Proceedings
7TH STRATEGIC WORKSHOP 2005

Future Convergence of Wired and Wireless Networks

Nibe, Denmark
Sept. 16-18, 2005

16-18 SEPTEMBER 2005

St. Restrup Herregaard
Restrup Kærvej 10, 9240 Nibe
Denmark
Ad Hoc Network Virtualization
(Virtual Private Ad Hoc Networks)

Jeroen Hoebeke, Ingrid Moerman
Ghent University (INTEC) – IBBT – IMEC

Current and Future Evolution

- 4G: Evolution towards a "network of networks"
 > integration of different technologies:
 - Cellular: > 1 billion subscribers, migration to UMTS
 - WLAN/WPAN/WBAN: lower cost, higher efficiency, different radio technologies
 - Satellite: successful for broadcasting
 - Fixed: higher bandwidth, lower cost, VoIP
 - Ad hoc and Mesh Networks: infrastructureless, self-organizing
 > Some characteristics: IP-based, broadband, mobility support, heterogeneity

Consequences?
Consequences - observations

- Connectivity anywhere, at anytime and from any device
- Bigger and bigger
 - In terms of the user base
 - In terms of the number of devices
 - In terms of the number of available services and data
 - In terms of the number of available networks

Bigger is better?
- User will be overwhelmed: what, when and how to choose?
- More security risks
- Current focus is mainly on connectivity
- How to manage all this?

What are the user's communication needs?
- Communication often takes place within a limited context or scope, e.g.
 - Work related communication: projects, customers, students...
 - Personal communication: friends, family, hobbies...
- And thus involves only a limited subset of devices
 - Dynamic subset
 - Mobile subset
 - Distributed subset

This aspect of communication is not reflected in current and future communication networks
Network virtualization:
- 4G all-IP network = carrier that provides end-to-end connectivity
- On top: multiple virtual networks that logically structure the network and its services into small secure communities

Ad hoc
- Formed when needed according to user needs and context
- Self-organizing and self-maintaining
- Dealing with distributed, mobile and dynamic characteristics

= VPAN (Virtual Private Ad Hoc Network)

Definition:
- A secure and self-organizing virtual overlay network of distributed nodes
- Deploying ad hoc network techniques and private addressing to enable connectivity
- Secure: both in terms of networking and applications and services

VPAN example

Communication is confined within secure environment provided by the overlay
Network virtualization:
- 4G all-IP network = carrier that provides end-to-end connectivity
- On top: multiple virtual networks that logically structure the network and its services into small secure communities

Ad hoc
- Formed when needed according to user needs and context
- Self-organizing and self-maintaining
- Dealing with distributed, mobile and dynamic characteristics

= VPAN (Virtual Private Ad Hoc Network)

Definition:
- A secure and self-organizing virtual overlay network of distributed nodes
- Deploying ad hoc network techniques and private addressing to enable connectivity
- Secure: both in terms of networking and applications and services

Communication is confined within secure environment provided by the overlay
Applications of VPAN concept

- Rescue people (police men, fire fighters...) organized in teams
- Soldiers divided in separated military units, potentially hierarchically organized
- Overlay network between collaborating people: within a department, between people at a construction site, monitoring networks, augmented reality support
- Virtual classrooms, project collaborations
- Multi-user games
- Closed P2P communities
- Overlay of all your personal devices
- Distributed virtual desktop (i.e., access your data from any device)
- Cab network, surveillance systems, tourist information

The VPAN concept should support all these applications in a generic way

Challenges

- VPAN membership configuration and management
 - VPAN creation and definition of membership policies
 - Secure storage of membership information
 - Member addition, removal, banishment
 - Member authentication
 - Provider/operator support?
- VPAN formation and maintenance
 - Self-organization
 - Member discovery
 - Addressing and routing
 - Member mobility management
- Protocol stack development
 - Support of multiple VPANs in one device (multiple dynamic stacks with common management platform)
 - Device support (e.g., small devices like mobile phones)
Challenges (2)

- Security
 - Member authentication
 - Key establishment
 - Encryption, tunneling...

- Application middleware
 - Not only limit VPAN access to members
 - Also provide access right enforcement on applications and services
 - E.g.: project files can only be access through the VPAN established with the project team members
 - Software support needed (for interfacing with VPAN)
 - Additional level of security (next to network level security provided by the overlay)

- Generic network platform

- Operate on top of heterogeneous networks
- ...

Limitations of current technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>Layer 2 solution: switching, no routing or private addressing</td>
</tr>
<tr>
<td></td>
<td>No application support</td>
</tr>
<tr>
<td></td>
<td>No security</td>
</tr>
<tr>
<td>VPN/Dynamic VPW</td>
<td>Mainly static (predefined endpoints)</td>
</tr>
<tr>
<td></td>
<td>No mobility management through dynamic tunneling</td>
</tr>
<tr>
<td></td>
<td>Security only between two endpoints</td>
</tr>
<tr>
<td></td>
<td>No application support</td>
</tr>
<tr>
<td>P2P Overlay</td>
<td>Application layer solution that runs on top of the existing IP infrastructure</td>
</tr>
<tr>
<td></td>
<td>Limited flexibility as too tightly coupled with a specific application: not generic enough</td>
</tr>
<tr>
<td>VIOLINK</td>
<td>Distributed overlay of virtual machines: each virtual machine can run its own applications</td>
</tr>
<tr>
<td></td>
<td>Central management</td>
</tr>
<tr>
<td></td>
<td>No mobility management</td>
</tr>
<tr>
<td></td>
<td>Developed with grid computing in mind</td>
</tr>
</tbody>
</table>
Conclusions

- **Evolution towards all-IP 4G networks**
 - Enabler of connectivity anywhere, at anytime and from any device
 - Provides the connectivity, but is logically (from a user perspective) unstructured
 - Existing technologies do not support our vision of logical structuring

- **Migration towards ad hoc network virtualization (VPAN)**
 - Virtual IP overlays established on top of physical IP infrastructure
 - Using ad hoc networking techniques
 - Communication confined within member nodes
 - ... and within applications and services that have sufficient access rights

- **Transparent user-friendly communication platform that benefits from connectivity offered by the underlying base network**

Questions?

Thank you