(^6\)-methyl 10 (260-fold) > 4-butyl-N\(^6\)-methyl 3 (72-fold), 4-cyclohexylmethyl-N\(^6\)-methyl 11 (67-fold) > 4-cyclopentylmethyl-N\(^6\)-(5-chloro-2-methoxybenzyl) 20.

Interestingly, the 5''-N-ethyluronamide modification was able to reestablish the A\(_3\)AR agonist activity in analogues with sterically bulky substitution at the 2 position. This is consistent with previous findings that similar 5''-uronamides overcome the efficacy-reducing activity of substitution at the adenine 2 and N\(^6\)-positions, but not at the ribose 3''-position.\(^{19,35,36}\) Indeed, all 5''-N-ethyluronamide analogues studied here (15-19) proved to be full agonists at the A\(_3\)AR.

Among them are highly selective A\(_3\)AR agonists, N\(^6\)-methyl-adenosine-5''-N-ethyluronamide 2-(1,2,3-triazol-1-yl) derivatives: pyridin-2-yl 17 (910-fold) > unsubstituted 15 (280-fold) > benzyl
(180-fold). The 2-azido-N⁶-methyl precursors 23 and 31 also showed full agonist activity, whereas azide 33 having a bulky N⁶ group showed partial agonist activity.

Selected potent agonists in this series were measured in a functional assay of the human A_{2B}AR. At a concentration of 10 µM, compounds 3 – 7, 15, and 16 did not significantly stimulate adenylyl cyclase in human A_{2B}AR-expressing CHO cells (<10% of the effect of 10 µM NECA, as a full agonist). Compounds 2, 8 – 14, 17, 19, and 23 at 10 µM stimulated adenylyl cyclase by <50%. Compounds 18 and 31 produced approximately 50% stimulation at 10 µM. Thus, selectivity for the A₃AR was demonstrated; these nucleosides that activate the A₃AR at low nM concentrations activated the A_{2B}AR only at substantial µM concentrations.

Based on previous findings, it is predicted that only the analogues containing the substituted N⁶-benzyl group (5-chloro-2-methoxy), i.e. full agonist 20 and partial agonist 33, would be expected to bind in the nanomolar range to the rat A₃AR. Small alkyl groups at the N⁶ position, such as methyl and ethyl, although conducive to high affinity at the human A₃AR, led to negligible affinity at the rat homologue of the receptor. Selected compounds were measured in binding to the rat A₃AR expressed in CHO cell membranes using [¹²⁵I]-AB-MECA. The K_i values determined were as follows: compounds 5, 7, and 8, K_i > 10 µM; compound 9, K_i = 1.79 µM; compound 10, K_i = 0.312 µM.

Molecular modeling. To explain the structural basis for the high binding affinity of the nucleoside 2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl)-N⁶-methyl-9-(β-D-ribofuranosyl)adenine
10 at hA3AR, we performed a computational study of ligand docking in a previously derived A3AR model based on the high resolution structure of bovine rhodopsin.37,38 Various bound conformations of the C2-substituent and χ_i angles for the adenine ring were generated for an energetically favorable binding location and orientation, and the resulting conformations were compared energetically in the putative binding site.

The result of docking 10 in the putative binding site of the A3AR is shown in Figure 1A. The purine ring was surrounded by a hydrophobic pocket, defined by L91 (3.33) and L246 (6.51). In addition, the H-bonds formed between the exocyclic amine and the hydroxyl group of S247 (6.52) and between the purine N^β atom and the side chain of N250 (6.55). The 2$'$-OH group of the ribose moiety formed a H-bond with the side chain of Q167 (EL2), and the 3$'$-OH group formed an intramolecular H-bond with the 5$'$-OH group. Unlike the previously reported docking models of N^6-substituted adenosines,37 here the 5$'$-OH group H-bonded with the side chain of H272 (7.43) and the backbone carbonyl group of S271 (7.42). The cyclopentyl moiety interacted with aliphatic hydrophobic residues, M177 (5.38) and V178 (5.39), through a hydrophobic interaction and were situated in proximity to F168 (EL2) F182 (5.43), consistent with the optimized binding affinity of compound 10.

A comparison of the docking modes of CI-IB-MECA and compound 10 in the putative binding domain showed considerable overlap of the ribose rings and of the adenine moieties, although in compound 10 both were situated a little closer to extracellular loop 2 (Figure 1B). Previously, it was noted that 5$'$-uronamide analogues, typically of derivatives having bulky N^6-substituents, generally gain affinity in comparison to the corresponding 5$'$-hydroxyl analogue. Here, the 5$'$-
uronamide analogue 19 (agonist) of the most potent 5'-hydroxyl analogue 10 (antagonist) displayed a lower binding affinity, which could be explained by the shift of the ribose position in adenosine analogue having a bulky 2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl) substituent in comparison to those having N6 bulky substituents. The binding of the cyclopentylmethyl group in 10 was directed more toward the upper part of TM5, partially overlapping with the binding site of the 3-iodophenyl ring in Cl-IB-MECA. Curiously, other closely related triazolo derivatives displayed a higher potency of the 5'-uronamide analogues, thus the compound 10 must bind to the receptor in a very distinct manner. There was a subtle difference in orientation between the 2-cyclopentyl group and bulkier groups like benzyl (9) or cyclohexylmethyl (11), which were associated with unfavorable van der Waals interactions and resulting in a decrease of binding affinity of 7- and 16-fold, respectively. In addition, the same preferred χ1 angles of the energetically favorable bound conformation, common to Cl-IB-MECA and compound 10, was consistent with the empirical finding that the combination of bulky N6 and C2 substituents was unfavorable for A3AR selectivity because of competitive interaction of these bulky substituents. Thus, the modeling has demonstrated the human A3AR preference of 2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl) derivatives in the 5'-OH series might be explained by optimal van der Waals interactions.

Conclusions

Several 2-(1,2,3-triazol-1-yl)-N6-methyl-substituted adenosine derivatives described in the present study displayed A3AR affinities in the low nanomolar range, showed very high A3/A2A and a moderate to high A3/A1 selectivity. Contrary to what we expected, the 2-triazole analogues with an unmodified ribose moiety (1-14) showed antagonist or weak partial agonist activity at the
A3AR. A 2-(4-cyclopentylmethyl-(1,2,3-triazol-1-yl))-N^6-methyl derivative 10 was 260-fold selective in binding in comparison to the A1AR. The binding of the 4-cyclopentylmethyl group in 10, in distinction to the binding of closely related bulky groups pendant on the triazole ring, was directed more toward the upper part of TM5 partially overlapping with the binding site of the 3-iodophenyl ring in CI-IB-MECA. The 5'-N-ethyluronamide modification was dominant over the efficacy reducing effects at the 2 position and was capable of fully re-establishing the A3AR agonist activity, resulting in highly potent and selective A3AR agonists 15-19. The most selective agonist derivative was compound 17, 9-(5-ethylcarbamoyl-β-D-ribofuranosyl)-N^6-methyl-2-(4-pyridin-2-yl-1,2,3-triazol-1-yl)adenine, which was 910-fold selective in binding to the A3AR in comparison to the A1AR. The retention of high human A3AR affinity in compound 20 was not typical of previous findings that double bulky substitution at the 2 and N^6 positions tended to reduce A3AR affinity markedly. Thus, the 2-triazol-1-yl N^6-methyl adenosine analogues 1-11 constitute a novel class of highly potent and selective nucleoside-based A3AR partial agonists and antagonists, all of which maintain an intact ribose in the molecular structure, and agonists. Since the reported analogues show excellent affinity for the A3AR and span the full intrinsic activity range, they might be useful as pharmacological tools or as leads for further optimisation.
Experimental section

All reagents were from standard commercial sources and of analytic grade, except for the benzylic azides, which were prepared by treating the corresponding benzylic bromides with NaN₃ in DMF. Precoated Merck silica gel F254 plates were used for TLC, and spots were examined under UV light at 254 nm and further visualized by sulphuric acid-anisaldehyde spray. Column chromatography was performed on ICN silica gel (63-200 µm, 60Å, ICN Biochemicals, Eschwege, Germany). NMR spectra were obtained with a Varian Mercury 300 MHz spectrometer. Chemical shifts are given in ppm (δ) relative to the residual solvent signals, which in the case of DMSO-d₆ were 2.54 ppm for ¹H and 40.5 ppm for ¹³C. Structural assignment was confirmed with COSY and DEPT. All signals assigned to hydroxyl groups were exchangeable with D₂O. Exact mass measurements were performed on a quadrupole/orthogonal-acceleration time-of-flight (Q/oaTOF) tandem mass spectrometer (qToF 2, Micromass, Manchester, UK) equipped with a standard electrospray ionization (ESI) interface. Samples were infused in a 2-propanol/water (1:1) mixture at 3 µL/min. For the compounds that precipitated from the reaction medium, the yields were calculated from the amount obtained after filtration, and are lower than the actual yields, since in most cases a considerable amount remained in solution.

N⁶-Methyl-9-(β-D-ribofuranosyl)-2-(1,2,3-triazol-1-yl)adenine (1). In a pressure tube was added 23 (165 mg, 0.51 mmol) trimethylsilylacetylene (292 µL, 2.05 mmol) and 4 mL DMF. The mixture was stirred at 105 °C for 15h. After solvent evaporation, the yellowish residue was dissolved in 2 mL of a 1.0 M solution of tetrabutylammonium fluoride in THF and stirred for 5h. The reaction was monitored by NMR. After evaporation of the solvent, the residue was dissolved in ethyl acetate. Water was added and the triazole product precipitated in the water layer. After overnight cooling and filtration, the precipitate was further purified on a silica gel column.
(CH$_2$Cl$_2$:MeOH 92:8) and yielded compound 1 as a white solid (82 mg, 46 %). 1H NMR (300 MHz, DMSO-d$_6$): δ 3.06 (d, 3H, $J = 4.5$ Hz, N$_6$-CH$_3$), 3.54-3.61 (m, 1H, H-5’A), 3.65-3.72 (m, 1H, H-5’B), 3.96 (dd, 1H, $J = 3.8$ and 7.9 Hz, H-4’), 4.20 (dd, 1H, $J = 4.7$ and 8.2 Hz, H-3’), 4.65 (app q, $J = 5.9$ Hz, H-2’), 4.98 (t, 1H, $J = 5.6$ Hz, 5’-OH), 5.23 (d, 1H, $J = 5.0$ Hz, 3’-OH), 5.48 (d, 1H, $J = 6.2$ Hz, 2’-OH), 5.95 (d, 1H, $J = 5.9$ Hz, H-1’), 7.92 (d, 1H, $J = 1.2$ Hz, H 4”), 8.37 (d, 1H, $J = 4.6$ Hz, N$_6$-H), 8.46 (s, 1H, H-8), 8.82 (br s, 1H, H-5”); 13C NMR (300 MHz, DMSO-d$_6$): δ 27.84 (N$_6$-CH$_3$), 62.19 (C-5’), 71.13 (C-3’), 74.30 (C-2’), 86.42 (C-4’), 88.01 (C-1’), 119.75 (C-5), 124.67 (C-5’’), 134.25 (C-4”), 141.13 (C-8), 149.56 and 149.85 (C-2 and C-4), 156.082 (C-6); HRMS (ESI-MS) C$_{13}$H$_{17}$N$_8$O$_4$: [M+H]$^+$: 349.1367 found; 349.1372 calcd. Anal.

2-(4-Ethyl-1,2,3-triazol-1-yl)-N$_6$-methyl-9-(ß-D-ribofuranosyl)adenine (2). Compound 23 (70 mg, 0.217 mmol), sodium ascorbate (8.6 mg, 0.043 mmol) and CuSO$_4$·5H$_2$O (2.2 mg, 0.009 mmol) were suspended in 20 mL H$_2$O:tBuOH (3:1). The mixture was saturated with 1-butyne and stirred for 4 d at room temperature in a parr apparatus. Purification on a preparative silica gel TLC (CH$_2$Cl$_2$:MeOH 90:10) resulted in compound 2 as a white solid in 40% yield. 1H NMR (300 MHz, DMSO-d$_6$): δ 1.27 (t, 3H, $J = 7.62$ Hz, CH$_3$), 2.75 (q, 2H, $J = 7.6$ Hz, CH$_2$), 3.05 (d, 3H, $J = 4.4$ Hz, N$_6$-CH$_3$), 3.51-3.59 (m, 1H, H-5’A), 3.61-3.70 (m, 1H, H-5’B), 3.94 (dd, 1H, $J = 4.0$ en 7.6 Hz, H-4’), 4.15 (dd, 1H, $J = 4.4$ and 7.9 Hz, H-3’), 4.60 (app q, $J = 5.6$ Hz, H-2’), 4.97 (t, 1H, $J = 5.6$ Hz, 5’-OH), 5.22 (d, 1H, $J = 4.7$ Hz, 3’-OH), 5.47 (d, 1H, $J = 6.2$ Hz, 2’-OH), 5.93 (d, 1H, $J = 6.2$ Hz, H-1’), 8.34 (d, 1H, $J = 4.4$ Hz, N$_6$-H), 8.45 (s, 1H, H-8), 8.55 (s, 1H, H-5”); 13C NMR (300 MHz, DMSO-d$_6$): δ 14.32 (CH$_3$), 19.08 (CH$_2$), 27.84 (N$_6$-CH$_3$), 62.13 (C-5’), 71.15 (C-3’), 74.34 (C-2’), 86.43 (C-4’), 87.84 (C-1’), 119.57 (C-5), 120.962 (C-5”’), 140.92 (C-
8), 149.31, 149.63, 149.88 (C-2, C4 and C-4”), 156.05 (C-6); HRMS (ESI-MS) C_{15}H_{21}N_{8}O_{4} [M+H]^+: 377.1682 found; 377.1685 calcd. Anal. (C_{15}H_{20}N_{8}O_{4}) C, H, N.

General procedure for the synthesis of 4”-substituted 2-(1,2,3-triazol-1-yl)adenosine derivatives 3-11. Compound 23 (70 mg, 0.217 mmol), sodium ascorbate (8.6 mg, 0.043 mmol) and CuSO_{4}.5H_{2}O (2.2 mg, 0.009 mmol) were suspended in 2 mL H_{2}O:tBuOH (3:1). The appropriate alkyne (2 equiv.) was subsequently added and the mixture was stirred overnight at room temperature. The 2-triazol-1-yl compounds (generally) precipitated from this reaction medium and were isolated by filtration with water.

2-(4-Butyl-1,2,3-triazol-1-yl)-N^6-methyl-9-(β-D-ribofuranosyl)adenine (3). The reaction of 23 (70 mg, 0.217 mmol) with 1-hexyne (50 µL, 0.435 mmol) gave compound 3 in 59% yield. \(^1\)H NMR (300 MHz, DMSO-d_{6}): \(\delta\) 0.93 (t, 3H, J = 7.3 Hz, CH_{3}), 1.38 (m, 2H, CH_{2}), 1.66 (m, 2H, CH_{2}), 2.71 (t, 2H, J = 7.2 Hz, C4”-CH_{2}), 3.05 (d, 3H, J = 4.0 Hz, N^6-CH_{3}), 3.52-3.62 (m, 1H, H-5’A), 3.62-3.72 (m, 1H, H-5’B), 3.95 (dd, 1H, J = 3.6 and 7.2 Hz, H-4’), 4.18 (dd, 1H, J = 4.8 and 8.1 Hz, H-3’), 4.62 (dd, 1H, J = 5.7 Hz, H-2’), 5.01 (t, 1H, J = 5.2 Hz, 5’-OH), 5.29 (d, 1H, J = 4.0 Hz, 3’-OH), 5.54 (d, 1H, J = 5.6 Hz, 2’-OH), 5.94 (d, 1H, J = 5.9 Hz, H-1’), 8.36 (d, 1H, J = 4.1 Hz, N^6-H), 8.45 (s, 1H, H-8), 8.56 (s, 1H, H-5”); \(^1\)C NMR (300 MHz, DMSO-d_{6}): \(\delta\) 14.37 (CH_{3}), 22.37 (CH_{3}), 25.21 (CH_{2}), 27.83 (N^6-CH_{3}), 31.68 (CH_{2}), 62.14 (C-5’), 71.15 (C-3’), 74.36 (C-2’), 86.43 (C-4’), 87.88 (C-1’), 119.56 (C-5), 121.33 (C-5”), 140.96 (C-8), 147.88 and 149.90 (C-2, C-4 and C4”), 156.07 (C-6); HRMS (ESI-MS) C_{17}H_{25}N_{8}O_{4} [M+H]^+: 405.1992 found, 405.1998 calcd. Anal. (C_{17}H_{24}N_{8}O_{4}) C, H, N.

2-[4-(2-Hydroxyethyl)-1,2,3-triazol-1-yl]-N^6-methyl-9-(β-D-ribofuranosyl)adenine (4). The reaction of 23 (70 mg, 0.217 mmol) with 3-butyn-1-ol (33 µL, 0.435 mmol) afforded compound 4 without precipitation. After solvent evaporation, the mixture was purified on a silica gel column.
(CH₂Cl₂:MeOH 90:10 + 1% 7N NH₃ in MeOH) yielding compound 11 as a white solid in 68% yield.¹H NMR (300 MHz, DMSO-d₆): δ 2.85 (t, 2H, J = 6.9 Hz, CH₂), 3.03 (d, 3H, J = 4.7 Hz, N°-CH₃), 3.52-3.59 (m, 1H, H-5’A), 3.63-3.72 (m, 3H, H-5’B and CH₂), 3.94 (dd, 1H, J = 3.5 and 7.3 Hz, H-4’), 4.16 (dd, 1H, J = 4.8 and 8.1 Hz, H-3’), 4.59 (app q, 1H, J = 5.4 Hz, H-2’), 4.74 (t, 1H, J = 5.8 Hz, CH₂-OH), 4.97 (app t, 1H, J = 5.6 Hz, 5’-OH), 5.24 (d, 1H, J = 5.0 Hz, 3’-OH), 5.50 (d, 1H, J = 6.2 Hz, 2’-OH), 5.93 (d, 1H, J = 6.2 Hz, H-1’), 8.31 (d, 1H, J = 4.7 Hz, N°-H), 8.43 (s, 1H, H-8), 8.54 (s, 1H, H-5’');¹³C NMR (300 MHz, DMSO-d₆): δ 27.83 (N°-CH₃), 29.70 (CH₂), 60.85 (CH₂-OH), 62.13 (C-5’), 71.15 (C-3’), 74.35 (C-2’), 86.43 (C-4’) 87.81 (C-1’), 119.56 (C-5), 122.02 (C-5’), 140.49 (C-8), 145.49, 149.88 and 149.65 (C-2, C-4 and C-4”), 156.05 (C-6); HRMS (ESI-MS) C₁₅H₂₁N₈O₅ [M+H]+: 393.1630 found, 393.1634 calcd. Anal. (C₁₅H₂₀N₈O₅.H₂O) C, H, N.

2-(4-Dimethylaminomethyl-1,2,3-triazol-1-yl)-N°-methyl-9-(β-D-ribofuranosyl)adenine (5).

The reaction of 23 (70 mg, 0.217 mmol) with 1-dimethylamino-2-propyne (47 µL, 0.435 mmol) gave compound 5 without precipitation. The volatiles were removed under reduced pressure, and the residue purified on a silica gel column (CH₂Cl₂:MeOH 80:10 + 1% 7N NH₃ in MeOH).

Compound 5 was obtained as a white solid in 67% yield.¹H NMR (300 MHz, DMSO-d₆): δ 2.20 (s, 6H, 2 x CH₃), 3.05 (d, 3H, J = 4.4 Hz, N°-CH₃), 3.54-3.62 (m, 3H, H-5’A and CH₂), 3.65-3.72 (m, 1H, H-5’B), 3.95 (dd, 1H, J = 4.1 and 7.6 Hz, H-4’), 4.18 (dd, 1H, J = 5.0 and 8.2 Hz, H-3’), 4.62 (app q, 1H, J = 5.4 Hz, H-2’), 4.98 (t, 1H, J = 5.6 Hz, 5’-OH), 5.23 (d, 1H, J = 5.0 Hz, 3’-OH), 5.49 (d, 1H, J = 6.2 Hz, 2’-OH), 5.95 (d, 1H, J = 6.2 Hz, H-1’), 8.38 (d, 1H, J = 4.4 Hz, N°-H), 8.45 (s, 1H, H-8), 8.64 (s, 1H, H-5’’);¹³C NMR (300 MHz, DMSO-d₆): δ 27.85 (N°-CH₃), 45.18 (N(CH₃)₂), 53.85 (CH₂), 62.10 (C-5’), 71.12 (C-3’), 74.38 (C-2’), 86.41 (C-4’), 87.84 (C-1’), 119.64 (C-5), 123.328 (C-5’’), 140.97 (C-8), 144.41, 149.59, 149.79 (C-2, C-4 and C-4’’),
18

156.05 (C-6); HRMS (ESI-MS) C_{16}H_{24}N_{9}O_{4} [M+H]^+: 406.1944 found, 406.1951 calcd. Anal.
(C_{16}H_{23}N_{9}O_{4}) C, H, N; N calcd, 31.09; found, 30.41.

\(N^6\)-Methyl-2-(4-phenyl-1,2,3-triazol-1-yl)-9-(β-D-ribofuranosyl)adenine (6). The reaction of
23 (70 mg, 0.217 mmol) with phenylacetylene (48 µL, 0.435 mmol) yielded compound 6 (54%) as a white solid. \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): δ 3.11 (d, 3H, \(J = 4.5\) Hz, \(N^6\)-CH\(_3\)), 3.55-3.63 (m, 1H, H-5’A), 3.67-3.74 (m, 1H, H-5’B), 3.97 (dd, \(J = 3.6\) and 7.2 Hz, H-4’), 4.21 (dd, \(J = 4.8\) and 8.1 Hz, H-3’), 4.66 (app q, \(J = 5.4\) Hz, H-2’), 5.03 (app t, 1H, \(J = 5.6\) Hz, 5’-OH), 5.29 (d, 1H, \(J = 6.2\) Hz, 2’-OH), 5.54 (d, 1H, \(J = 5.9\) Hz, H-1’), 7.4 (t, 1H, \(J = 7.3\) Hz, Ph), 7.50 (t, 2H, \(J = 7.5\) Hz, Ph), 8.06 (d, 2H, \(J = 7.3\) Hz, Ph), 8.44 (d, 1H, \(J = 4.5\) Hz, \(N^6\)-H), 8.49 (s, 1H, H-8), 9.31 (s, 1H, H-5’); \(^{13}\)C NMR (300 MHz, DMSO-d\(_6\)): δ 27.92 (\(N^6\)-CH\(_3\)), 62.16 (C-5’), 71.17 (C-3’), 74.39 (C-2’), 86.48 (C-4’), 87.94 (C-1’), 119.85 (C-5), 120.68 (C-5’), 126.27, 128.95, 129.61 and 130.85 (Ph), 141.082 (C-8), 147.02 and 149.77 (C-2, C-4 and C-4’), 156.10 (C-6); HRMS (ESI-MS) C\(_{19}\)H\(_{21}\)N\(_8\)O\(_4\) [M+H]^+: 425.1689 found, 425.1685 calcd. Anal. (C\(_{19}\)H\(_{20}\)N\(_8\)O\(_4\)) C, H, N.

\(N^6\)-Methyl-2-[4-pyridin-2-yl-1,2,3-triazol-1-yl]-9-(β-D-ribofuranosyl)adenine (7). The reaction of 23 (70 mg, 0.217 mmol) with 2-ethynylpyridine (44 µL, 0.435 mmol) afforded compound 7 as a white solid in 55% yield. \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): δ 3.09 (d, 3H, \(J = 4.1\) Hz, \(N^6\)-CH\(_3\)), 3.57-3.66 (m, 1H, H-5’A), 3.67-3.76 (m, 1H, H-5’B), 3.97 (dd, 1H, \(J = 3.9\) and 7.5 Hz, H-4’), 4.19 (dd, 1H, \(J = 4.8\) and 8.1 Hz, H-3’), 4.64 (app q, 1H, \(J = 6.0\) Hz, H-2’), 4.99 (t, 1H, \(J = 5.6\) Hz, 5’-OH), 5.26 (d, 1H, \(J = 5.0\) Hz, 3’-OH), 5.54 (d, 1H, \(J = 6.2\) Hz, 2’-OH), 5.99 (d, 1H, \(J = 5.9\) Hz, H-1’), 7.42 (m, 1H, pyridin-2-yl), 7.96 (m, 1H, pyridin-2-yl), 8.16 (d, 1H, \(J = 7.3\) Hz, pyridin-2-yl), 8.42 (d, 1H, \(J = 4.1\) Hz, 1H, \(N^6\)-H), 8.49 (s, 1H, H-8), 8.68 (d, 1H, \(J = 4.1\) Hz, pyridin-2-yl), 9.16 (s, 1H, H-5’); \(^{13}\)C NMR (300 MHz, DMSO-d\(_6\)): δ 27.92 (\(N^6\)-CH\(_3\)), 62.13
(C-5’), 71.14 (C-3’), 74.49 (C-2’), 86.47 (C-4’), 88.16 (C-1’), 119.92 (C-5), 120.53 (C-5’’), 121.07 (pyridin-2-yl), 122.25 (pyridin-2-yl), 137.79 (pyridin-2-yl), 141.28 (C-8), 148.47, 150.45 and 150.56 (C-2, C-4, C-4’ and pyridin-2-yl), 156.28 (C-6); HRMS (ESI-MS) C18H19N9O4Na [M+Na]+: 448.1458 found, 448.1457 calcd. Anal. (C18H19N9O4) C, H, N.

N6-Methyl-2-[4-(4-propoxyphenyl)-1,2,3-triazol-1-yl]-9-(β-D-ribofuranosyl)adenine (8). The reaction of 23 (70 mg, 0.217 mmol) with 1-eth-1-ynyl-4-propoxybenzene (57 µL, 0.435 mmol) afforded compound 8 as a white solid in 36% yield. 1H NMR (300 MHz, DMSO-d6): δ 0.99 (t, 3H, J = 7.3 Hz, CH3), 1.71-1.78 (m, 2H, CH2), 3.10 (d, 3H, J = 4.1 Hz, N6-CH3), 3.54-3.62 (m, 1H, H-5’A), 3.64-3.72 (m, 1H, H-5’B), 3.98 (m, 3H, H-4’ and CH2), 4.18 (dd, 1H, J = 4.8 and 8.1 Hz, H-3’), 4.64 (app q, 1H, J = 5.4 Hz, H-2’), 4.99 (t, 1H, J = 5, 7 Hz, 5’-OH), 5.25 (d, 1H, J = 4.1 Hz, 3’-OH), 5.50 (d, 1H, J = 5.9 Hz, 2’-OH), 5.97 (d, 1H, J = 6.2 Hz, H-1’), 7.03 (d, 2H, J = 8.8 Hz, Ph), 7.94 (d, 2H, J = 8.8 Hz, Ph), 8.36 (d, 1H, J = 4.1 Hz, 1H, N6-H), 8.45 (s, 1H, H-8), 9.15 (s, 1H, H-5’’); 13C NMR (300 MHz, DMSO-d6): δ 11.08 (CH3), 22.73 (CH2), 27.90 (N6-CH3), 62.16 (C-5’), 69.71 (OCH2), 71.18 (C-3’), 74.38 (C-2’), 86.46 (C-4’), 87.91 (C-1’), 115.50 (Ph), 119.60 (C-5), 123.28 (C-5’’), 127.66 (Ph), 140.01 (C-8), 147.01, 149.82, 150.45 (C-4, C-2 and C-4’’), 156.10 (C-6); HRMS (ESI-MS) C22H27N8O5 [M+H]+: 483.2109 found, 483.2104 calcd. Anal. (C22H26N8O5) C, H, N.

N6-Methyl-2-[4-(4-benzyl-1,2,3-triazol-1-yl)-9-(β-D-ribofuranosyl)adenine (9). The reaction of 23 (70 mg, 0.217 mmol) with 3-phenyl-1-propyne (54 µL, 0.435 mmol) gave compound 9 as a white solid in 43% yield. 1H NMR (300 MHz, DMSO-d6): δ 3.03 (d, 3H, J = 3.8 Hz, N6-CH3), 3.53-3.62 (m, 1H, H-5’A), 3.64-3.71 (m, 1H, H-5’B), 3.95 (dd, 1H, J = 3.7 and 7.2 Hz, H-4’), 4.11 (s, 2H, CH2), 4.17 (dd, 1H, J = 4.8 and 8.1 Hz, H-3’), 4.61 (app q, 1H, J = 5.7 Hz, H-2’), 4.97 (app t, 1H, J = 5.3 Hz, 5’-OH), 5.22 (d, 1H, J = 4.7 Hz, 3’-OH), 5.47 (d, 1H, J = 5.9 Hz, 2’-
OH), 5.94 (d, 1H, J = 5.9 Hz, H-1’), 7.23 (m, 1H, Ph), 7.32 (d, 4H, J = 4.4 Hz, Ph), 8.34 (d, 1H, J = 3.8 Hz, N6-H), 8.45 (s, 1H, H-8), 8.59 (s, 1H, H-5’”); 13C NMR (300 MHz, DMSO-d6): δ 25.32 (N6-CH3), 32.51 (CH2), 62.11 (C-5’), 71.13 (C-3’), 74.43 (C-2’), 86.41 (C-4’), 87.96 (C-1’), 121.42 (C-5), 121.97 (C-5’”), 126.91, 129.12, 129.21 and 140.02 (Ph), 140.88 (C-8), 147.42, 149.58 and 149.81 (C-4, C-2 and C-4’”), 156.09 (C-6); HRMS (ESI-MS) C20H23N8O4 [M+H]+: 439.1846 found, 439.1842 calcd. Anal. (C20H22N8O4) C, H, N.

2-(4-Cyclopentylmethyl-1,2,3-triazol-1-yl)-N6-methyl-9-(β-D-ribofuranosyl)adenine (10).
The reaction of 23 (70 mg, 0.217 mmol) with 3-cyclopentyl-1-propyne (57 µL, 0.435 mmol) yielded compound 10 (32%) as a white solid. 1H NMR (300 MHz, DMSO-d6): δ 1.23-1.28 (m, 2H, cyclopentyl), 1.48-1.62 (m, 4H, cyclopentyl), 1.71-1.75 (m, 2H, cyclopentyl), 2.19-2.25 (m, 1H, cyclopentyl), 2.72 (d, 2H, J = 7.3 Hz, CH2-cyclopentyl), 3.05 (d, 3H, J = 3.9 Hz, N6-CH3), 3.53-3.61 (m, 1H, H-5’A), 3.63-3.72 (m, 1H, H-5’B), 3.96 (dd, 1H, J = 3.6 and 7.2 Hz, H-4’), 4.19 (dd, 1H, J = 4.8 and 8.1 Hz, H-3’), 4.62 (app q, 1H, J = 5.9 Hz, H-2’), 4.98 (t, 1H, J = 5.3 Hz, 5’-OH), 5.23 (d, 1H, J = 4.7 Hz, 3’-OH), 5.49 (d, 1H, J = 6.5 Hz, 2’-OH), 5.95 (d, 1H, J = 5.9 Hz, H-1’), 8.34 (d, 1H, J = 3.9 Hz, N6-H), 8.45 (s, 1H, H-8), 8.55 (s, 1H, H-5’”); 13C NMR (300 MHz, DMSO-d6): δ 25.37 (cyclopentyl), 27.83 (N6-CH3), 31.56 (CH2), 32.55 (cyclopentyl), 62.15 (C-5’), 71.15 (C-3’), 74.34 (C-2’), 86.43 (C-4’), 87.87 (C-1’), 119.60 (C-5), 121.58 (C-5’”), 140.92 (C-8), 147.33, 149.89 (C-4, C-2 and C4’”), 156.07 (C-6); HRMS (ESI-MS) C19H27N8O4 [M+H]+: 431.2153 found, 431.2155 calcd. Anal. (C19H26N8O4) C, H, N.

2-(4-Cyclohexylmethyl-1,2,3-triazol-1-yl)-N6-methyl-9-(β-D-ribofuranosyl)adenine (11). The reaction of 23 (70 mg, 0.217 mmol) with cyclohexyl-1-propyne (63 µL, 0.435 mmol) gave compound 11 in 82 % yield. 1H NMR (300 MHz, DMSO-d6): δ 0.86-1.28 (br m, 6H, cyclohexyl), 1.54-1.72 (br m, 5H, cyclohexyl), 2.58 (d, 2H, J = 6.9 Hz, CH2), 3.03 (d, 3H, J = 3.9 Hz, N6-
CH₃), 3.51-3.59 (m, 1H, H-5’A), 3.63-3.70 (m, 1H, H-5’B), 3.94 (dd, 1H, J = 4.2 and 7.5 Hz, H-4’), 4.16 (dd, 1H, J = 4.8 and 8.1 Hz, H-3’), 4.59 (app q, 1H, J = 6.3 Hz, H-2’), 4.97 (t, 1H, J = 5.5 Hz, 5’-OH), 5.22 (d, 1H, J = 4.8 Hz, 3’-OH), 5.47 (d, 1H, J = 6.3 Hz, 2’-OH), 5.93 (d, 1H, J = 6.0 Hz, H-1’), 8.30 (d, 1H, J = 3.9 Hz, N₆-H), 8.43 (s, 1H, H-8), 8.51 (s, 1H, H-5’); ¹³C NMR (300 MHz, DMSO-d₆): δ 26.31 (cyclohexyl), 26.66 (cyclohexyl), 27.84 (N₆-CH₃), 33.16 (cyclohexyl), 38.22 (CH₂), 62.14 (C-5’), 71.15 (C-3’), 74.35 (C-2’), 86.44 (C-4’), 87.86 (C-1’), 119.60 (C-5), 121.93 (C-5”), 140.92 (C-8), 146.45, 149.92 (C-4, C-2 and C-4”), 153.51 (C-6);

General procedure for the synthesis of 4’”-substituted 2-(1,2,3-triazol-4-yl)adenosine derivatives 12-14. Compound 25 (100 mg, 0.32 mmol), sodium ascorbate (13 mg, 0.06 mmol mmol) and CuSO₄.5H₂O (3 mg, 0.013 mmol) were suspended in 30 mL H₂O:tBuOH (3:1). The appropriate azide (2 equiv.) was subsequently added and the mixture was stirred overnight at room temperature. The 2-triazol-4-yl compounds (generally) precipitated from this reaction medium and were isolated by filtration with water.

2-(1-Benzyl-1,2,3-triazol-4-yl)-N₆-methyl-9-(β-D-ribofuranosyl)adenine (12). The reaction of 25 (100 mg, 0.32 mmol) with 85 mg (0.64 mmol) benzylazide gave compound 12 in 78 % yield (110 mg). ¹H NMR (300 MHz, DMSO-d₆): δ 3.03 (br s, 3H, N₆-CH₃), 3.52-3.58 (m, 1H, H-5’A), 3.60-3.66 (m, 1H, H-5’B), 3.92 (app d, H-4’, J = 2.9 Hz, H-4’), 4.15 (dd, 1H, J = 4.7 and 7.6 Hz, H-3’), 4.60 (app q, 1H, J = 5.9 Hz, H-2’), 5.08 (t, 1H, J = 5.4 Hz, 5’-OH), 5.19 (d, 1H, J = 3.5 Hz, 3’-OH), 5.44 (d, 1H, J = 5.6 Hz, 2’-OH), 5.68 (s, 2H, CH₂), 5.97 (d, 6.2 Hz, H-1’), 7.38 (br s, 5H, Ph), 7.82 (br s, 1H, N₆-H), 8.36 (s, 1H, H-8), 8.66 (s, 1H, H-5’); ¹³C NMR (300 MHz, DMSO-d₆): δ 27.54 (N₆-CH₃), 53.62 (CH₂), 62.29 (C-5’), 71.30 (C-3’), 74.30 (C-2’), 86.41 (C-
2-(1-(3-Methoxybenzyl)-1,2,3-triazol-4-yl)-N6-methyl-9-(β-D-ribofuranosyl) adenine (13).

The reaction of 25 (100 mg, 0.32 mmol) with 104 mg (0.64 mmol) 3-methoxybenzylazide gave compound 13 in 80 % yield (120 mg). 1H NMR (300 MHz, DMSO-d6): δ 3.03 (br s, 3H, N6-CH3), 3.52-3.60 (m, 1H, H-5’A), 3.64-3.72 (m, 1H, H-5’B), 3.95 (app d, H-4’, J = 2.9 Hz, H-4’), 4.15 (dd, 1H, J = 4.7 and 7.6 Hz, H-3’), 4.60 (app q, 1H, J = 6.4 Hz, H-2’), 5.07 (t, 1H, J = 5.1 Hz, 5’-OH), 5.21 (d, 1H, J = 4.2 Hz, 3’-OH), 5.46 (d, 1H, J = 6.3 Hz, 2’-OH), 5.62 (s, 2H, CH2), 5.95 (d, 1H, J = 6.6 Hz, H-1’), 6.91 (m, 3H, Ph), 7.29 (t, 1H, J = 7.9 Hz, Ph), 7.79 (br s, 1H, N6-H), 8.34 (s, 1H, H-8), 8.63 (s, 1H, H-5’); 13C NMR (300 MHz, DMSO-d6): δ 27.59 (N6-CH3), 53.45 (CH2), 55.82 (OCH3), 62.30 (C-5’), 71.33 (C-3’), 74.25 (C-2’), 86.42 (C-4’), 87.70 (C-1’), 114.44 and 114.20 (Ph), 119.51 (C-5), 120.72 (Ph), 130.65 (C-5”), 138.21 (C-8), 148.22, 153.56, 153.64 (C-2, C-4 and C-4’), 155.69 (C-6), 160.14 (Ph); HRMS (ESI-MS) C21H25N8O5 [M+H]+: 469.1938 found, 469.1947 calcd. Anal. (C21H24N8O5) C, H, N.

2-(1-(3-Chlorobenzyl)-1,2,3-triazol-4-yl)-N6-methyl-9-(β-D-ribofuranosyl)adenine (14). The reaction of 25 (100 mg, 0.32 mmol) with 107 mg (0.64 mmol) 3-chlorobenzylazide gave compound 14 in 73 % yield (110 mg). 1H NMR (300 MHz, DMSO-d6): δ 3.04 (br s, 3H, N6-CH3), 3.53-3.60 (m, 1H, H-5’A), 3.64-3.71 (m, 1H, H-5’B), 3.96 (app d, H-4’, J = 2.9 Hz, H-4’), 4.17 (dd, 1H, J = 4.7 and 7.6 Hz, H-3’), 4.64 (app q, 1H, J = 5.8 Hz, H-2’), 5.09 (t, 1H, J = 5.3 Hz, 5’-OH), 5.20 (d, 1H, J = 4.4 Hz, 3’-OH), 5.45 (d, 1H, J = 6.2 Hz, 2’-OH), 5.97 (d, 1H, J = 6.2 Hz, H-1’), 7.31-7.36 (m, 1H, Ph), 4.41-7.47 (m, 3H, Ph), 7.83 (br s, 1H, N6-H), 8.37 (s, 1H, H-8), 8.72 (s, 1H, H-5’); 13C NMR (300 MHz, DMSO-d6): δ 27.54 (N6-CH3), 52.80 (CH2), 62.31
(C-5'), 71.33 (C-3'), 74.27 (C-2'), 86.43 (C-4'), 87.69 (C-1'), 119.56 (C-5), 126.63 (C-5''), 127.53, 128.53, 128.84, 131.42, 133.98 and 139.15 (Ph), 140.36 (C-8), 148.22, 150.03 and 153.43 (C-2, C-4 and C-4'), 155.78 (C-6); HRMS (ESI-MS) C20H22N8O4Cl [M+H]+: 473.1452 found, 473.1452 calcd. Anal. (C20H21N8O4Cl) C, H, N.

9-(5-Ethylcarbamoyl-β-D-ribofuranosyl)-N6-methyl-2-(1,2,3-triazol-1-yl)adenine (15)

In a pressure tube was added 31 (110 mg, 0.30 mmol) trimethylsilylacetylene (259 µL, 1.81 mmol) and 4 mL DMF. The mixture was stirred at 105 °C for 15h. Solvent evaporation yielded a yellowish solid that was dissolved 6 mL of a 1.0 solution of tetrabutylammonium fluoride in THF and stirred for 5 h. After solvent evaporation, the residue was dissolved in ethyl acetate. Water was added and the triazole precipitated in the water layer. After overnight cooling and filtration, the precipitate was further purified on a silica gel column (CH2Cl2:MeOH 93:7) and yielded compound 15 as a white solid (49 mg, 42 %). 1H NMR (300 MHz, DMSO-d6): δ 0.90 (t, 3H, CH3), 3.05-3.21 (m, 2H, N-CH2), 3.05 (d, 3H, J = 4.2 Hz, N6-CH3), 4.26 (m, 1H, H-3’), 4.33 (d, 1H, J = 2.1 Hz, H-4’), 5.61 (d, 1H, J = 6.2 Hz, 3’-OH), 5.71 (d, 1H, J = 4.7 Hz, 2’-OH), 6.04 (d, 1H, J = 7.2 Hz, H-1’), 7.91 (d, 1H, J = 1.2 Hz, H-4’), 8.07 (t, 1H, J = 5.3 Hz, NHCO), 8.41 (d, 1H, J = 4.2 Hz, N6-H), 8.54 (s, 1H, H-8), 8.82 (br s, 1H, H-5’); 13CMR (300 MHz, DMSO-d6): δ 15.16 (CH3), 27.85 (N6-CH3), 34.07 (CH2), 73.64 (C-2’ and C-3’), 84.98 (C-4’), 88.02 (C-1’), 119.91 (C-5), 124.70 (C-5’), 134.29 (C-4’), 141.59 (C-8), 149.69 and 149.90 (C-2 and C-4), 156.14 (C-6), 169.73 (C=O); HRMS (ESI-MS) C15H20N9O4 [M+H]+: 390.1676 found, 390.1683 calcd. Anal. (C15H19N9O4) C, H, N.

General procedure for the synthesis of 4”-substituted 2-(1,2,3-triazol-1-yl) adenosine derivatives 16-18.

To a mixture of 31 (100 mg, 0.28 mmol), CuI (5 mg, 0.03 mmol) and triethylamine (40 µL, 0.28 mmol) in water:acetonitrile (1:1), the appropriate alkyne (2 equiv.)
was added. The mixture was stirred for 5 d at room temperature. The reaction was monitored by ¹H-NMR. The product was precipitated with water and cooled overnight. After filtration, the yellowish solid was purified on a silica gel column (CH₂Cl₂: MeOH 90:10) to obtain the 1,2,3-triazol-1-yl adenosine derivative as a white solid.

2-(4-Butyl-1,2,3-triazol-1-yl)-9-(5-ethylcarbamoyl-β-D-ribofuranosyl)-N⁶-methyladenine (16). The reaction of compound 31 (100 mg, 0.28 mmol) with 1-hexyne (64µL, 0.56 mmol) gave 65 mg (53%) of compound 16 as a white solid. ¹H NMR (300 MHz, DMSO-d₆) δ 0.88-0.95 (m, 6H, 2 x CH₃), 1.31-1.43 (m, 2H, CH₂), 1.61-1.71 (m, 2H, CH₂), 2.72 (t, 2H, J = 7.8 Hz, C⁴''-CH₂), 3.05-3.22 (m, 2H, N-CH₂), 3.05 (d, 3H, J = 4.1 Hz, N⁶-CH₃), 4.25 (m, 1H, H-3’), 4.33 (d, 1H, J = 2.1 Hz, H-4’), 4.73 (m, 1H, H-2’), 5.59 (d, 1H, J = 6.3 Hz, 3’-OH), 5.69 (d, 1H, J = 4.5 Hz, 2’-OH), 6.04 (d, 1H, J = 6.9 Hz, H-1’), 8.09 (t, 1H, J = 5.4 Hz), 8.37 (d, 1H, J = 4.1 Hz, N⁶-H), 8.53 (s, 1H, H-8), 8.56 (s, 1H, H-5’); ¹³C NMR (300 MHz, DMSO-d₆): 14.36 (CH₃), 15.17 (CH₃), 22.35 (CH₂), 25.21 (CH₂), 27.84 (N⁶-CH₃), 31.70 (CH₂), 34.07 (CH₂), 73.60 and 73.64 (C-2’ and C-3’), 84.99 (C-4’), 87.91 (C-1’), 119.79 (C-5), 121.45 (C-5’), 141.49 (C-8), 147.97, 149, 72 and 149.93 (C-2, C-4 and C-4’), 156.11 (C-6), 169.73 (C=O); HRMS (ESI-MS) C₁₉H₂₈N₉O₄ [M+H]⁺: 446.2256 found, 446.2264 calcd. Anal. (C₁₉H₂₇N₉O₄) C, H, N.

9-(5-Ethylcarbamoyl-β-D-ribofuranosyl)-N⁶-methyl-2-(4-pyridin-2-yl-1,2,3-triazol-1-yl)adenine (17). The reaction of compound 31 (50 mg, 0.14 mmol) with 2-ethynyl-pyridine (56 µL, 0.56 mmol) gave 35 mg (54 %) of compound 17 as a white solid. ¹H NMR (300 MHz, DMSO-d₆): δ 0.93 (t, 3H, J = 7.2 Hz, CH₃), 3.09-3.21 (m, 2H, N-CH₂), 3.10 (d, 3H, J = 4.2 Hz, N⁶-CH₃), 4.25 (m, 1H, H-3’), 4.35 (d, 1H, J = 2.1 Hz, H-4’), 4.74 (m, 1H, H-2’), 5.68 (d, 1H, J = 6.6 Hz, 2’-OH), 5.75 (d, 1H, J = 4.5 Hz, 3’-OH), 6.08 (d, 1H, J = 6.6 Hz, H-1’), 7.41 (m, 1H, pyridin-2-yl), 7.96 (m, 1H, pyridin-2-yl), 8.10 (t, 1H, J = 6.0 Hz, NHCO), 8.16 (d, 1H, J = 8.1
Hz, pyridin-2-yl), 8.48 (d, 1H, J = 4.1 Hz, 1H, N^6-H), 8.60 (s, 1H, H-8), 8.67 (d, H, J = 5.1 Hz, pyridin-2-yl), 9.17 (s, 1H, H-5'); ^13C NMR (300 MHz, DMSO-d_6): δ 15.18 (CH3), 27.94 (N^6-CH3), 34.11 (N-CH2), 73.69 and 73.78 (C-2' and C-3'), 84.95 (C-4'), 87.98 (C-1'), 120.04 (C-5), 120.65 (C-5''), 122.20 and 124.11 (pyridin-2-yl), 138.027 (pyridin-2-yl), 141.64 (C-8), 147.95, 149.64, 149.67 and 149.98 (C-2, C-4, C-4' and pyridin-2-yl), 150.49 (pyridin-2-yl), 156.13 (C-6), 169.76 (C=O); HRMS (ESI-MS) C_20H_22N_10O_5 [M+H]^+: 467.1899 found, 467.1903 calcd. Anal. (C_20H_22N_10O_5) C, H, N; N calcd, 30.03; found, 29.55.

9-(5-Ethylcarbamoyl-β-D-ribofuranosyl)-N^6-methyl-2-(4-benzyl-1,2,3-triazol-1-yl)adenine (18). The reaction of compound 31 (70 mg, 0.19 mmol) with 3-phenyl-1-propyne (49µL, 0.56 mmol) gave 35 mg (38 %) of compound 18 as a white solid. ^1H NMR (300 MHz, DMSO-d_6): δ 0.87 (t, 3H, J = 7.5 Hz, CH3), 3.03-3.20 (m, 2H, N-CH2), 3.03 (d, 3H, 4.5 Hz, N^6-CH3), 4.11 (s, 2H, CH-Ph), 4.24 (m, 1H, H-3'), 4.32 (d, 1H, J = 2.1 Hz, H4'), 4.72 (m, 1H, H-2'), 5.59 (d, 1H, J = 6.6 Hz, 3'-OH), 5.69 (d, 1H, J = 4.5 Hz, 2'-OH), 6.03 (d, 1H, J = 6.9 Hz, H1'), 7.22 (m, 1H, Ph), 7.32 (d, 4H, J = 4.2 Hz, Ph), 8.06 (t, 1H, J = 5.7 Hz, NHCO), 8.38 (d, 1H, J = 4.1 Hz, N^6-H), 8.54 (s, 1H, H-8), 8.60 (s, 1H, H-5''); ^13C NMR (300 MHz, DMSO-d_6): δ 15.16 (CH3), 27.84 (N^6-CH3), 31.72 (CH2), 34.07 (N-CH2), 73.64 (C-2' and C-3'), 84.98 (C-4'), 87.87 (C-1'), 119.91 (C-5), 122.11 (C-5''), 126.93, 129.13, 129.22 and 140.07 (Ph), 140.48 (C-8), 147.05, 149.87 (C-4, C-2 and C-4''), 156.12 (C-6), 169.71 (C=O); HRMS (ESI-MS) C_22H_22N_10O_4 [M+H]^+: 480.2098 found, 480.2107 calcd. Anal. (C_22H_22N_10O_4) C, H, N.

2-(4-Cyclopentylmethyl-1,2,3-triazol-1-yl)-9-(5-ethylcarbamoyl-β-D-ribofuranosyl)-N^6-methyladenine (19). Compound 31 (60 mg, 0.17 mmol), sodium ascorbate (13 mg, 0.066 mmol) and CuSO_4.5H_2O (3.5 mg, 0.013 mmol) were suspended in 4 mL tBuOH:H_2O (1:1). 3-cyclopentyl-1-propyne (58 µL, 0.44 mmol) was subsequently added and the mixture was stirred
two d at room temperature. The 2-triazol-1-yl compound precipitated from the reaction medium. Water was added and the mixture was cooled overnight. The precipitate was filtered off and washed with water and hexane to obtain 19 as a white solid in 33 % yield. 1H NMR (300 MHz, DMSO-d$_6$): δ 0.89 (t, 3H, CH$_3$), 1.19-1.28 (m, 2H, cyclopentyl), 1.45-1.75 (m, 6H, cyclopentyl), 2.15-2.25 (m, 1H, CH, cyclopentyl), 2.72 (d, 2H, J = 7.2 Hz, CH$_2$), 3.06 (d, 3H, $J^\text{N6} = 4.5$ Hz, N$_6$-CH$_3$), 3.09-3.22 (m, 2H, N-CH$_2$), 4.24 (dt, 1H, $J = 1.5$ and 4.8 Hz, H-3’), 4.33 (d, 1H, $J = 2.1$ Hz, H-4’), 4.71-7.76 (app q, 1H, $J = 6.6$ Hz, H-2’), 5.61 (d, 1H, $J = 6.3$ Hz, 2’-OH), 5.71 (d, 1H, $J = 4.8$ Hz, 3’-OH), 6.03 (d, 1H, $J = 6.9$ Hz, H-1’), 8.10 (t, 1H, $J = 5.7$ Hz, NHCO), 8.40 (d, 1H, $J = 5.1$ Hz, N$_6$-H), 8.54 (s, 1H, H-8), 8.56 (s, 1H, H-5’); 13C NMR (300 MHz, DMSO-d$_6$): δ 15.17 (CH$_3$), 25.36 (cyclopentyl), 27.85 (N$_6$-CH$_3$), 31.53 (cyclopentyl), 31.51 (CH$_2$), 34.07 (CH$_2$), 73.63 and 73.56 (C-2’ and C-3’), 84.99 (C-4’), 87.93 (C-1’), 119.77 (C-5), 121.69 (C-5”), 141.51 (C-8), 147.48 and 149.92 (C-2, C-4 and C-4”), 156.10 (C-6), 169.74 (C=O); HRMS (ESI-MS) C$_{21}$H$_{30}$N$_9$O$_4$ [M+H]$^+$: 472.2415 found, 472.2420 calcd. Anal. (C$_{21}$H$_{29}$N$_9$O$_4$) C, H, N.

N^6(5-Chloro-2-methoxybenzyl)-2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl)-9-(\beta-D-ribofuranosyl)adenine (20). Compound 33 (100 mg, 0.22 mmol), sodium ascorbate (17 mg, 0.086 mmol) and CuSO$_4$5H$_2$O (3.5 mg, 0.017 mmol) were suspended in 4 mL H$_2$O:tBuOH (1:1). 3-Cyclopentyl-1-propyne (29 µL, 0.44 mmol) was subsequently added and the mixture was stirred two d at room temperature. The 2-triazol-1-yl compound precipitated from the reaction medium. Water was added and the mixture was cooled overnight. The precipitate was filtered off and washed with water and hexane to obtain 20 as a white solid in 59 % yield. 1H NMR (300 MHz, DMSO-d$_6$): δ 1.23-1.28 (m, 2H, cyclopentyl), 1.48-1.61 (m, 4H, cyclopentyl), 1.66-1.73 (m, 2H, cyclopentyl), 2.15-2.25 (m, 1H, cyclopentyl), 2.72 (d, 2H, J = 7.2 Hz, CH$_2$-cyclopentyl), 3.56-3.61 (m, 1H, H-5’A), 3.66-3.71 (m, 1H, H-5’B), 3.97 (m, 1H, H-4’), 4.20 (m, 1H, H-3’).
4.64 (m, 1H, H-2'), 4.73 (br s, 2H, N'-CH₂), 4.96 (t, 1H, J = 6.0 Hz, 5'-OH), 5.22 (d, 1H, J = 4.8 Hz, 3'-OH), 5.48 (d, 1H, J = 5.7 Hz, 2'-OH), 5.95 (d, 1H, J = 6.3 Hz, H-1'), 7.04 (d, 1H, J = 9.0 Hz, Ph), 7.25-7.29 (m, 2H, Ph), 8.40 (s, 1H, H-8), 8.81 (s, 1H, H-5'”), 8.81 (br s, 1H, N'-H);

13NMR (300 MHz, DMSO-d₆): δ 25.36 (cyclopentyl), 31.54 (CH₂), 32.54 (cyclopentyl), 38.86 (CH₂), 56.57 (OCH₃), 62.13 (C-5’), 71.15 (C-3’), 74.37 (C-2’), 86.46 (C-4’), 88.07 (C-1’), 113.15 (Ph), 119.58 (C-5), 121.37 (C-5’”), 124.66, 128.23 and 129.93 (Ph), 141.37 (C-8), 147.40, 149.66 and 150.12 (C-2, C-4 and C-4”'), 155.51 (Ph), 156.33 (C-6); HRMS (ESI-MS)

C₂₆H₃₂N₈O₅Cl [M+H]+: 571.2184 found, 571.2184 calcd. Anal. (C₂₆H₃₁N₈O₅Cl) C, H, N.

2-Azido-N'-methyl-9-(β-D-ribofuranosyl)adenine (23). Sodium ascorbate (19.4 mg; 0.098 mmol) and CuSO₄.5H₂O (12.2 mg; 0.049 mmol) were added to a mixture of 22 (200 mg; 0.491 mmol), sodium azide (38.3 mg; 0.589 mmol), L-proline (11.3 mg; 0.098 mmol) and sodium carbonate (10.4 mg; 0.098 mmol) in 10 mL H₂O:tBuOH (1:1). The reaction was stirred overnight at 65 °C and was monitored by ¹H-NMR. 50 mL dilute NH₄OH was added and the crude mixture extracted with ethyl acetate (3 x 60 mL). The organic layer was washed with brine (60 mL), dried over MgSO₄, and purified on a silica gel column (CH₂Cl₂:MeOH, 95:5) to afford compound 23 as a slightly yellow solid in 66% yield. ¹H NMR (300 MHz, DMSO-d₆): δ 2.91 (d, 3H, J = 4.4 Hz, N'-CH₃), 3.48-3.55 (m, 1H, H-5’A), 3.58-3.66 (m, 1H, H-5’B), 3.90 (dd, 1H, J = 3.8 and 7.3 Hz, H-4’), 4.10 (dd, 1H, J = 4.7 and 9.7 Hz, H3’), 4.53 (app q, 1H, J = 5.9 Hz, H-2’), 5.04 (dd, 1H, J = 5.2 and 6.2 Hz, 5’-OH), 5.19 (d, 1H, J = 5.0 Hz, 3’OH), 5.43 (d, 1H, J = 6.2 Hz, 2’-OH), 5.78 (d, 1H, J = 6.2 Hz, H-1’), 8.12 (d, J = 4.4 Hz, N-H), 8.27 (s, 1H, H-8), small peaks from 1/6 tetrazole tautomeric form: δ 3.15 (d, 3H, J = 5.0 Hz, N'-CH₃), 3.95 (d, H-4’), 4.15 (d, H-3’), 5.51 (d, 2’-OH), 5.94 (d, H-1’), 8.51(s, H-8); ¹³C NMR (300 MHz, DMSO-d₆): δ 27.54 (N'-CH₃), 62.21 (C-5’), 71.17 (C-3’), 74.12 (C-2’), 86.35 (C-4’), 88.01 (C-1’), 118.07 (C-5),
139.99 (C-8), 156.06 and 156.20 (C-2 and C-6), small peaks from 1/6 tetrazole tautomeric form:
\(\delta \) 31.89 (N\(^6\)-CH\(_3\)), 61.79 (C-5’), 70.77 (C-3’), 74.37 (C-4’), 112.30 (C-12), 142.91 (C-11), 147.60 (C-6); HRMS (ESI-MS) C\(_{11}\)H\(_{15}\)N\(_8\)O\(_4\) [M+H]\(^+\): 323.1208 found, 323.1216 calcd. Anal.
(C\(_{11}\)H\(_{14}\)N\(_8\)O\(_4\)) C, H, N.

\(N^6 \)-Methyl-9-(\(\beta \)-d-ribofuranosyl)-2-[2-trimethylsilylethyn-1-yl]adenine (24). Compound 22

(500 mg, 1.23 mmol), CuI (12 mg, 0.062 mmol) and (Ph\(_3\)P)\(_3\)PCl\(_2\) were dissolved in 9 mL DMF. Triethylamine (205 \(\mu \)L, 1.47 mmol) and trimethylsilylacetylene (210 mg, 1.47 mmol) were added and the reaction mixture was stirred overnight. After solvent evaporation, the residue was dissolved in CH\(_2\)Cl\(_2\) and filtered through a pad of Celite. Purification on a silica gel column (CH\(_2\)Cl\(_2\):MeOH 95:5) yielded 305 mg (66%) of compound 23. \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): \(\delta \) 0.00 (9H, s, (CH\(_3\))\(_3\)Si), 2.7, 3H, N\(^6\)-CH\(_3\)), 3.26-3.34 (m, 1H, H-5’A), 3.37-3.44 (m, 1H, H-5’B), 3.68 (dd, 1H, \(J = 3.5 \) Hz, H-4’), 3.86 (dd, 1H, \(J = 3.4 \) and 8.2 Hz, H-3’), 4.23 (app q, 1H, \(J = 5.9 \) Hz, H-2’), 4.87 (t, 1H, \(J = 5.0 \), 5’-OH), 4.94 (d, 1H, \(J = 4.99 \) Hz, 3’-OH), 5.21 (d, 1H, \(J = 6.2 \) Hz, 2’-OH), 5.63 (d, 1H, \(J = 6.2 \) Hz, H-1’), 7.69 (br s, 1H, N\(^6\)-H), 8.19 (s, 1H, H-8); HRMS (ESI-MS) C\(_{16}\)H\(_{24}\)N\(_5\)O\(_4\)Si: [M+H]\(^+\): 378.1586 found; 378.1597 calcd.

2-Ethynyl-\(N^6 \)-methyl-9-(\(\beta \)-d-ribofuranosyl)purine (25). 300 mg (0.8 mmol) of compound 24 was dissolved in 7N ammonia in methanol and stirred for 2 h at 0 °C. After solvent evaporation, the residue was purified by silica gel chromatography (CH\(_2\)Cl\(_2\):MeOH 95:5) to obtain 160 mg (65%) of derivative 25. \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): \(\delta \) 2.91(s, 3H, N\(^6\)-CH\(_3\)), 3.48-3.56 (m, 1H, H-5’A), 3.61-3.68 (m, 1H, H-5’B), 3.92 (m, 1H, H-4’), 4.02 (s, 1H, C≡CH), 4.11 (dd, 1H, \(J = 5.0 \) and 8.2 Hz, H-3’), 4.53 (app q, 1H, \(J = 5.9 \) Hz, H-2’), 5.15 (m, 2H, 3’-OH and 5’-OH), 5.44 (d, 1H, \(J = 6.15 \) Hz, 2’-OH), 5.84 (d, 1H, \(J = 6.16 \) Hz, H-1’), 7.95 (br s, 1H, N\(^6\)-H), 8.40 (s, 1H, H-8); HRMS (ESI-MS) C\(_{13}\)H\(_{16}\)N\(_4\)O\(_4\): [M+H]\(^+\): 306.1197 found; 306.1202 calcd.
1-Deoxy-1-(6-methylamino-2-iodo-9H-purin-9-yl)-2,3-O-isopropylidene-β-D-ribufuranuronic acid (27). To a stirred solution of 3.8 g (8.5 mmol) of 26 in 560 mL H₂O were added 1.4 g KOH and, dropwise, a solution of 4.03 g (25.5 mmol) of KMnO₄ in 110 mL of H₂O. The mixture was stirred in the dark for 20 h, cooled to 0 °C and quenched with 30 mL 7% H₂O₂. The mixture was filtered through Celite, the filtrate was concentrated in vacuo and then acidified to pH 4 with 3N HCl. The resulting precipitate was filtered off and successively washed with water and ether to give 2.98 g (76%) of 27 as a white solid. ¹H NMR (300 MHz, DMSO-d₆): δ 1.36 (s, 3H, CH₃), 1.51 (s, 3H, CH₃), 2.89 (d, 3H, J = 3.3 Hz, N₆-CH₃), 4.68 (d, 1H, J = 1.8 Hz, H-4’), 5.40 (d, 1H, J = 6.0 Hz, H-2’), 5.47 (dd, 1H, J = 6.0 and 1.8 Hz, H-3’), 6.28 (s, 1H, H-1’), 8.08 (d, 1H, J = 3.3 Hz, N₆-H), 8.16 (s, 1H, H-8); HRMS (ESI-MS) C₁₄H₁₆N₅O₅I: [M+H]+: 462.0273 found; 462.0276 calcd.

9-(5-Ethylcarbamoyl-β-D-ribofuranosyl)-2-iodo-N₆-methyladenine (30). p-Nitrophenol (402 mg, 2.89 mmol) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (506 mg, 2.65 mmol) were added to a solution of 27 (1.11 g, 2.41 mmol) in 10 mL dry DMF. The reaction mixture was stirred for 3 h at room temperature, cooled to 0 °C and 1.6 mL (24.1 mmol) of ethylamine was added. The solution turned yellow immediately and was further stirred for 1 h at room temperature. After evaporating the volatiles, the residue was partitioned between ethyl acetate (3 x 100 mL) and H₂O (100 mL). The organic layer was washed with brine (100 mL), dried over MgSO₄ and concentrated to dryness. The residue was dissolved in 80% aqueous TFA (20 mL) and stirred for 2 h at room temperature. The mixture was concentrated in vacuo, coevaporated several times with EtOH and purified by silica gel chromatography (CH₂Cl₂:MeOH 96:4). Compound 30 was obtained as a white solid in 78 % yield (840 mg). ¹H NMR (300 MHz, DMSO-d₆): δ 1.05 (t, 3H, J = 7.2 Hz, CH₃), 2.91 (d, 3H, J = 4.4 Hz, N₆-CH₃), 3.19-3.29 (m, 2H,
N-CH₂), 4.16 (dt, 1H, J = 2.1 and 4.4 Hz, H-3’), 4.31 (d, 1H, J = 2.1 Hz, H-4’), 4.58 (app q, 1H, J = 5.6 Hz, H-2’), 5.59 (d, 1H, J = 6.5 Hz, 2’-OH), 5.71 (d, 1H, J = 4.7 Hz, 3’-OH), 5.92 (d, 1H, J = 7.1 Hz, H-1’), 8.12 (t, 1H, J = 5.5 Hz, NHCO), 8.19 (d, 1H, J = 4.4 Hz, N⁶-H), 8.38 (s, 1H, H-8); HRMS (ESI-MS) C₁₃H₁₈N₆O₄I [M+H]^+: 449.0429 found, 449.0436 calcd.

2-Azido-9-(5-ethylcarbamoyl-β-D-ribofuranosyl)-N⁶-methyladenine (31). Sodium ascorbate (69 mg, 0.34 mmol) and CuSO₄.5H₂O (5.6 mg, 0.17 mmol) were added to a mixture of 30 (780 mg, 1.74 mmol), sodium azide (226 mg, 3.48 mmol), L-proline (40 mg, 0.35 mmol) and sodium carbonate (37 mg, 0.35 mmol) in 20 mL H₂O:tBuOH (1:1). The reaction was stirred for 2 d at 65 °C and monitored by ¹H-NMR. 100 mL dilute NH₄OH was added and the crude mixture extracted with ethyl acetate (5 x 150 mL) and washed with brine (150 mL). The organic layer was dried over MgSO₄ and purified on a silica gel column (CH₂Cl₂:MeOH 96:4) to afford compound 31 as a white solid in 79 % yield (500 mg). ¹H NMR (300 MHz, DMSO-d₆): δ 1.06 (t, 3H, J = 7.2 Hz, CH₃), 2.96 (d, 3H, J = 4.0 Hz, N⁶-CH₃), 3.16-3.29 (m, 2H, N-CH₂), 4.14 (dt, 1H, J = 1.8 and 4.8 Hz, H-3’), 4.29 (d, 1H, J = 1.8, H-4’), 4.53-4.59 (app q, 1H, J = 6.3 Hz, H-2’), 5.52 (d, 1H, J = 6.3 Hz, 2’-OH), 5.68 (d, 1H, J = 4.8 Hz, 3’-OH), 5.90 (d, 1H, J = 7.2 Hz, H-1’), 8.20 (d, 1H, J = 4.0 Hz, N⁶-H), 8.35 (s, 1H, H-8), 8.49 (t, 1H, J = 6.0 Hz, NHCO) small peaks from 1/5 tetrazole tautomeric form: 1.08-1.12 (t, 3H, J = 7.2 Hz, CH₃), 4.34 (d, 1H, J = 2.1 Hz, H-4’), 4.67-4.73 (app q, 1H, J = 7.2 Hz, H-2’), 5.54 (d, 1H, J = 4.5 Hz, 2’-OH) 6.00 (d, 1H, J = 7.2 Hz, H-1’);¹³NMR (300 MHz, DMSO-d₆): δ 15.48 (CH₃), 27.52 (N⁶-CH₃), 33.94 (N-CH₂), 73.06 and 73.75 (C-2’ and C-3’), 85.15 (C-4’), 88.09 (C-1’), 118.36 (C-5), 140.69 (C-8), 156.03 and 156.14 (C-2 and C-4) 169.79 (C-6); HRMS (ESI-MS) C₁₃H₁₈N₆O₄ [M+H]^+: 364.1473 found, 364.1481 calcd. Anal. (C₁₃H₁₇N₆O₄) C, H, N.
\(N^6-(5\text{-chloro}-2\text{-methoxybenzyl})-2\text{-iodo-9-(\(\beta\)-D-ribofuranosyl)adenine (32)}\)

Compound 21 (1 g, 1.86 mmol) was dissolved in EtOH (30 mL). 5-chloro-2-methoxybenzylammonium chloride (580 mg, 2.79 mmol) and Et\(_3\)N (392 \(\mu\)L, 2.79 mmol) were added, and the solution was refluxed overnight. The mixture was concentrated to dryness, dissolved in 7N NH\(_3\) in methanol and stirred at room temperature for 2 h to deprotect the 2’-hydroxyl group. The volatiles were removed under reduced pressure, and the residue was purified by silica gel column (CH\(_2\)Cl\(_2\):MeOH, 97:3). The product, compound 32, was realized in 80 % yield. \(^1\)H NMR (300 MHz, DMSO-\(d_6\)): \(\delta\) 3.51-3.58 (m, 1H, H-5’A), 3.63-3.68 (m, 1H, H-5’B), 3.85 (s, 3H, OCH\(_3\)), 3.94 (m, 1H, H-4’), 4.13 (m, 1H, H-3’), 4.52-4.59 (m, 3H, N\(^6\)-CH\(_2\) and H-2’), 5.03 (t, 1H, \(J = 5.6\) Hz, 5’-OH), 5.21 (d, 1H, \(J = 5.0\) Hz, 3’-OH), 5.48 (d, 1H, \(J = 5.8\) Hz, 2’-OH), 5.83 (d, 1H, \(J = 6.2\) Hz, H-1’), 7.03 (d, 1H, \(J = 8.8\) Hz, Ph), 7.16 (d, 1H, \(J = 2.7\) Hz, Ph), 7.29 (dd, 1H, \(J = 2.7\) and 8.8 Hz, Ph), 8.35 (s, 1H, H-8), 8.62 (br s, 1H, N\(^6\)-H); HRMS (ESI-MS) C\(_{18}\)H\(_{20}\)N\(_5\)O\(_5\)ICl [M+H]\(^+\): 548.0204 found, 548.0199 calcld.

2-Azido-\(N^6-(5\text{-chloro}-2\text{-methoxybenzyl})-9-(\(\beta\)-D-ribofuranosyl)adenine (33). Sodium ascorbate (14 mg, 0.073 mmol) and CuSO\(_4\).5H\(_2\)O (9 mg, 0.037 mmol) were added to a mixture of 32 (200mg, 0.365 mmol), sodium azide (47 mg, 0.73 mmol), L-proline (8 mg, 0.073 mmol) and sodium carbonate (8mg, 0.073 mmol) in 4 mL H\(_2\)O:tBuOH (1:1). The reaction was stirred for 2 d at 65 °C and monitored by \(^1\)H-NMR. 10 mL dilute NH\(_4\)OH was added and the crude mixture extracted with ethyl acetate (5 x 15 mL) and washed with brine (15 mL). The organic layer was dried over MgSO\(_4\) and purified on a silica gel column (CH\(_2\)Cl\(_2\):MeOH 97:3) to afford compound 33 as a white solid in 82 % yield. \(^1\)H NMR (300 MHz, DMSO-\(d_6\)): \(\delta\) 3.51-3.56 (m, 1H, H5’-A), 3.60-3.66 (m, 1H, H5’-B), 3.93 (m, 1H, H 4’), 4.13 (m, 1H, H-3’), 4.56-4.62 (m, 3H, N\(^6\)-CH\(_2\) and H-2’), 5.03 (t, 1H, \(J = 5.4\) Hz, 5’-OH), 5.17 (d, 1H, \(J = 4.8\) Hz, 3’-OH), 5.41 (d, 1H, \(J = 6.3\) Hz, 5’-OH), 5.50 (d, 1H, \(J = 5.4\) Hz, 5’-OH), 5.83 (d, 1H, \(J = 6.2\) Hz, H-1’), 7.03 (d, 1H, \(J = 8.8\) Hz, Ph), 7.16 (d, 1H, \(J = 2.7\) Hz, Ph), 7.29 (dd, 1H, \(J = 2.7\) and 8.8 Hz, Ph), 8.35 (s, 1H, H-8), 8.62 (br s, 1H, N\(^6\)-H); HRMS (ESI-MS) C\(_{18}\)H\(_{20}\)N\(_5\)O\(_5\)ICl [M+H]\(^+\): 548.0204 found, 548.0199 calcld.
Hz, 2'-OH), 5.81 (d, 1H, $J = 6.0$ Hz, H-1'), 7.02 (d, 1H, $J = 8.7$ Hz, Ph), 7.15 (d, 1H, $J = 3.0$ Hz, Ph), 7.28 (dd, 1H, $J = 2.7$ and 8.7 Hz, Ph), 8.34 (s, 1H, H-8), 8.63 (br s, 1H, N6-H); 13C NMR (300MHz, DMSO-d6): δ 38.59 (CH2), 56.49 (OCH3), 62.19 (C-5'), 71.15 (C-3'), 74.13 (C-2'), 86.36 (C-4'), 88.13 (C-1'), 113.02 (Ph), 119.58 (C-5), 124.29 (Ph), 128.10 (Ph), 129.93 (Ph), 140.43 (C-8), 150.69 (C-4), 155.51 (Ph and C-2), 156.33 (C-6); HRMS (ESI-MS) $C_{18}H_{20}N_8O_5Cl$ [M+H]+: 463.1248 found, 463.1245 calcd. Anal. (C18H19N8O5Cl) C, H, N.

Cell culture and membrane preparation. CHO cells expressing recombinant human ARs or the rat A3AR were cultured in DMEM (Dulbecco’s modified Eagle’s medium) and F12 (1:1) supplemented with 10% fetal bovine serum, 100 units/mL penicillin, 100 µg/mL streptomycin, and 2 µmol/mL glutamine. After harvest and homogenization, the cells were centrifuged at 500 g for 10 min. The pellet was resuspended in 50 mM Tris-HCl buffer (pH 7.4) containing 10 mM MgCl2 and 1 mM EDTA. The suspension was homogenized with an electric homogenizer for 10 s, and was then recentrifuged at 20,000 g for 20 min at 4 °C. The resulting pellets were resuspended in buffer containing 3 units/mL of adenosine deaminase, and the suspension was stored at -80 °C prior to the binding experiments. The protein concentration was measured using the Bradford assay.39

Radioligand binding studies. For the A3AR binding experiments, the procedures were similar to those previously described.19 Briefly, each tube contained 100 µL of membrane suspension, 50 µL of $[^{125}I]$-AB-MECA ($[^{125}I]N^6$-(4-Amino-3-iodobenzyl)adenosine-5'-N-methyl-uronamide, final concentration 0.5 nM), and 50 µL of increasing concentrations of compounds in tris-HCl.
buffer (50 mM, pH 7.4) containing 10 mM MgCl₂, 1 mM EDTA. Non-specific binding was determined using 10 µM NECA (adenosine-5′-N-ethyluronamide). The mixtures were incubated at 25 °C for 60 min. Binding reactions were terminated by filtration through Whatman GF/B filters under reduced pressure using a MT-24 cell harvester (Brandel, Gaithersburg, MD). Filters were washed three times with ice-cold buffer. Radioactivity was determined in a Beckman 5500B γ-counter. The binding of [³H]CCPA (2-chloro-N⁶-cyclopentyladenosine) to the recombinant hA₁AR and the binding of [³H]CGS21680 (2-[p-(2-carboxyethyl)phenyl-ethylamino]-5′-N-ethylcarboxamido-adenosine) to the recombinant hA₂AAR was performed as previously described.²⁰,⁴⁴

Cyclic AMP accumulation assay. Intracellular levels of 3′,5′-cyclic AMP were measured by the competitive protein binding method.³² CHO cells expressing recombinant human⁴⁰ ARs were harvested by trypsinization. After resuspension in the medium, cells were plated in 24-well plates in 0.5 mL medium/well. After 24 h the medium was removed and cells were washed three times with 1 mL/well of DMEM containing 50 mM N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid, pH 7.4. Cells were then treated with agonists and/or test compounds in the presence of rolipram (10 µM) and adenosine deaminase (3 units/mL) and incubated at 37 °C. For the A₃AR, after 45 min forskolin (10 µM) was added to the medium, and incubation was continued for an additional 15 min. The reaction was terminated upon removal of the medium, and the cells were lysed with 200 µL/well of 0.1 M ice-cold HCl. The cell lysate was resuspended and stored at -20 °C. For determination of cyclic AMP production, protein kinase A (PKA) was incubated with [³H]cyclic AMP (2 nM) in K₂HPO₄/EDTA buffer (K₂HPO₄, 150 mM; EDTA, 10 mM), 20 µL of the cell lysate, and 30 µL 0.1 M HCl. Bound radioactivity was separated by rapid filtration.
through Whatman GF/C filters under reduced pressure and washed once with cold buffer. Bound radioactivity was subsequently measured by scintillation spectrometry. Calculation of the relative maximal efficacy at the A3AR was determined at a fixed concentration of the nucleoside analogue (10 µM) and expressed as a relative percent of the effect of 10 µM NECA determined in each experiment, which typically reached ~50% inhibition of the forskolin stimulated cyclase.

Molecular Modeling. All calculations were performed on a Silicon Graphics Octane2 workstation (600 MHz IP30 processor, MIPS R14000). Compound 2-(4-cyclopentylmethyl-1,2,3-triazole)-N6-methyl-adenosine was constructed with the use of the Sketch Molecule of SYBYL 7.1 (Tripos Inc., 1699 South Hanley Rd., St. Louis, Missouri 63144, USA.). A grid search was performed, in which flexible bonds were rotated by 0, 180° for t1 (C5-C6-N6-CMe) at the N6 position, t2 (4’O-4’C-5’C-5’OH) at the 5’-position and t3 (N3-C2-N1’-N2’) and by 60, 180, -60° for t4 (N3’-C4’-CMe-C Cyc) and t5 (C4’-CMe-C Cyc-C Cyc) at the C2 position. The low-energy conformers from the grid search were re-optimized, removing all torsional constraints. Merck molecular force field (MMFF) and charges were applied with the use of distance-dependent dielectric constants and conjugate gradient method until the gradient reached 0.05 kcal • mol⁻¹ • Å⁻¹. After clustering the low-energy conformers from the result of the grid search, the representative ones from all groups were re-optimized by semi-empirical molecular orbital calculations with the PM3 method in the MOPAC 6.0 package.

A human A3AR model (PDB code: 1OEA) constructed by homology to the X-ray structure of bovine rhodopsin with 2.8 Å resolution (PDB ID: 1F88) was used for the docking study. All atom types were assigned by the Amber7_FF99 force field. Amber charges for protein and
MMFF charges for ligand were calculated. The starting geometry of the ligand conformation was chosen from the human A3AR complex model with Cl-IB-MECA,19 which was already validated by point-mutation. The ribose binding position was fixed, using an atom-by-atom fitting method for the carbon atoms of the ribose ring. To determine the binding region of the 2-(4-cyclopentylmethyl-1,2,3-triazole) moiety at the adenine 2 position, the flexible bond defining a χ1 (O-C₁’-N₉-C₄) angle was searched while docked within the putative binding cavity through various low energy conformers with diverse t1 to t5 angles, rotating by -60, -110, -160°, assuming an anti-conformation. Several conformations without any steric bump were selected for further optimization. The initial structures of all complexes were optimized using the Amber force field with a fixed dielectric constant of 4.0 and a terminating gradient of 0.05 kcal • mol⁻¹ • Å⁻¹.

Acknowledgements

This research was supported in part by the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases.

Supporting Information Available: elemental analysis data for compounds 1-20, 23, 31 and 33. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(25) (i) Alvarez, R.; Velázquez, S.; San-Félix, A.; Aquaro, S.; De Clercq, E.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarassa, M. J. 1,2,3-Triazol-[2’,5’-Bis-O-(tert-butyldimethylsilyl)-β-D-ribofuranosyl]-3’-spiro-5”-(4”-amino-1,2”-oxothiole 2”,2”-

(27) Feldman, A., K.; Colasson, B.; Fokin, V.V. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from situ generated azides. *Organic Letters* 2004, 6, 3897-3899.

SCHEME AND FIGURE LEGEND

Scheme 1. Synthesis of 1,2,3-triazol-1-yl analogues of \(N^6\)-methyl-adenosine 1 – 11. Reagents and conditions: (a) \(\text{CH}_3\text{NH}_2\) in THF, 2 d; (b) \(\text{CuSO}_4\cdot5\text{H}_2\text{O}\), sodium ascorbate, L-proline, \(\text{Na}_2\text{CO}_3\), \(\text{NaN}_3\), \(\text{H}_2\text{O}:\text{tBuOH}\) 1:1, 60 °C; (c) \(\text{CuSO}_4\cdot5\text{H}_2\text{O}\), sodium ascorbate, alkyne, \(\text{H}_2\text{O}:\text{tBuOH}\) 3:1, rt.

Scheme 2. Azido/tetrazole tautomerism of a 2-substituted adenosine derivative 23.

Scheme 3. Synthesis of 1,2,3-triazol-4-yl analogues of \(N^6\)-methyl-adenosine 12 – 14. Reagents and conditions: (a) trimethylsilylacetylene, CuI, (Ph\(_3\)P\(_3\))PdCl\(_2\), DMF; (b) 7N \(\text{NH}_3\) in MeOH, 0 °C; (c) \(\text{CuSO}_4\cdot5\text{H}_2\text{O}\), sodium ascorbate, alkyne, \(\text{H}_2\text{O}:\text{tBuOH}\) 3:1, rt.

Scheme 4. Synthesis of 1,2,3-triazol-1-yl analogues of \(N^6\)-methyl-adenosine-5'\(-\text{N-ethyluronamide}\) 15 – 19. Reagents and conditions: (a) \(\text{KMnO}_4\), KOH, rt, 20h; (b) p-nitrophenol, EDCI, DMF, rt; (c) ethylamine; (d) 80% TFA/H\(_2\)O; (e) \(\text{CuSO}_4\cdot5\text{H}_2\text{O}\), sodium ascorbate, L-proline, \(\text{Na}_2\text{CO}_3\), \(\text{NaN}_3\), \(\text{H}_2\text{O}:\text{tBuOH}\) 1:1, 60 °C; (f) \(\text{CuSO}_4\cdot5\text{H}_2\text{O}\), sodium ascorbate, alkyne, \(\text{H}_2\text{O}:\text{tBuOH}\) 1:1, rt.

Scheme 5. Synthesis of compound 20, 2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl)-\(N^6\)-(2-chloro-5-methoxybenzyl)-adenosine. Reagents and conditions: (a) 2-chloro-5-methoxybenzylammonium chloride, Et\(_3\)N, EtOH, reflux; (b) \(\text{CuSO}_4\cdot5\text{H}_2\text{O}\), sodium ascorbate, L-proline, \(\text{Na}_2\text{CO}_3\), \(\text{NaN}_3\), \(\text{H}_2\text{O}:\text{tBuOH}\) 1:1, 60 °C; (c) \(\text{CuSO}_4\cdot5\text{H}_2\text{O}\), sodium ascorbate, alkyne, \(\text{H}_2\text{O}:\text{tBuOH}\) 1:1, rt.

Figure 1. A) Docking complexes of compound 10, 2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl)-\(N^6\)-methyl-adenosine. B) Superimposition of CI-IB-MECA in red and compound 10 in
color by atom type. Residues that were within 5 Å proximity to the ligand in this putative binding site were: L91 (3.33), T94 (3.36), H95 (3.37), Q167 (EL2), F168 (EL2), M172 (EL2), S181 (5.42), M177 (5.38), V178 (5.39), F182 (5.43), W243 (6.48), L246 (6.51), S247 (6.52), N250 (6.55), C251 (6.56), I268 (7.39), S271 (7.42), and H272 (7.43). The ligand is represented by a ball-and-stick model. The H-bonds are indicated with yellow dots. Using MOLCAD ribbon surface program, the A3AR is shown in a ribbon model with different colors for each TM (TM1: red, TM2: orange, TM3: yellow, TM4: green, TM5: cyan, TM6: blue, TM7: purple, H8: violet).
Scheme 1

\[21 \xrightarrow{\text{a}} 22 \xrightarrow{\text{b}} 23 \]

1. \(R = \text{H} \)
2. \(R = \text{ethyl} \)
3. \(R = \text{butyl} \)
4. \(R = 2\text{-hydroxyethyl} \)
5. \(R = \text{dimethylaminomethyl} \)
6. \(R = \text{phenyl} \)
7. \(R = \text{pyridin-2-yl} \)
8. \(R = 4\text{-propoxyphenyl} \)
9. \(R = \text{benzyl} \)
10. \(R = \text{cyclopentylmethyl} \)
11. \(R = \text{cyclohexylmethyl} \)

Scheme 2

\[23 \xrightarrow{\text{c}} \]
Scheme 3

12 R = benzyl
13 R = 3-methoxybenzyl
14 R = 3-Cl-benzyl
Scheme 4

26 \rightarrow 27 \rightarrow 28

c \rightarrow 29 \rightarrow 30 \rightarrow 31

15 R = H
16 R = butyl
17 R = 2-pyridinyl
18 R = benzyl
19 R = cyclopentylmethyl
Scheme 5

21 \rightarrow_{a} \rightarrow 32 \rightarrow_{b} \rightarrow 20

\begin{align*}
\text{21} & \quad \text{20} \\
\text{33} & \quad \text{32}
\end{align*}
Figure 1.
Table 1 Binding affinities of adenosine derivatives at human A1, A2A and A3ARs expressed in CHO cells and relative efficacy at the A3AR.\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>R(_1)</th>
<th>R(_2)</th>
<th>R(_3)</th>
<th>(K_i) (nM) or (% inhibition) at 10µM</th>
<th>(%Efficacy)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH(_2)OH</td>
<td>H</td>
<td>CH(_3)</td>
<td>1000±30 (13±3%)</td>
<td>10.4±0.2</td>
</tr>
<tr>
<td>2</td>
<td>CH(_2)OH</td>
<td>ethyl</td>
<td>CH(_3)</td>
<td>2920±910 (18%)</td>
<td>13.8±3.3</td>
</tr>
<tr>
<td>3</td>
<td>CH(_2)OH</td>
<td>butyl</td>
<td>CH(_3)</td>
<td>848±76 (23%)</td>
<td>11.7±3.1</td>
</tr>
<tr>
<td>4</td>
<td>CH(_2)OH</td>
<td>2-hydroxyethyl</td>
<td>CH(_3)</td>
<td>1270±260 (14%)</td>
<td>45.0±4.4</td>
</tr>
<tr>
<td>5</td>
<td>CH(_2)OH</td>
<td>dimethylaminomethyl</td>
<td>CH(_3)</td>
<td>3800±600 (6%)</td>
<td>117±25</td>
</tr>
<tr>
<td>6</td>
<td>CH(_2)OH</td>
<td>phenyl</td>
<td>CH(_3)</td>
<td>(36%) (5%)</td>
<td>14.9±1.7</td>
</tr>
<tr>
<td>7</td>
<td>CH(_2)OH</td>
<td>pyridin-2-yl</td>
<td>CH(_3)</td>
<td>1970±210 (40%)</td>
<td>10.3±1.5</td>
</tr>
<tr>
<td>8</td>
<td>CH(_2)OH</td>
<td>4-propoxyphenyl</td>
<td>CH(_3)</td>
<td>(49%) (14%)</td>
<td>25.2±2.6</td>
</tr>
<tr>
<td>9</td>
<td>CH(_2)OH</td>
<td>benzyl</td>
<td>CH(_3)</td>
<td>589±55 (20%)</td>
<td>9.5±0.7</td>
</tr>
<tr>
<td>10</td>
<td>CH(_2)OH</td>
<td>cyclopentylmethyl</td>
<td>CH(_3)</td>
<td>335±13 (39%)</td>
<td>1.3±0.4</td>
</tr>
<tr>
<td>11</td>
<td>CH(_2)OH</td>
<td>cyclohexylmethyl</td>
<td>CH(_3)</td>
<td>1430±60 (16±1%)</td>
<td>21.3±8.1</td>
</tr>
<tr>
<td>12</td>
<td>CH(_2)OH</td>
<td>benzyl</td>
<td>CH(_3)</td>
<td>770±210 (21±5%)</td>
<td>53.9±6.6</td>
</tr>
<tr>
<td>13</td>
<td>CH(_2)OH</td>
<td>3-methoxybenzyl</td>
<td>CH(_3)</td>
<td>957±65 (43±10%)</td>
<td>86.1±3.8</td>
</tr>
<tr>
<td>14</td>
<td>CH(_2)OH</td>
<td>3-Cl-benzyl</td>
<td>CH(_3)</td>
<td>956±6 (39±10%)</td>
<td>81.1±5.0</td>
</tr>
<tr>
<td>15</td>
<td>C(_2)(_2)NHCO</td>
<td>H</td>
<td>CH(_3)</td>
<td>590±70 (18±3%)</td>
<td>2.1±0.1</td>
</tr>
<tr>
<td>16</td>
<td>C(_2)(_2)NHCO</td>
<td>butyl</td>
<td>CH(_3)</td>
<td>750±110 (43±1%)</td>
<td>5.6±0.2</td>
</tr>
<tr>
<td>17</td>
<td>C(_2)(_2)NHCO</td>
<td>pyridin-2-yl</td>
<td>CH(_3)</td>
<td>1640±90 (45±12%)</td>
<td>1.8±0.6</td>
</tr>
<tr>
<td>18</td>
<td>C(_2)(_2)NHCO</td>
<td>benzyl</td>
<td>CH(_3)</td>
<td>510±50 (33±2%)</td>
<td>2.8±1.3</td>
</tr>
<tr>
<td>19</td>
<td>C(_2)(_2)NHCO</td>
<td>cyclopentylmethyl</td>
<td>CH(_3)</td>
<td>1250±150 (36±7%)</td>
<td>11.5±1.4</td>
</tr>
<tr>
<td>20</td>
<td>CH(_2)OH</td>
<td>cyclopentylmethyl</td>
<td>2-Cl-5-MeO-Bn</td>
<td>830±40 (18±3%)</td>
<td>18±11</td>
</tr>
<tr>
<td>23</td>
<td>CH(_2)OH</td>
<td>-</td>
<td>CH(_3)</td>
<td>230±10 (23%)</td>
<td>10.8±3.1</td>
</tr>
<tr>
<td>31</td>
<td>C(_2)(_2)NHCO</td>
<td>-</td>
<td>CH(_3)</td>
<td>429±55 (18±3%)</td>
<td>11.4±4.2</td>
</tr>
<tr>
<td>33</td>
<td>CH(_2)OH</td>
<td>-</td>
<td>2-Cl-5-MeO-Bn</td>
<td>60±10 (1800±500)</td>
<td>1.4±0.1</td>
</tr>
</tbody>
</table>
a) All A3AR experiments were performed using cells stably transfected with cDNA encoding one of the human ARs. Binding at human A1, A2A, and A3ARs in this study was carried out as described in Methods using [3H]CCPA, [3H]CGS 21680 or [125I]AB-MECA as radioligand. Values from the present study are expressed as K_i values (mean±s.e.m., $n = 3$, unless noted), or as percent displacement of radioligand.

b) % Activation at 10 µM, relative to cyclic AMP inhibitory effect of 10 µM NECA = 100%. CI-IB-MECA was also a full agonist (100%) in this assay.

c) $n = 2$.
\[\begin{align*}
\text{R}_1 &= \text{CH}_2\text{OH}, \text{CONH-C}_2\text{H}_5 \\
\text{R}_2 &= \text{alkyl, aryl, arylalkyl, cycloalkylmethyl} \\
\text{R}_3 &= \text{Me, substituted Bn} \\
X &= \text{C, Y = N; X = N, Y = C}
\end{align*} \]