Measurement of associated production of vector bosons and \(tt \) in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \)

The CMS Collaboration\(^*\)

Abstract

The first measurement of vector-boson production associated with a top quark-antiquark pair in proton-proton collisions at \(\sqrt{s} = 7 \text{ TeV} \) is presented. The results are based on a dataset corresponding to an integrated luminosity of 5.0 \(\text{fb}^{-1} \), recorded by the CMS detector at the LHC in 2011. The measurement is performed in two independent channels through a trilepton analysis of \(ttZ \) events and a same-sign dilepton analysis of \(ttV \) \((V = W \text{ or } Z) \) events. In the trilepton channel a direct measurement of the \(ttZ \) cross section \(\sigma_{ttZ} = 0.28^{+0.14}_{-0.11} \text{(stat.)}^{+0.06}_{-0.03} \text{(syst.)} \text{ pb} \) is obtained. In the dilepton channel a measurement of the \(ttV \) cross section yields \(\sigma_{ttV} = 0.43^{+0.17}_{-0.15} \text{(stat.)}^{+0.09}_{-0.07} \text{(syst.)} \text{ pb} \). These measurements have a significance, respectively, of 3.3 and 3.0 standard deviations from the background hypotheses and are compatible, within uncertainties, with the corresponding NLO predictions of \(0.137^{+0.012}_{-0.016} \) and \(0.306^{+0.031}_{-0.053} \text{ pb} \).

Submitted to Physical Review Letters

\(^*\)See Appendix B for the list of collaboration members
Although the top quark was discovered more than 15 years ago \cite{1, 2}, many of its properties have not yet been fully investigated. In particular, most of its couplings have never been directly measured. The large value of its mass indicates that the top quark could play a special role in the context of electroweak symmetry breaking. Extensions of the standard model (SM), such as technicolor or other scenarios with a strongly coupled Higgs sector, could alter the top-quark couplings. A measurement of the production of a top-quark pair in association with vector bosons is a key test of the validity of the SM at the TeV scale. In Fig. 1 the most important leading-order Feynman diagrams for $t\bar{t}W$ and $t\bar{t}Z$ production in proton-proton collisions are shown. The current estimate of the cross section for these processes is based on quantum chromodynamics (QCD) calculations at next-to-leading order (NLO), which yield $0.169^{+0.029}_{-0.051}$ pb \cite{3} for $t\bar{t}W$ production, and $0.137^{+0.012}_{-0.016}$ pb \cite{4} for $t\bar{t}Z$ production.

In this Letter, the first measurement of the cross section for associated production of a vector boson and a $t\bar{t}$ pair is presented. Two analyses are conducted: one based on trilepton signatures produced in $t\bar{t}Z$ decays, and one based on same-sign dilepton signatures produced by $t\bar{t}V$ events (with $V = W$ or Z).

This measurement uses data from proton-proton collisions, produced at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5.0 ± 0.1 fb$^{-1}$ \cite{5}. The data were collected by the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) in 2011. As the signal would appear as an excess over a background of similar size, the background estimation is a focus of the analysis. The majority of background contributions are estimated using the data, while remaining background processes are estimated using Monte Carlo (MC) simulations. Simulated MC event samples are generated using the MADGRAPH 5.1.3.30 event generator \cite{6}, interfaced with PYTHIA 6.4 \cite{7} for parton showering. The same generator chain is used for signal events. A GEANT4-based \cite{8} simulation of the response of the CMS detector is used for both signal and background events. These events are processed with the same reconstruction algorithms as the data. Simulated event yields are scaled to the integrated luminosity in the data using cross section calculations to the highest order available, taking into account the trigger and reconstruction efficiencies determined from the data. In addition, the simulated distribution of the number of simultaneous proton-proton collisions within the same bunch crossing (pileup) is reweighted to match the one observed in the data.

A detailed description of the CMS detector can be found elsewhere \cite{9}. Its central feature is a 3.8 T superconducting solenoid of 6 m internal diameter. Within its field volume are the silicon tracker, the crystal electromagnetic calorimeter (ECAL), and the brass/scintillator sampling hadron calorimeter (HCAL). The muon system, composed of drift tubes, cathode strip chambers, and resistive-plate chambers, is installed outside the solenoid, embedded in the steel return yoke. CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC, the y axis pointing up (perpendicular to the LHC plane), and the z axis along the counterclockwise-beam direction. The polar angle

![Feynman Diagrams](image)

Figure 1: Most important leading-order Feynman diagrams for $t\bar{t}W$ and $t\bar{t}Z$ production in proton-proton collisions. The charge conjugate of the diagrams shown is implied.
θ is measured from the positive z axis and the azimuthal angle φ is measured in the x-y plane. The pseudorapidity η is defined as $-\ln|\tan(\theta/2)|$.

Muons [10] are measured with the combination of the tracker and the muon system, in the pseudorapidity range $|\eta| < 2.4$. Electrons [11] are detected as tracks in the tracker pointing to energy clusters in the ECAL up to $|\eta| = 2.5$. Both muons and electrons are required to have a momentum transverse to the beam axis, p_T, greater than 20 GeV. Both the p_T and η requirements are consistent with those employed in the online trigger selection, where the presence of two isolated charged leptons, either electrons or muons, in any flavor combination, is required to accept the events.

The full details of electron and muon identification criteria are described elsewhere [12]. Isolation requirements on lepton candidates are enforced by measuring the additional detector activity in a surrounding cone of $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.3$, where $\Delta \eta$ and $\Delta \phi$ are the differences in pseudorapidity and in azimuthal angle, measured in radians, respectively. For muons the total sum of the transverse momenta of the additional reconstructed tracks and of the energy in the calorimeters in the surrounding cone is required to be less than 15% (5%) of the muon transverse momentum, in the trilepton (dilepton) channel. Electron isolation requirements are similar but vary depending on the shape of the electron shower. To minimize the contribution of lepton candidates arising from jet misidentification, tighter isolation and identification requirements are employed in the dilepton channels.

Jets are reconstructed with a particle-flow (PF) algorithm [13], a global event reconstruction technique which optimally combines the information of all sub-detectors to reconstruct the particles produced in a collision. Reconstructed particle candidates are clustered to form PF jets with the anti-k_T algorithm [14] with a distance parameter of 0.5. The jet energy resolution is typically 15% at 10 GeV and 8% at 100 GeV. Jets are required to be inside the tracker acceptance ($|\eta| < 2.4$), to increase the reconstruction efficiency and the precision of the energy measurement using PF techniques. Jet energy corrections are applied to account for the non-linear response of the calorimeters to the particle energies and other instrumental effects. These corrections are based on in situ measurements using dijet and $\gamma +$ jet data samples [15].

Pileup activity has an effect on jet reconstruction by contributing additional particles to the reconstructed jets. The average energy density due to pileup is evaluated in each event and the corresponding energy is subtracted from each jet [16]. A jet identification requirement, primarily based on the energy balance between charged and neutral hadrons in a jet, is applied to remove misidentified jets. Jets are required to have $p_T > 20$ GeV.

To identify jets originating from the hadronization of bottom quarks, a b-tagging algorithm [17] is employed. The algorithm identifies jets from b-hadron decays by requiring at least two tracks to have significant impact parameters with respect to the primary interaction vertex. This tagger is used here with two operating points: the loose point corresponds to an efficiency for jets originating from b quarks of about 80% and a misidentification probability for jets from light quarks and gluons of 10%, while the medium operating point provides an efficiency for b jets of about 65% and a misidentification probability of about 1%.

In the trilepton analysis, events originating from the process

$$pp \rightarrow t\bar{t}Z \rightarrow (t \rightarrow b\ell^+\nu)(t \rightarrow bjj)(Z \rightarrow \ell^+\ell^-) \quad (\text{with } \ell = e \text{ or } \mu)$$

are searched for. Events are selected if they contain two same-flavor, opposite-charge leptons (electrons or muons) with $p_T > 20$ GeV, where the dilepton system must have an invariant mass between 81 and 101 GeV and $p_T > 35$ GeV. The presence of a third lepton with $p_T > 10$ GeV and at least three jets, two of which are positively b-tagged (one medium and one loose tag),
is required, and the scalar sum of the p_T of all selected jets (H_T) is required to be larger than 120 GeV. These selection requirements have been chosen by optimizing the expected significance of the measurement.

The main background contributions in this analysis are dilepton events from the Drell–Yan process and from $t\bar{t}$ events, where a third lepton is reconstructed from hadronization products, and WZ events where both vector bosons decay to leptons. To determine the background contributions from the data, event samples with less stringent requirements are used. Dilepton $e\mu$ events which satisfy only the lepton p_T and jet multiplicity requirements are dominated by top-quark pair production, and are used to control the normalization of the $t\bar{t}$ simulation. A normalization factor of 1.05 ± 0.12 with respect to the NLO cross section is found. The normalization of the Drell–Yan and WZ simulations is determined from a control sample where all the signal requirements are met, except there are no b-tagged jets. The simulations must be normalized by a factor of 1.30 ± 0.13 to correctly predict the number of events in the Z-mass peak in this background-dominated region. Sources of background arising from single-top-quark production mediated through a virtual W boson, in conjunction with a Z boson (tbZ), are taken from the simulation, scaled to the leading order cross section, and an uncertainty of 50% is assumed on this yield. The contribution from events containing a SM Higgs boson, assuming a mass of 125 GeV, as suggested by recent findings [18, 19], has been estimated and found negligible for the trilepton channel.

The total systematic uncertainty is evaluated by assessing the relative change in signal efficiency and background yield in the simulation when varying relevant parameters by one standard deviation. The sources of systematic uncertainty include experimental uncertainties such as the background estimate, lepton reconstruction and trigger efficiencies, jet energy scale and resolution, b-tagging efficiency, pileup modeling, and the integrated luminosity. Model uncertainties arising from scale variations of the matrix-element/parton-shower matching scale and the hard-scattering scale Q^2 are also included. The dominant uncertainty comes from the background estimate and amounts to 27% of the background yield; this includes the statistical uncertainty on the number of simulated events and the uncertainty on the background scale factors determined from the data all added in quadrature. All other uncertainties are less than 5%. The signal efficiencies are determined from MC simulations using MADGRAPH. In order to account for any difference due to the NLO predictions, signal efficiencies are also calculated using the POWHEG BOX [20–22] generator. The two simulations differ in their predictions of the signal efficiencies by 13%, and this value is taken as a systematic uncertainty. Systematic uncertainties that affect both signal and background yields are assumed to be fully correlated. The total systematic uncertainty on the measured cross section is 15%.

The event yields after applying the full event selection are shown in Fig. 2. Nine events are observed, compared to a background expectation of 3.2 ± 0.8 events. From the combination of the four decay channels, the presence of a $t\bar{t}Z$ signal is established with a combined significance of 3.3 standard deviations, corresponding to a p-value of 4×10^{-4}, as obtained with an asymptotic profile likelihood estimator [23]. The cross section is extracted through a simultaneous measurement performed in the four decay channels, and is measured to be

$$\sigma_{t\bar{t}Z} = 0.28^{+0.14}_{-0.11} \text{ (stat.)}^{+0.06}_{-0.03} \text{ (syst.) pb.}$$

The measured cross section is found to be compatible, within uncertainties, with the NLO prediction of $0.137^{+0.012}_{-0.010}$ pb [14]. A comparison of the observed and predicted distributions for several kinematic variables are available in appendix A.
The same-sign dilepton analysis searches for events with the following decay chains:

\[pp \rightarrow t\bar{t}W \rightarrow (t \rightarrow b\ell^\pm\nu)(t \rightarrow bj)(W \rightarrow \ell^\pm\nu); \]
\[pp \rightarrow t\bar{t}Z \rightarrow (t \rightarrow b\ell^\pm\nu)(t \rightarrow bj)(Z \rightarrow \ell^\pm\ell^\mp) \quad (\text{with } \ell = e \text{ or } \mu). \]

The final set of selection criteria for the dilepton channel requires the presence of two same-sign leptons, one with \(p_T > 55 \) and the other with \(p_T > 30 \) GeV, and a dilepton invariant mass greater than 8 GeV, at least three jets with \(p_T > 20 \) GeV of which at least one is b-tagged by the medium operating point, and \(H_T > 100 \) GeV. These selection requirements have been chosen by optimizing the expected significance of the signal excess. To make this data sample statistically independent of the data selected for the trilepton channel, events passing the trilepton selection are removed.

The benefit of searching for same-sign dilepton events is that SM processes containing two prompt same-sign leptons in the final state have very small cross sections. The background processes considered here include diboson production (WZ, ZZ, W\(\gamma \), Z\(\gamma \), W\(\pm \)W\(\pm \)), tbZ, triboson production, and production of vector-boson pairs from double-parton scattering. Yields from these processes are taken directly from the simulation and scaled to NLO predictions whenever available.

The dominant background contributions originate from non-prompt leptons or misreconstruction effects: pions in jets or decay products of heavy-flavor mesons may give rise to non-prompt lepton candidates; charge misidentification in events with opposite-sign lepton pairs results in same-sign events. These background rates are determined from control regions in the data using techniques that determine the prompt and non-prompt lepton misidentification rates from QCD dijet and Z \(\rightarrow \ell\ell \) event samples [24]. The result is an estimate, fully based on control samples in the data, of backgrounds with one or more lepton candidates that are not reconstructed from a prompt final-state lepton. These include semi-leptonic tt decays, Drell–Yan events with hard jet production, and QCD multijet production.

The background estimate due to charge misidentification of one of the leptons is obtained from the number of opposite-sign dilepton events in the signal region and the probability to wrongly measure the charge of a lepton. This probability is negligible for muons, but considerable for electrons. From the fraction of same-sign events in a control region dominated by Z decay,
the electron charge misidentification probability is measured to be 0.02% (0.3%) in the barrel (endcap) region of the detector.

Systematic uncertainties relative to experimental measurements or model uncertainties are evaluated in a similar manner as in the trilepton channel, and are expressed in terms of uncertainties on the signal efficiency or the background yield. Uncertainties on the background prediction are quantified differently for each of the background yield estimates: a 50% uncertainty is assigned to the estimate of processes with non-prompt leptons; the uncertainty on charge misidentification backgrounds is driven by the uncertainty on the measured single-lepton charge misidentification probability and amounts to about 20%; the uncertainty on WZ production is taken from the CMS cross section measurement and is equal to 20%; for all the other SM processes taken from simulation, most of which have not been measured yet, an uncertainty of 50% is assigned. Similar to the trilepton analysis, the uncertainty of the signal efficiency is estimated to be 13%. All uncertainties that affect both signal and background yields are assumed to be fully correlated, whereas background prediction uncertainties are uncorrelated. The total systematic uncertainty in the dilepton channel is 15%. The contribution from a SM Higgs boson with a mass of 125 GeV to the same-sign dilepton sample is estimated to be as large as 0.8 events. The majority of these events originate from Higgs boson production in associated production with $t\bar{t}$ pairs, in conjunction with the decay channels $H \rightarrow WW$ and $H \rightarrow \tau\tau$. This contribution is not included in the background estimation for this analysis, as doing so would assume a degree of knowledge about the SM Higgs which has not been verified yet.

Signal and background event yields are obtained as shown in Fig. 2. A total of 16 events is selected in the data, compared to an expected background contribution of 9.2 ± 2.6 events. The presence of a $t\bar{t}V$ ($V = W$ or Z) signal is established with a significance equivalent to 3.0 standard deviations and a corresponding p-value of 0.002, as computed by multiplying the likelihoods of the three decay channels with an asymptotic profile likelihood estimator. The combined cross section, as measured simultaneously from the three channels, is

$$\sigma_{t\bar{t}V} = 0.43^{+0.17}_{-0.15} \text{(stat.)}^{+0.09}_{-0.07} \text{(syst.)} \text{pb}.$$

The measured cross section is compatible with the NLO prediction of $0.306^{+0.031}_{-0.053}$ pb. A comparison of the observed and predicted distributions for several kinematic variables are available in appendix A.

In summary, the first measurement of the cross section of vector boson production associated with a top quark-antiquark pair at $\sqrt{s} = 7$ TeV has been presented. In the trilepton channel a direct measurement of the $t\bar{t}Z$ cross section $\sigma_{t\bar{t}Z} = 0.28^{+0.14}_{-0.11} \text{(stat.)}^{+0.06}_{-0.03} \text{(syst.)} \text{pb}$ is obtained, with a significance of 3.3 standard deviations from the background hypothesis. In the dilepton channel a measurement of the $t\bar{t}V$ process yields $\sigma_{t\bar{t}V} = 0.43^{+0.17}_{-0.15} \text{(stat.)}^{+0.09}_{-0.07} \text{(syst.)} \text{pb}$, with a significance of 3.0 standard deviations from the background hypothesis. Both cross section measurements are compatible with the NLO predictions. These results are summarized in Fig. 3.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for
Figure 3: Measurements of the $t\bar{t}Z$ and $t\bar{t}V$ production cross sections, in the same-sign dilepton (left) and trilepton channel (right), respectively. The measurements are compared to the NLO calculations (horizontal black lines) and their uncertainty (grey bands). Internal error bars for the measurements represent the statistical component of the uncertainty.

delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP-Center, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[doi:10.1103/PhysRevLett.74.2632](http://dx.doi.org/10.1103/PhysRevLett.74.2632)

A Distributions of kinematic variables after final selection

Comparisons are provided between the data and the signal and background predictions, for events passing the full set of selection requirements. In Fig. 4 the comparisons are shown for the trilepton channel: the transverse momentum $p_T(Z)$ of the Z boson (left), the scalar sum H_T of all jet transverse momenta (center), and the missing transverse energy E_T, computed as the norm of the vectorial sum of all particle-flow candidates in the event (right). Fig. 5 shows the comparisons for the same-sign dilepton channel: leading lepton transverse momentum (left), H_T (center) and E_T (right).

![Figure 4: Distributions of kinematic variables after final selection requirements for the trilepton analysis: transverse momentum of the Z boson (left), H_T (center) and E_T (right). The uncertainty on the background yield is superimposed with a grey hashed band.](image)

![Figure 5: Distributions of kinematic variables after final selection requirements for the same-sign dilepton analysis: leading lepton transverse momentum (left), H_T (center) and E_T (right). The uncertainty on the background yield is superimposed with a grey hashed band.](image)
A Distributions of kinematic variables after final selection
B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Université Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebbers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev2, P. Iaydjiev2, S. Pipero, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgamma, A. Ellithi Kamel, A.M. Kuotb Awad, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluji, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, A. Florent, R. Granier de Cassagnac, M. Haguenaier,
Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
INFIN Sezione di Roma a, Universit`a di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, C. Fanellia,b, M. Grassia,b,2, E. Longoa,b, P. Meridiania,2, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, L. Soffia,b

INFIN Sezione di Torino a, Universit`a di Torino b, Universit`a del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, N. Demariaa, C. Mariottia,2, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,2, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa

INFIN Sezione di Trieste a, Universit`a di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia,2, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,2, D. Montaninoa,b, A. Penzoa, A. Schizzia,b

Kangwon National University, Chunchon, Korea
T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Aut´onoma de San Luis Potos´ı, San Luis Potos´ı, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, I. Shreyber, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin⁴, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsova, M. Perfilov, S. Petrushankova, A. Popov, L. Sarycheva¹, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin², V. Kachanov, D. Konstaninov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic⁴¹, M. Djordjevic, M. Ekmedzic, D. Krpic⁴¹, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland
C. Amsler, V. Chiochia, C. Favar, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, E. Simili, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, Y.O. Günaydın, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA
K. Hatakeyama, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio
Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn
Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill,
P.C. Bhat, K. Burket, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir,
V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, J. Hanlon, R.M. Harris,
J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Klima, S. Kunori, S. Kwan,
C. Leonidopoulos54, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino,
V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna,
L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore,
W. Wu, F. Yang, J.C. Yun

University of Florida, Gainesville, USA
D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim,
J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic56,
G. Mitselmakher, L. Muniz, M. Park, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze,
M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian,
V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner,
R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix,

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki57, W. Clarida, F. Duru, S. Griffiths, J.-P. Merlo,
H. Mermerkaya58, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck,

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, G. Hu,
P. Maksimovic, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer,
G. Tinti, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha,
I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, T. Kolberg,
The CMS Collaboration

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA
L. Antonelli, B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA

†: Deceased

1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
4: Also at California Institute of Technology, Pasadena, USA
5: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
6: Also at Suez Canal University, Suez, Egypt
7: Also at Zewail City of Science and Technology, Zewail, Egypt
8: Also at Cairo University, Cairo, Egypt
9: Also at Fayoum University, El-Fayoum, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Now at Ain Shams University, Cairo, Egypt
12: Also at National Centre for Nuclear Research, Swierk, Poland
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Joint Institute for Nuclear Research, Dubna, Russia
15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at The University of Kansas, Lawrence, USA
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at Eötvös Loránd University, Budapest, Hungary
20: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
21: Now at King Abdulaziz University, Jeddah, Saudi Arabia
22: Also at University of Visva-Bharati, Santiniketan, India
23: Also at Sharif University of Technology, Tehran, Iran
24: Also at Isfahan University of Technology, Isfahan, Iran
25: Also at Shiraz University, Shiraz, Iran
26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
27: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
28: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
31: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
32: Also at University of California, Los Angeles, USA
33: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
34: Also at INFN Sezione di Roma, Roma, Italy
35: Also at University of Athens, Athens, Greece
36: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
37: Also at Paul Scherrer Institut, Villigen, Switzerland
38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
39: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
40: Also at Gaziosmanpasa University, Tokat, Turkey
41: Also at Adiyaman University, Adiyaman, Turkey
42: Also at Izmir Institute of Technology, Izmir, Turkey
43: Also at The University of Iowa, Iowa City, USA
44: Also at Mersin University, Mersin, Turkey
45: Also at Ozyegin University, Istanbul, Turkey
46: Also at Kafkas University, Kars, Turkey
47: Also at Suleyman Demirel University, Isparta, Turkey
48: Also at Ege University, Izmir, Turkey
49: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
50: Also at Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
51: Also at School of Physics and Astronomy, University of Southampton, Southampton,
United Kingdom
52: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
53: Also at Utah Valley University, Orem, USA
54: Now at University of Edinburgh, Scotland, Edinburgh, United Kingdom
55: Also at Institute for Nuclear Research, Moscow, Russia
56: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
57: Also at Argonne National Laboratory, Argonne, USA
58: Also at Erzincan University, Erzincan, Turkey
59: Also at Yıldız Technical University, Istanbul, Turkey
60: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
61: Also at Kyungpook National University, Daegu, Korea