A characterization of multiple \((n - k)\)-blocking sets in projective spaces of square order

S. Ferret L. Storme P. Sziklai\(^*\) Zs. Weiner

Abstract

In [10], it was shown that small \(t\)-fold \((n - k)\)-blocking sets in \(\text{PG}(n,q)\), \(q = p^h\), \(p\) prime, \(h \geq 1\), intersect every \(k\)-dimensional space in \(t \mod p\) points. We characterize in this article all \(t\)-fold \((n - k)\)-blocking sets in \(\text{PG}(n,q)\), \(q\) square, \(q \geq 661\), \(t < c_p q^{1/6}/2\), \(|B| < tq^{n-k} + 2tq^{n-k-1} \sqrt{q}\), intersecting every \(k\)-dimensional space in \(t \mod \sqrt{q}\) points.

1 Introduction

Throughout this paper, \(\text{PG}(n,q)\) will denote the \(n\)-dimensional projective space over the Galois field \(\text{GF}(q)\), where \(q = p^h\), \(p\) prime.

A \(t\)-fold \((n - k)\)-blocking set \(B\) of \(\text{PG}(n,q)\), with \(0 < k < n\), is a set of points of \(\text{PG}(n,q)\) intersecting every \(k\)-dimensional subspace of \(\text{PG}(n,q)\) in at least \(t\) points.

A 1-fold \((n - k)\)-blocking set \(B\) of \(\text{PG}(n,q)\) containing an \(\text{PG}(n - k,q)\) is called trivial.

A point \(r\) of \(B\) is called essential if there is a \(k\)-dimensional subspace through \(r\) intersecting \(B\) in precisely \(t\) points. The \(t\)-fold blocking set \(B\) is called minimal if all of its points are essential. A 1-fold \((n - k)\)-blocking set is also called an \((n - k)\)-blocking set. A \(t\)-fold 1-blocking set in \(\text{PG}(2,q)\) is also called a \(t\)-fold blocking set, or a \(t\)-fold planar blocking set.

These latter \(t\)-fold planar blocking sets have been studied in great detail.

Theorem 1.1 (Blokhuis et al. [8]) Let \(B\) be a \(t\)-fold blocking set in \(\text{PG}(2,q)\), \(q = p^h\), \(p\) prime, of size \(t(q + 1) + c\). Let \(c_2 = c_3 = 2^{-1/3}\) and \(c_p = 1\) for

\(^*\)The third author is grateful for the partial support of OTKA T049662, T067867 and Bolyai grants.
If \(q = p^{2d+1} \) and \(t < q/2 - c_p q^{2/3}/2 \), then \(c \geq c_p q^{2/3} \), unless \(t = 1 \) in which case \(B \) with \(|B| < q + 1 + c_p q^{2/3} \), contains a line.

(2) If \(4 < q \) is a square, \(t < c_p q^{1/6} \) and \(c < c_p q^{2/3} \), then \(c \geq \sqrt{tq} \) and \(B \) contains the union of \(t \) pairwise disjoint Baer subplanes, except for \(t = 1 \) in which case \(B \) contains a line.

(3) If \(q = p^2 \), \(p \) prime, and \(t < q^{1/4}/2 \) and \(c < p[\frac{1}{4} + \sqrt{\frac{p+1}{2}}] \), then \(c \geq t\sqrt{q} \) and \(B \) contains the union of \(t \) pairwise disjoint Baer subplanes, except for \(t = 1 \) in which case \(B \) contains a line or a Baer subplane.

Theorem 1.2 (Ball [1]) A \(t \)-fold blocking set in \(PG(2, q) \) which does not contain a line has at least \(tq + \sqrt{tq} + 1 \) points.

If \(B \) is a \(t \)-fold blocking set in \(PG(2, p) \), where \(p > 3 \) is prime, and if \(1 < t < p/2 \), then \(|B| \geq (t+1/2)(p+1) \), while if \(t > p/2 \), then \(|B| \geq (t+1)p \).

In the theory of 1-fold planar blocking sets, \(1 \mod p \) results for small 1-fold planar blocking sets play an important role.

Definition 1.3 A blocking set of \(PG(2, q) \) is called small when it has less than \(3(q+1)/2 \) points.

If \(q = p^h \), \(p \) prime, \(h \geq 1 \), the exponent \(e \) of the minimal blocking set \(B \) of \(PG(2, q) \) is the maximal integer \(e \) such that every line intersects \(B \) in \(1 \mod p^e \) points.

Theorem 1.4 Let \(B \) be a small minimal 1-fold blocking set in \(PG(2, q) \), \(q = p^h \), \(p \) prime, \(h \geq 1 \). Then \(B \) intersects every line in \(1 \mod p^e \) points, so for the exponent \(e \) of \(B \), we have \(1 \leq e \leq h \). (Szönyi [18])

In fact, this exponent \(e \) is a divisor of \(h \). (Sziklai [17])

This result was extended by Szönyi and Weiner [19] to 1-fold \((n-k)\)-blocking sets in \(PG(n, q) \).

Definition 1.5 A 1-fold \((n-k)\)-blocking set of \(PG(n, q) \) is called small when it has less than \(3(q^{n-k}+1)/2 \) points.

If \(q = p^h \), \(p \) prime, \(h \geq 1 \), the exponent \(e \) of the minimal 1-fold \((n-k)\)-blocking set \(B \) is the maximal integer \(e \) such that every hyperplane intersects \(B \) in \(1 \mod p^e \) points.

A most interesting question of the theory of blocking sets is to classify the small blocking sets. A natural construction (blocking the \(k \)-subspaces of \(PG(n, q) \)) is a subgeometry \(PG(h(n-k)/e, p^e) \), if it exists (recall \(q = p^h \), so \(1 \leq e \leq h \) and \(e|h \)).
It is easy to see that the projection of a blocking set, w.r.t. k-dimensional subspaces, from a vertex V onto an r-dimensional subspace of $\text{PG}(n,q)$, is again a blocking set, w.r.t. the $(k+r-n)$-dimensional subspaces of $\text{PG}(r,q)$ (where $\text{dim}(V) = n - r - 1$ and V is disjoint from the blocking set).

A blocking set of $\text{PG}(r,q)$, which is a projection of a subgeometry of $\text{PG}(n,q)$, is called linear. (Note that the trivial blocking sets are linear as well.) Linear blocking sets were defined by Lunardon, and they were first studied by Lunardon, Polito and Polverino [12], [13].

Conjecture 1.6 (Linearity Conjecture [17]) In $\text{PG}(n,q)$, every small minimal blocking set, with respect to k-dimensional subspaces, is linear.

There are some cases of the Conjecture that are proved already.

Theorem 1.7 For $q = p^h$, p prime, $h \geq 1$, every small minimal non-trivial blocking set w.r.t. k-dimensional subspaces is linear, if

(a) $n = 2$, $k = 1$ (so we are in the plane) and:

(i) (Blokhuis [5]) $h = 1$ (i.e. there is no small non-trivial blocking set at all);

(ii) (Szőnyi [18]) $h = 2$ (the only non-trivial example is a Baer subplane with $p^2 + p + 1$ points);

(iii) (Polverino [14]) $h = 3$ (there are two examples, one with $p^3 + p^2 + 1$ and another with $p^3 + p^2 + p + 1$ points);

(iv) (Blokhuis, Ball, Brouwer, Storme, Szőnyi [6], Ball [2]) if $p > 2$ and there exists a line ℓ intersecting B in $|B \cap \ell| = |B| - q$ points (so a blocking set of Rédei type);

(b) for general k:

(i) (Szőnyi and Weiner [19]) if $h(n-k) \leq n$, $p > 2$, and B is not contained in an $(h(n-k)-1)$-dimensional subspace;

(ii) (Storme and Weiner [16] (for $k = n - 1$), Bokler [9] and Weiner [20]) $h = 2$, $q \geq 16$;

(iii) (Storme and Sziklai [15]) if $p > 2$ and there exists a hyperplane H intersecting B in $|B \cap H| = |B| - q^{n-k}$ points (so a blocking set of Rédei type).

The following (mod p) result is known.
Theorem 1.8 (Szönyi and Weiner [19]) A minimal 1-fold \((n-k)\)-blocking set in \(\text{PG}(n,q)\), \(q = p^h\), \(p > 2\) prime, of size less than \(\frac{3}{2}(q^{n-k} + 1)\) intersects every subspace in zero or in 1 \((\text{mod } p)\) points.

There is an even more general version of the Conjecture. A \(t\)-fold blocking set w.r.t. \(k\)-dimensional subspaces is a point set which intersects each \(k\)-dimensional subspace in at least \(t\) points. Multiple points may be allowed as well.

Conjecture 1.9 (Linearity Conjecture for multiple blocking sets [17])

In \(\text{PG}(n,q)\), any \(t\)-fold minimal blocking set \(B\), with respect to \(k\)-dimensional subspaces, is the union of some (not necessarily disjoint) linear point sets \(B_1, \ldots, B_s\), where \(B_i\) is a \(t_i\)-fold blocking set w.r.t. \(k\)-dimensional subspaces and \(t_1 + \cdots + t_s = t\); provided that \(t\) and \(|B|\) are small enough (\(t \leq T(n,q,k)\) and \(|B| \leq S(n,q,k)\) for two suitable functions \(T\) and \(S\)).

Again, some cases of this conjecture have been proved already; in this paper, we cover many new cases which provide “evidence” to the Linearity Conjecture for multiple blocking sets.

Note that there exists a \((\sqrt[q]{q} + 1)\)-fold blocking set in \(\text{PG}(2,q)\), constructed by Ball, Blokhuis and Lavrauw [3], which is not the union of smaller blocking sets. (This multiple blocking set is a linear point set.)

The 1 \((\text{mod } p)\) result in \(\text{PG}(2,q)\), \(q = p^h\), \(p\) prime, was extended by Blokhuis et al. to a \(t\) \((\text{mod } p)\) result on small minimal \(t\)-fold blocking sets in \(\text{PG}(2,q)\) [7].

Definition 1.10 A \(t\)-fold blocking set of \(\text{PG}(2,q)\) is called small when it has less than \((t + 1/2)(q+1)\) points.

If \(q = p^h\), \(p\) prime, the exponent \(e\) of the minimal \(t\)-fold blocking set \(B\) in \(\text{PG}(2,q)\) is the maximal integer \(e\) such that every line intersects \(B\) in \(t\) \((\text{mod } p^e)\) points.

Theorem 1.11 (Blokhuis et al. [7]) Let \(B\) be a small minimal \(t\)-fold blocking set in \(\text{PG}(2,q)\), \(q = p^h\), \(p\) prime, \(h \geq 1\). Then \(B\) intersects every line in \(t\) \((\text{mod } p)\) points.

Regarding characterization results on small minimal 1-fold \((n-k)\)-blocking sets in \(\text{PG}(n,q)\), we mention the following results.

In the next theorem, \(\theta_m\) denotes the size of an \(m\)-dimensional space \(\text{PG}(m,q)\).
Theorem 1.12 (Bokler [9]) The minimal \((n-k)\)-blocking sets of cardinality at most \(\theta_{n-k} + \sqrt[4]{q}\) in projective spaces \(\text{PG}(n,q)\) of square order \(q\), \(q \geq 16\), are Baer cones with an \(m\)-dimensional vertex \(\text{PG}(m,q)\) and base a Baer subgeometry \(\text{PG}(2(n-k-m-1),\sqrt[4]{q})\), for some \(m\) with \(\max\{-1, n-2k-1\} \leq m \leq n-k-1\).

In the following theorem, \(s(q)\) denotes the size of the smallest blocking set in \(\text{PG}(2,q)\), \(q\) square, not containing a line or Baer subplane.

Theorem 1.13 (Storme and Weiner [16]) Let \(K\) be a minimal 1-blocking set in \(\text{PG}(n,q)\), \(q\) square, \(q = p^h\), \(h \geq 1\), \(p \geq 3\) prime, \(n \geq 3\), with \(|K| \leq s(q)\). Then \(K\) is a line or a minimal planar blocking set of \(\text{PG}(n,q)\).

Theorem 1.14 (Storme and Weiner [16]) In \(\text{PG}(n,q^3)\), \(q = p^h\), \(h \geq 1\), \(p\) prime, \(p \geq 7\), \(n \geq 3\), a minimal 1-blocking set \(K\) of cardinality at most \(q^3 + q^2 + q + 1\) is either:

1. a line;
2. a Baer subplane when \(q\) is a square;
3. a minimal blocking set of cardinality \(q^3 + q^2 + 1\) in a plane of \(\text{PG}(n,q^3)\);
4. a minimal blocking set of cardinality \(q^3 + q^2 + q + 1\) in a plane of \(\text{PG}(n,q^3)\);
5. a subgeometry \(\text{PG}(3,q)\) in a 3-dimensional subspace of \(\text{PG}(n,q^3)\).

The following result was the first characterization result to use the 1 (mod \(p\)) result of Theorem 1.8.

Theorem 1.15 (Weiner [20]) Let \(B\) be a 1-fold \((n-k)\)-blocking set in \(\text{PG}(n,q = p^{2h})\), \(p \geq 2\) prime, \(q \geq 81\), of size \(|B| < 3(q^{n-k} + 1)/2\) and intersecting every \(k\)-space in 1 (mod \(\sqrt[4]{q}\)) points. Then \(B\) is a Baer cone with an \(m\)-dimensional vertex \(\text{PG}(m,q)\) and base a Baer subgeometry \(\text{PG}(2(n-k-m-1),\sqrt[4]{q})\), for some \(m\) with \(\max\{-1, n-2k-1\} \leq m \leq n-k-1\).

Regarding characterizations of small minimal \(t\)-fold \((n-k)\)-blocking sets in \(\text{PG}(n,q)\), we mention the following result.

Theorem 1.16 (Barát and Storme [4]) Let \(B\) be a \(t\)-fold 1-blocking set in \(\text{PG}(n,q)\), \(q = p^h\), \(p\) prime, \(q \geq 661\), \(n \geq 3\), of size \(|B| < tq + c_p q^{2/3} - (t-1)(t-2)/2\), with \(c_2 = c_3 = 2^{-1/3}\), \(c_p = 1\) when \(p \geq 3\), and with \(t < \min(c_p q^{1/6}, q^{1/4}/2)\). Then \(B\) contains a union of \(t\) pairwise disjoint lines and/or Baer subplanes.

Recently, in [10], the following \(t\) (mod \(p\)) result on weighted \(t\)-fold \((n-k)\)-blocking sets in \(\text{PG}(n,q)\) has been obtained.
Theorem 1.17 (Ferret et al. [10]) Let B be a minimal weighted t-fold $(n-k)$-blocking set of $\text{PG}(n,q)$, $q = p^h$, p prime, $h \geq 1$, of size $|B| = tq^{n-k}+t+k'$, with $t+k' \leq (q^{n-k}-1)/2$.

Then B intersects every k-dimensional space in $t \pmod{p}$ points.

We now use this $t \pmod{p}$ result to characterize multiple blocking sets. We present in this article characterization results on small t-fold $(n-k)$-blocking sets in $\text{PG}(n,q)$, q square, intersecting every k-dimensional space in $t \pmod{\sqrt{q}}$ points.

2 Intervals for minimal t-fold $(n-k)$-blocking sets

The following interval theorems on the size of minimal t-fold $(n-k)$-blocking sets in $\text{PG}(n,q)$ will play a crucial role in our arguments.

Theorem 2.1 (Ferret et al. [10]) Let B be a minimal t-fold $(n-k)$-blocking set in $\text{PG}(n,q)$, $n \geq 2$, $|B| = tq^{n-k}+t+k'$, with $t+k' \leq (q^{n-k}-1)/2$. Assume that $q = p^h$, p prime, $h \geq 1$, and that B intersects every k-dimensional space in $t \pmod{E}$ points, with $E = p^e$, and with e the largest integer for which this is true.

If $2t < E$, then

$$tq^{n-k} + \frac{q^{n-k}}{p^e} + 1 \leq |B| \leq tq^{n-k} + \frac{2tq^{n-k}}{E}.$$

Theorem 2.2 (Ferret et al. [10]) Let B be a t-fold $(n-k)$-blocking set in $\text{PG}(n,q)$. Assume that $q = p^h$, p prime, $h \geq 1$, and that B intersects every k-dimensional space in $t \pmod{E}$ points, with $E = p^e$, and with e the largest integer for which this is true.

If $\max\{2t, 4\} < E$, then

$$|B| \leq tq^{n-k} + \frac{2tq^{n-k}}{E} \quad \text{or} \quad |B| \geq Eq^{n-k} + t.$$

3 t-Fold 1-blocking sets

In Theorem 1.16, see also [4], Barát and Storme presented characterization results on t-fold 1-blocking sets in $\text{PG}(n,q)$. These results were obtained before the $t \pmod{p}$ results (Theorems 1.11 and 1.17) were known.

Repeating their arguments, but now including the $t \pmod{p}$ results, leads to the following theorem.
Theorem 3.1 Let B be a t-fold 1-blocking set in $\text{PG}(n,q)$, $q = p^h$, p prime, $q \geq 661$, $n \geq 3$, of size $|B| < tq + c_p q^{2/3}$, with $c_2 = c_3 = 2^{-1/3}$, $c_p = 1$ when $p > 3$, and with $t < c_p q^{1/6}/2$. Then B contains a union of t pairwise disjoint lines and/or Baer subplanes.

The following result, which relies on the preceding classification of t-fold 1-blocking sets, plays an important role in the proofs of the characterization results which will follow.

From now on, let B be a minimal t-fold $(n - k)$-blocking set in $\text{PG}(n,q)$, $q = p^h$, p prime, $q \geq 661$, $n \geq 3$, of size $|B| < tq^{n-k} + c_p q^{n-k-1/3}$, with $c_2 = c_3 = 2^{-1/3}$, $c_p = 1$ when $p > 3$, and with $t < c_p q^{1/6}/2$, intersecting every k-dimensional space in t (mod \sqrt{q}) points.

Lemma 3.2 Let B be a minimal t-fold $(n - k)$-blocking set in $\text{PG}(n,q)$, $k \geq 2$, intersecting every k-dimensional space in t (mod \sqrt{q}) points.

If Π is a $(k+1)$-dimensional space intersecting B in a non-minimal t-fold 1-blocking set, then $$|\Pi \cap B| \geq q \sqrt{q} + t.$$

Proof: Since $\Pi \cap B$ intersects every k-dimensional space in Π in t (mod \sqrt{q}) points, either $|\Pi \cap B| \leq tq + 2t \sqrt{q}$ or $|\Pi \cap B| \geq q \sqrt{q} + t$ (Theorem 2.2). Assume that $|\Pi \cap B| \leq tq + 2t \sqrt{q}$, then by Theorem 3.1, $\Pi \cap B$ contains a union of t pairwise disjoint lines and/or Baer subplanes. Let S_1 be the minimal part of $\Pi \cap B$, consisting of those t pairwise disjoint lines and/or Baer subplanes, and let S_2 be the remaining part of $\Pi \cap B$.

Let $r \in S_2$. Consider a line L of Π through r only intersecting B in r. We now prove that it is possible to find a $(k-1)$-dimensional space Π_{k-1} of Π through L only intersecting B in r. This is immediately true for $k = 2$. Let $k \geq 3$, then there are $q^{n-2} + q^{n-3} + \cdots + q + 1$ planes through L. Since there are at most $t q^{n-k} + q^{n-k-1/3} < q^{n-2} + \cdots + q + 1$ points in B, it is possible to find a plane Π_2 through L only intersecting B in r. Repeating this argument, a 3-dimensional space Π_3 through Π_2 only intersecting B in r can be found, a 4-dimensional space Π_4 through Π_3 only intersecting B in r can be found, . . . , a $(k-1)$-dimensional space Π_{k-1} through Π_{k-2} only intersecting B in r can be found since there are $q^{n-k+1} + \cdots + q + 1$ $(k-1)$-dimensional spaces through Π_{k-2} and $|B| < tq^{n-k} + q^{n-k-1/3}$.

There are $q + 1$ k-dimensional spaces in Π through Π_{k-1}, all intersecting S_1 in t (mod \sqrt{q}) points. Since these k-dimensional spaces intersect B in t (mod \sqrt{q}) points, every such hyperplane intersects S_2 in r and in at least $\sqrt{q} - 1$ other points. So $|\Pi \cap B| \geq 1 + (q + 1)(\sqrt{q} - 1) + t(q + 1)$. This contradicts $|\Pi \cap B| \leq tq + 2t \sqrt{q}$. □
4 \quad t\text{-Fold 2-blocking sets}

Let B be a minimal t-fold 2-blocking set in $\PG(n, q)$ intersecting every $(n-2)$-dimensional space in $t \pmod{\sqrt{q}}$ points. Assume that

$$|B| \leq tq^2 + 2tq\sqrt{q} < tq^2 + c_pq^{5/3},$$

with $q \geq 661$ and with $t < c_pq^{1/6}/2$.

The $t \pmod{\sqrt{q}}$ assumption implies that every $(n-1)$-dimensional space intersects B in at most $tq + 2t\sqrt{q}$ points or in at least $q\sqrt{q} + t$ points (Lemma 3.2).

We will show that B is the union of t pairwise disjoint planes, Baer cones with a point as vertex and a Baer subplane $\PG(2, \sqrt{q})$ as base, or subgeometries $\PG(4, \sqrt{q})$.

Remark 4.1 (1) In this article, when we state that a Baer subline L is contained in B, then we mean that this Baer subline is effectively contained in B, but that the line \hat{L}, defined over $GF(q)$, defined by L is not completely contained in B.

(2) In the next lemma, we state that a subset S of points on a line L can be written in a unique way as a union of at most t pairwise disjoint points and Baer sublines. This has the following meaning. If S contains a Baer subline, then, first of all, the $\sqrt{q} + 1$ points of this Baer subline must be considered in this description as a Baer subline and not as $\sqrt{q} + 1$ distinct points, secondly, these Baer sublines and points contained in S are all pairwise disjoint, and thirdly, if you consider the different Baer sublines contained in S and then the remaining points of S, the total number of these different Baer sublines and remaining points is at most t.

(3) Consider a Baer subline L, then \hat{L} will always denote the line, over $GF(q)$, containing the Baer subline L.

Lemma 4.2 A line L not contained in B shares at most $t(\sqrt{q} + 1)$ points with B. This intersection $L \cap B$ can be written in a unique way as a union of at most t pairwise disjoint points and Baer sublines.

Proof: By using the same arguments as in the proof of Lemma 3.2, it is possible to find an $(n-3)$-dimensional space through L containing no other points of B. It is then possible to select an $(n-2)$-dimensional space through this $(n-3)$-dimensional space containing at most t extra points of B since there are $q^2 + q + 1$ $(n-2)$-dimensional spaces through a given $(n-3)$-dimensional space, and $|B| < tq^2 + q^{5/3}$. Similarly, it is then possible to
select a hyperplane \(\pi \) through this \((n-2)\)-dimensional space containing at most \(tq + 2t\sqrt{q} \) other points of \(B \).

Then \(|\pi \cap B| \leq q + t + tq + 2t\sqrt{q} < q\sqrt{q} + t \), so by Theorem 2.2, \(|\pi \cap B| \leq tq + 2t\sqrt{q} \), and then Theorem 3.1 and Lemma 3.2 imply that \(\pi \) intersects \(B \) in a union of \(t \) pairwise disjoint lines and Baer subplanes.

This implies that \(L \) intersects \(B \) in a number of points and/or Baer sublines.

Assume that \(L \) shares at least one Baer subline with \(B \). Since \(t < q^{1/6}/2 \), and since two distinct Baer sublines share at most two points, it is only possible to partition the points of a Baer subline in \(L \cap B \) over other Baer sublines in \(L \cap B \) if \(t \geq (\sqrt{q} + 1)/2 \).

This is not the case, so \(L \cap B \) can be written in a unique way as a union of at most \(t \) pairwise disjoint points and Baer sublines.

\[\square \]

Lemma 4.3 Every hyperplane \(\Pi \) intersects \(B \) in a union of \(t \) pairwise disjoint lines and/or Baer subplanes, or intersects \(B \) in at least \(q\sqrt{q} + t \) points.

Proof: By Theorem 2.2, since every \((n-2)\)-dimensional space intersects \(B \) in \(t \) \((\mod \sqrt{q})\) points, \(B \) intersects every hyperplane in at most \(tq + 2t\sqrt{q} \) points or in at least \(q\sqrt{q} + t \) points. Assume that a hyperplane \(\Pi \) intersects \(B \) in at most \(tq + 2t\sqrt{q} \) points, then this intersection \(\Pi \cap B \) must be a minimal \(t \)-fold 1-blocking set in \(\Pi \), since for a non-minimal intersection, \(|\Pi \cap B| \geq q\sqrt{q} + t \) (Lemma 3.2).

Since for the case \(|\Pi \cap B| \leq tq + 2t\sqrt{q} \), the intersection must be a minimal \(t \)-fold 1-blocking set, Theorem 3.1 implies that \(B \cap \Pi \) is a union of \(t \) pairwise disjoint lines and/or Baer subplanes.

\[\square \]

We know from Lemma 4.3 that every hyperplane \(\Pi \) intersects \(B \) in a union of \(t \) lines and/or Baer subplanes, or intersects \(B \) in at least \(q\sqrt{q} + t \) points. Consequently, for every hyperplane \(\Pi \), \(|\Pi \cap B| \geq t(q + 1) \).

Consider an \((n-2)\)-dimensional space \(\Delta \) sharing \(t \) distinct points with \(B \). The \(q + 1 \) hyperplanes through \(\Delta \) all contain at least \(tq + t \) points of \(B \), so if we subtract \((q + 1)tq\) from the size of \(B \), at most \(2tq\sqrt{q} - tq \) points in \(B \) remain. Dividing this number by \(q\sqrt{q} - tq \) then implies that at most \(2t \) hyperplanes through \(\Delta \) contain at least \(q\sqrt{q} + t \) points of \(B \). The other, at least \(q + 1 - 2t \), hyperplanes through \(\Delta \) share at most \(tq + 2t\sqrt{q} \) points with \(B \), and therefore intersect \(B \) in a union of \(t \) pairwise disjoint lines and/or Baer subplanes (Lemma 4.3).

This shows that every point of \(\Delta \cap B \) lies on at least \(q + 1 - 2t \) lines and/or Baer subplanes, contained in \(B \).
Lemma 4.4 Let \(r \in \Delta \cap B \) and suppose that \(r \) lies in two Baer subplanes \(B_1 \) and \(B_2 \), contained in \(B \), in distinct hyperplanes through \(\Delta \).

Then \(B_1 \) and \(B_2 \) define a 4-dimensional Baer subgeometry completely contained in \(B \).

Proof: Consider a Baer subline \(L_2 \) of \(B_2 \) through \(r \). Then the line \(\hat{L}_2 \), defined over \(GF(q) \), through \(L_2 \) shares at most \(t(\sqrt{q} + 1) \) points with \(B \) (Lemma 4.2). By using the same arguments as in the proof of Lemma 3.2, it is possible to find an \((n-3) \)-dimensional space \(\Pi_{n-3} \) through \(L_2 \) containing no other points of \(B \), and intersecting the plane of \(B_1 \) only in \(r \).

There are \(q^2 + q + 1 \) \((n-2) \)-dimensional spaces through \(\Pi_{n-3} \). Precisely \(q + 1 \) of these \((n-2) \)-dimensional spaces through \(\Pi_{n-3} \) intersect the plane \(PG(2,q) \) containing the Baer subplane \(B_1 \) in a line through \(r \), so \(q^2 \) of these \((n-2) \)-dimensional spaces through \(\Pi_{n-3} \) only intersect the plane of \(B_1 \) in \(r \). It is therefore possible to select an \((n-2) \)-dimensional space \(\Delta' \) through \(\Pi_{n-3} \) containing at most \(t \) extra points of \(B \), and only intersecting the plane of \(B_1 \) in \(r \). Then \(|\Delta' \cap B| \leq t(\sqrt{q} + 1) \) since there are at most \(t(\sqrt{q} + 1) \) points of \(B \) belonging to \(\hat{L}_2 \) (Lemma 4.2).

Since \(|\Delta' \cap B| \equiv t \mod \sqrt{q} \), necessarily \(|\Delta' \cap B| \leq t(\sqrt{q} + 1) \).

Every hyperplane through \(\Delta' \) contains at least \(tq - t\sqrt{q} \) other points of \(B \) since every hyperplane shares at least \(t(q + 1) \) points with \(B \) (Lemma 4.3). If we subtract \((q + 1)(tq - t\sqrt{q}) \) from the size of \(B \), at most \(3tq\sqrt{q} - tq + t\sqrt{q} \) points in \(B \) remain. A hyperplane through \(\Delta' \) containing at least \(q\sqrt{q} + t \) points of \(B \) still contains at least \(q\sqrt{q} - tq \) other points of \(B \), so at most \(3t \) hyperplanes through \(\Delta' \) contain at least \(q\sqrt{q} + t \) points of \(B \).

This implies that at least \(\sqrt{q} + 1 - 3t \) hyperplanes through \(\Delta' \) intersect \(B_1 \) in a Baer subline, and intersect \(B \) in a union of \(t < q^{1/6}/2 \) pairwise disjoint lines and/or Baer subplanes. Since such a hyperplane shares a Baer subline with \(B_1 \) and with \(B_2 \), both passing through the same point \(r \), these two latter Baer sublines must be contained in a Baer subplane contained in \(B \).

The preceding arguments show that at least \(\sqrt{q} + 1 - 3t \) Baer subplanes of the 3-dimensional Baer subgeometry \(\langle B_1, L_2 \rangle \), passing through \(L_2 \), are contained in \(B \).

Assume that the Baer subgeometry \(\langle B_1, L_2 \rangle \) is not contained in \(B \). Select a Baer subline \(N \) of \(\langle B_1, L_2 \rangle \) skew to \(L_2 \) which is not contained in \(B \). Then this Baer subline \(N \) shares at least \(\sqrt{q} + 1 - 3t \) and at most \(\sqrt{q} \) points with \(B \).

By Lemma 4.2, it is possible to describe \(N \cap B \) in a unique way as an union of at most \(t < q^{1/6}/2 \) pairwise disjoint points and Baer sublines.

Since \(\sqrt{q} + 1 - 3t > t \), some of the points of \(N \cap B \) lying in \(\langle B_1, L_2 \rangle \) must lie in Baer sublines contained in \(N \cap B \). Two distinct Baer sublines share...
at most two points. Since $\sqrt{q} + 1 - 3t > 2t$, this is impossible, so the Baer subline $N \cap \langle L_2, B_1 \rangle$ is completely contained in B.

This shows that the 3-dimensional Baer subgeometry $\langle L_2, B_1 \rangle$ is completely contained in B. By letting vary L_2 over all Baer sublines of B_2 through r, the 4-dimensional Baer subgeometry $\langle B_1, B_2 \rangle$ is completely contained in B. By letting vary L_2 over all Baer sublines of B_2 through r, the 4-dimensional Baer subgeometry $\langle B_1, B_2 \rangle$ is completely contained in B.

This latter 4-dimensional Baer subgeometry $\langle B_1, B_2 \rangle$ is either a Baer cone with a point as vertex and a Baer subplane as base, or a Baer subgeometry $PG(4, \sqrt{q})$.

In both cases, they are 1-fold 2-blocking sets, and the $t \pmod{\sqrt{q}}$ result implies that $B \setminus \langle B_1, B_2 \rangle$ is a $(t - 1)$-fold 2-blocking set intersecting every $(n - 2)$-dimensional space in $(t - 1) \pmod{\sqrt{q}}$ points.

Since we know from the calculations preceding Lemma 4.4 that every point of $\Delta \cap B$ lies on at least $q + 1 - 2t$ lines or Baer subplanes contained in B, the preceding lemma and observations now imply that we can assume that every point of $\Delta \cap B$ lies on at least $q - 2t$ lines contained in B. Since B is minimal, it is possible to assume that every point of B lies on at least $q - 2t$ lines of B. We now show that there is a plane contained in B.

Lemma 4.5 If every point of B lies on at least $q - 2t$ lines contained in B, then there is a plane contained in B.

Proof: Consider an $(n - 2)$-dimensional space Δ intersecting B in exactly t points. The calculations preceding Lemma 4.4 indicate that at least $q + 1 - 2t$ hyperplanes through Δ intersect B in a union of t lines and/or Baer subplanes. But none of the t points of $\Delta \cap B$ lies on two Baer subplanes of B in those hyperplanes. So, at least $q + 1 - 2t - t$ hyperplanes Π through Δ intersect B in t pairwise disjoint lines L_1, \ldots, L_t.

Let r be a point of $B \setminus \Pi$. This point r lies on at least $q - 2t$ lines completely contained in B. These lines intersect Π in a point of $B \cap \Pi = L_1 \cup \cdots \cup L_t$. So at least one of the lines L_i is intersected by at least $(q - 2t)/t$ lines of B passing through r.

Then the plane $\langle r, L_i \rangle$ intersects B in at least $(q - 2t)/t$ lines passing through r. Then every line of this plane, not passing through r, shares already $(q - 2t)/t$ points with B. If such a line is not contained in B, it shares at most $t(\sqrt{q} + 1)$ points with B (Lemma 4.2).

Since $(q - 2t)/t > t(\sqrt{q} + 1)$, every line of $\langle L_i, r \rangle$, not passing through r, is contained in B, and so this plane $\langle L_i, r \rangle$ is contained in B. \qed
The $t \pmod{\sqrt{q}}$ result again implies that $B \setminus \Pi$, Π a plane contained in B, is a $(t-1)$-fold blocking set intersecting every $(n-2)$-dimensional space in $(t-1) \pmod{\sqrt{q}}$ points.

Repeating the preceding lemmas for this $(t-1)$-fold blocking set, the following characterization theorem is obtained.

Theorem 4.6 Let B be a minimal t-fold 2-blocking set, of size at most $tq^2 + 2tq\sqrt{q} < tq^2 + c_p q^{5/3}$, in $\text{PG}(n,q)$, $q \geq 661$, $t < c_p q^{1/6}/2$, intersecting every $(n-2)$-dimensional space in $t \pmod{\sqrt{q}}$ points.

Then B is the union of t pairwise disjoint planes, Baer cones with a point as vertex and a Baer subplane as base, and 4-dimensional Baer subgeometries $\text{PG}(4,\sqrt{q})$.

5 **t-Fold $(n-k)$-blocking sets in $\text{PG}(n,q)$**

We now will present the characterization result on minimal t-fold $(n-k)$-blocking sets in $\text{PG}(n,q)$, with $1 \leq k < n-2$, intersecting every k-dimensional space in $t \pmod{\sqrt{q}}$ points. The results of the preceding two sections will be the induction bases for the general characterization results.

The general induction hypothesis (IH) we rely on for classifying the minimal t-fold $(n-k)$-blocking sets in $\text{PG}(n,q)$, intersecting every k-dimensional space in $t \pmod{\sqrt{q}}$ points, is as follows.

Induction hypothesis (IH): For $1 \leq j \leq n-k-1$, let B_j be a minimal t-fold $(n-k-j)$-blocking set in $\text{PG}(n,q)$, q square, $q \geq 661$, $t < c_p q^{1/6}/2$, of size at most $|B_j| \leq tq^{n-k-j} + 2tq^{n-k-j-1}\sqrt{q} < tq^{n-k-j} + c_p q^{n-k-j-1/3}$, intersecting every $(k+j)$-dimensional space in $t \pmod{\sqrt{q}}$ points.

Then B_j is a union of t pairwise disjoint cones $\langle \pi_{m_i}, \text{PG}(2(n-k-m_i-j-1), \sqrt{q}) \rangle$, $-1 \leq m_i \leq n-k-j-1$, $i = 1, \ldots, t$.

In the above description, if $m_i = n-k-j-1$, then $\langle \pi_{m_i}, \text{PG}(2(n-k-m_i-j-1), \sqrt{q}) \rangle$ is a subspace $\text{PG}(n-k-j,q)$, and if $m_i = -1$, then $\langle \pi_{m_i}, \text{PG}(2(n-k-m_i-j-1), \sqrt{q}) \rangle$ is a Baer subgeometry $\text{PG}(2(n-k-j), \sqrt{q})$.

The goal is to prove the following similar characterization result for t-fold $(n-k)$-blocking sets.

Let B be a minimal t-fold $(n-k)$-blocking set in $\text{PG}(n,q)$, q square, $q \geq 661$, $t < c_p q^{1/6}/2$, of size at most $|B| \leq tq^{n-k} + 2tq^{n-k-1}\sqrt{q} < tq^{n-k} + c_p q^{n-k-1/3}$, intersecting every k-dimensional space in $t \pmod{\sqrt{q}}$ points.
Then B is a union of t pairwise disjoint cones $\langle \pi_{m_i}, \PG(2(n-k-m_i-1), \sqrt{q}) \rangle$, $-1 \leq m_i \leq n-k-1$, $i = 1, \ldots, t$.

So, from now on, we assume that B is a minimal $(n-k)$-blocking set in $\PG(n,q)$, q square, $q \geq 661$, $t < c_p q^{1/6}/2$, of size at most $|B| \leq tq^{n-k} + 2tq^{n-k-1}\sqrt{q} < tq^{n-k} + c_p q^{n-k-1/3}$, intersecting every k-dimensional space in $t \pmod{\sqrt{q}}$ points.

We first present some analogous lemmas to lemmas of Section 4.

Lemma 5.1 Every $(k+1)$-dimensional space Π intersects B in a union of t pairwise disjoint lines and/or Baer subplanes, or intersects B in at least $q\sqrt{q} + t$ points.

Proof: By Theorem 2.2, since every k-dimensional space intersects B in $tq + 2t\sqrt{q}$ points, B intersects every $(k+1)$-dimensional space in at most $tq + 2t\sqrt{q}$ points or in at least $q\sqrt{q} + t$ points. Assume that a $(k+1)$-dimensional space Π intersects B in at most $tq + 2t\sqrt{q}$ points, then this intersection $\Pi \cap B$ must be a minimal t-fold 1-blocking set in Π, since for a non-minimal intersection, $|\Pi \cap B| \geq q\sqrt{q} + t$ (Lemma 3.2).

Since for the case $|\Pi \cap B| \leq tq + 2t\sqrt{q}$, the intersection must be a minimal t-fold 1-blocking set, Theorem 3.1 implies that $B \cap \Pi$ is a union of t pairwise disjoint lines and/or Baer subplanes.

For the description of the next lemma, we again rely on Remark 4.1 (2).

Lemma 5.2 A line L, not contained in B, intersects B in at most $t(\sqrt{q} + 1)$ points. This intersection can be described in a unique way as a union of at most t pairwise disjoint points and Baer sublines.

Proof: We know that $|B| \leq tq^{n-k} + 2tq^{n-k-1}\sqrt{q}$.

By using the same arguments as in the proof of Lemma 3.2, it is possible to construct a $(k-1)$-dimensional space Π_{k-1} through L containing no other points of B. It is then possible to construct a k-dimensional space Π_k through Π_{k-1} containing at most t other points of B. So $|\Pi_k \cap B| \leq q + t$.

There are at most $tq^{n-k} + 2tq^{n-k-1}\sqrt{q}$ points in B left. By the induction hypothesis (III), the smallest t-fold 1-blocking sets which are the intersection of a $(k+1)$-dimensional space with B are the union of t pairwise disjoint lines, see also Lemma 4.3. Hence, every $(k+1)$-dimensional space through Π_k contains at least $(t-1)q$ extra points of B. So we observe that at most $tq^{n-k} + 2tq^{n-k-1}\sqrt{q} - (t-1)q(q^{n-k-1} + q^{n-k-2} + \cdots + q + 1)$ other points of B can remain.
If a $(k + 1)$-dimensional space Π_{k+1} through Π_k contains at least $q\sqrt{q} + t$ points of B (Theorem 2.2 and Lemma 3.2), then it still contains at least $q\sqrt{q} - tq$ other points of $B \setminus \Pi_k$. Since $(q^{n-k-1} + q^{n-k-2} + \cdots + q + 1)(q\sqrt{q} - tq) > tq^{n-k} + 2tq^{n-k-1}\sqrt{q} - (t - 1)q(q^{n-k-1} + q^{n-k-2} + \cdots + q + 1)$, there is at least one $(k + 1)$-dimensional space Π_{k+1} through Π_k with at most $tq + 2t\sqrt{q} + t$ points of B. Then $|\Pi_{k+1} \cap B| \leq tq + 2t\sqrt{q}$ (Theorem 2.2 and Lemma 3.2). This intersection $\Pi_{k+1} \cap B$ is a minimal t-fold 1-blocking set in Π_{k+1} (Lemma 3.2), so it is a union of t pairwise disjoint lines and/or Baer subplanes (Theorem 3.1). The line L shares zero or one points with the lines of $\Pi_{k+1} \cap B$, and zero, one, or $\sqrt{q} + 1$ points with the Baer subplanes of $\Pi_{k+1} \cap B$. This proves the lemma.

Lemma 5.3 Let r be a point of B lying on two lines L_0 and L_1 contained in B.

Then the plane $\langle L_0, L_1 \rangle$ is either contained in B, or $\langle L_0, L_1 \rangle \cap B$ contains a cone with r as vertex and a Baer subline as base, containing L_0 and L_1.

Proof: Consider the plane $\langle L_0, L_1 \rangle$. Whatever its intersection with B is, the intersection size is at most $q^2 + q + 1$.

By using the same arguments as in the proof of Lemma 3.2, construct a $(k - 1)$-dimensional space Π_{k-1} through $\langle L_0, L_1 \rangle$ containing no other points of B. Since $|B| < tq^{n-k} + q^{n-k-1}/3$, and since there are $q^{n-k} + \cdots + q + 1$ different k-dimensional spaces through Π_{k-1}, it is possible to construct a k-dimensional space Π_k through Π_{k-1} containing at most t extra points of B. Similarly, since $|B| \leq tq^{n-k} + 2tq^{n-k-1}\sqrt{q}$, it is possible to find a $(k + 1)$-dimensional space Π_{k+1} through Π_k containing at most $tq + 2t\sqrt{q}$ other points of B.

So, $|B \cap \Pi_{k+1}| \leq q^2 + q + 1 + tq + 2t\sqrt{q} + t$.

Consider all $q^{n-k-2} + \cdots + q + 1$ $(k + 2)$-dimensional spaces through Π_{k+1}. Since $|B| < tq^{n-k} + q^{n-k-1}/3$, it is possible to find a $(k + 2)$-dimensional space Π_{k+2} through Π_{k+1} containing at most $tq^2 + 2tq\sqrt{q}$ other points of B. This certainly implies that $|\Pi_{k+2} \cap B| \leq (t + 2)q^2$.

Since $|\Pi_{k+2} \cap B| \leq tq^2 + 2tq\sqrt{q}$ or $|\Pi_{k+2} \cap B| \geq q^2\sqrt{q} + t$ (Theorem 2.2 and Lemma 3.2), necessarily $|\Pi_{k+2} \cap B| \leq tq^2 + 2tq\sqrt{q}$.

Theorem 4.6 implies that $\Pi_{k+2} \cap B$ is a union of t pairwise disjoint planes, cones with a point as vertex and a Baer subplane as base, and Baer subgeometries $PG(4, \sqrt{q})$.

Since L_0 and L_1 are intersecting lines of this intersection, the plane $\langle L_0, L_1 \rangle$ either is contained in B, or its intersection with B contains a cone with $L_0 \cap L_1$ as vertex and a Baer subline as base, which contains the lines.
L_0 and L_1. \hfill \Box

The following two lemmas are proven in exactly the same way as the preceding lemma. In the following lemma, a Baer cone with vertex s and base the Baer subline L_2, $s \notin \hat{L}_2$, is the set of $\sqrt{q} + 1$ lines through the point s and the points of the Baer subline L_2. We also recall Remark 4.1 (1); with a Baer subline L contained in B, we mean a Baer subline contained in B whose corresponding line \hat{L} over $GF(q)$ is not contained in B.

Lemma 5.4 Suppose that the point r of B lies on a line L_0 contained in B and on a Baer subline L_2 contained in B.

Then there is a Baer cone completely contained in B, with a point of $L_0 \setminus \{r\}$ as vertex and with L_2 as base.

Lemma 5.5 Suppose that the point $r \in B$ lies on two Baer sublines L_0 and L_1 contained in B, then the Baer subplane $\langle L_0, L_1 \rangle$ is completely contained in B.

Lemma 5.6 Let L_2 be a Baer subline contained in B. Let v be a point not lying on the line \hat{L}_2, defined over $GF(q)$, by L_2. Suppose that the cone with vertex v and with base the Baer subline L_2 is contained in B.

Let r be a point of L_2 and suppose that L_1 is an other Baer subline of B through r, not lying in the plane $\langle v, L_2 \rangle$.

Then the Baer cone Ω with vertex v and with base the Baer subplane $\langle L_1, L_2 \rangle$ is contained in B.

Proof: Let L'_2 be a second Baer subline of the Baer cone $\langle v, L_2 \rangle$ passing through r. Then the Baer subplane $\langle L_1, L'_2 \rangle$ is contained in B (Lemma 5.5). This Baer subplane $\langle L_1, L'_2 \rangle$ is projected from v onto the Baer subplane $\langle L_1, L_2 \rangle$.

Letting vary L'_2 over all Baer sublines of the Baer cone $\langle v, L_2 \rangle$ through r, the preceding arguments prove that the Baer cone Ω with vertex v and with base $\langle L_1, L_2 \rangle$ is completely contained in B, up to maybe some points on the line rv.

But let r' be an arbitrary point of the line $rv \setminus \{r, v\}$, and let L_3 be an arbitrary Baer subline of the Baer cone Ω through r'. This Baer subline is completely contained in B, up to maybe the point r'. So, L_3 contains \sqrt{q} or $\sqrt{q} + 1$ points of B. We prove that the Baer subline L_3 is completely contained in B. Let \hat{L}_3 be the line over $GF(q)$ defined by L_3, then the intersection of \hat{L}_3 with B can be described in a unique way as the union of at most t pairwise disjoint points and Baer sublines (Lemma 5.2). If the Baer
subline \(L_3 \) contains exactly \(\sqrt{q} \) points of \(B \), then these \(\sqrt{q} \) points need to be partitioned over at most \(t < q^{1/6}/2 \) pairwise disjoint points and Baer sublines (Lemma 5.2). Since two distinct Baer sublines share at most two points, this is impossible. So the Baer subline \(L_3 \) is completely contained in \(B \).

This proves that the Baer cone \(\Omega \) with vertex \(v \) and with base the Baer subplane \(\langle L_1, L_2 \rangle \) is completely contained in \(B \).

Consider a point \(r \) from \(B \) and select a subspace \(\Delta_k \simeq \text{PG}(k,q) \) through \(r \) sharing \(t \) points with \(B \).

There is at least one \((k+1)\)-dimensional subspace through \(\Delta_k \) sharing at most \(tq + 2t\sqrt{q} \) points, not in \(\Delta_k \), with \(B \), since these \((k+1)\)-dimensional spaces through \(\Delta_k \) cannot all contain \(q\sqrt{q} \) other points of \(B \) (Theorem 2.2).

Then such a \((k+1)\)-dimensional subspace \(\Delta_{k+1} \) through \(\Delta_k \) shares at most \(tq + 2t\sqrt{q} + t \) points with \(B \). By Theorem 2.2 and Lemma 3.2, \(|\Delta_{k+1} \cap B| \leq tq + 2t\sqrt{q} \). Hence, \(\Delta_{k+1} \) intersects \(B \) in \(t \) pairwise disjoint lines and/or Baer subplanes (Lemma 5.1). So \(\Delta_{k+1} \) shares at most \(tq + t \sqrt{q} \) other points with \(B \). Select \(\Delta_{k+1} \simeq \text{PG}(k+1,q) \) through \(\Delta_k \) sharing at most \(tq + t \sqrt{q} + t \) points with \(B \).

We now prove that we can find an \((n-2)\)-dimensional space \(\Delta_{n-2} \) through \(\Delta_{k+1} \) sharing at most \(t(q^{n-k-2} + q^{n-k-3} \sqrt{q} + q^{n-k-3} + \cdots + \sqrt{q} + 1) \) points with \(B \). We heavily rely on the bounds of Theorem 2.2. Since \(B \) intersects every \(k \)-dimensional space in \(t \pmod{\sqrt{q}} \) points, this theorem states that \(B \) intersects every \((k+i)\)-dimensional space in either at most \(tq^i + 2\sqrt{q}q^{i-1} \) points or in at least \(\sqrt{q}q^i + t \) points. Consider all the \(q^{n-k-2} + \cdots + q + 1 \) different \((k+2)\)-dimensional spaces through \(\Delta_{k+1} \). As \(|\Delta_{k+1} \cap B| \leq tq + t \sqrt{q} + t \), it is impossible that all these \((k+2)\)-dimensional spaces share at least \(\sqrt{q}q^2 + t \) points with \(B \) since \(|B| < tq^{n-k} + q^{n-k-1/3} \), so there is at least one \((k+2)\)-dimensional space \(\Delta_{k+2} \) through \(\Delta_{k+1} \) sharing at most \(tq^2 + 2\sqrt{q}q \) points with \(B \). Repeating this argument by induction on \(i \), it is possible to find a \((k+i)\)-dimensional space \(\Delta_{k+i+1} \), sharing at most \(tq^{i+1} + 2\sqrt{q}q^{i} \) points with \(B \), through a given \((k+i)\)-dimensional space \(\Delta_{k+i} \), sharing at most \(tq^i + 2\sqrt{q}q^{i-1} \) points with \(B \). This leads us eventually to the \((n-2)\)-dimensional space \(\Delta_{n-2} \) through \(\Delta_{k+1} \) sharing at most \(t(q^{n-k-2} + q^{n-k-3} \sqrt{q} + q^{n-k-3} + \cdots + \sqrt{q} + 1) \) points with \(B \). The upper bound on \(|\Delta_{n-2} \cap B| \) follows from the induction hypothesis (IH), which states that \(\Delta_{n-2} \cap B \) is a union of \(t \) pairwise disjoint cones \((\Pi_{m_i}, \text{PG}(2(n-k-2-m_i-1), \sqrt{q})), -1 \leq m_i \leq n-k-3, i = 1, \ldots, t \).

Now it is possible to find at least two hyperplanes \(H_1, H_2 \) through \(\Delta_{n-2} \) containing at most \(t(q^{n-k-1} + q^{n-k-2} \sqrt{q} + q^{n-k-2} + \cdots + \sqrt{q} + 1) \) points of \(B \), since it is not possible that all hyperplanes through \(\Delta_{n-2} \) share at least \(q^{n-k-1} \sqrt{q} + t \) points with \(B \) (Theorem 2.2). By the induction hypothesis (IH), these two hyperplanes meet \(B \) in a union of \(t \) pairwise disjoint cones
\((\Pi_{m_i}, \text{PG}(2(n-k-1-m'_i-1), \sqrt{q})) \), with \(-1 \leq m'_i \leq n-k-2, i = 1, \ldots, t.\)

We now prove a first major part of the characterization result for the \(t \)-fold \((n-k)\)-blocking sets in \(\text{PG}(n, q) \). Our goal is to prove that small minimal \(t \)-fold \((n-k)\)-blocking sets in \(\text{PG}(n, q) \), \(q \) square, are a union of \(t \) pairwise disjoint Baer cones \(\langle \pi_m, \text{PG}(2(n-k-m-1), \sqrt{q}) \rangle \), \(-1 \leq m \leq n-k-1.\) For \(m = n-k-1 \), such a Baer cone is in fact an \((n-k)\)-dimensional subspace \(\text{PG}(n-k, q) \), and for \(m < n-k-1 \), such a Baer cone is a cone with an \(m \)-dimensional subspace \(\text{PG}(m, q) \) as vertex and a base \(\text{PG}(2(n-k-m-1) \geq 2, \sqrt{q}) \) which is a non-projected Baer subgeometry. For \(m < n-k-1 \), such a Baer cone contains Baer sublines. The following lemma shows that if there is a line not contained in \(B \), sharing at least one Baer subline with \(B \), then this implies that \(B \) contains a Baer cone \(\langle \pi_m, \text{PG}(2(n-k-m-1), \sqrt{q}) \rangle \), \(-1 \leq m < n-k-1.\)

Lemma 5.7 Let \(\Delta \) be an \((n-2)\)-dimensional space intersecting \(B \) in a union of \(t \) pairwise disjoint Baer cones \(\langle \Pi_{m_i}, \text{PG}(2(n-k-2-m_i-1), \sqrt{q}) \rangle \), \(-1 \leq m_i \leq n-k-3, i = 1, \ldots, t.\)

Assume that \(m_i < n-k-3 \) for at least one value \(i \in \{1, \ldots, t\}.\)

Then \(B \) contains a Baer cone \(\langle \pi_{m''}, \text{PG}(2(n-k-m''-1), \sqrt{q}) \rangle \), \(-1 \leq m'' < n-k-1.\)

Proof: It is possible to find at least two hyperplanes \(H_1, H_2 \) through \(\Delta \) containing at most \(t(q^{n-k-1} + q^{n-k-2}\sqrt{q} + q^{n-k-2} + \cdots + \sqrt{q} + 1) \) points of \(B \), since it is not possible that \(q \) hyperplanes through \(\Delta \) share at least \(q^{n-k-1}\sqrt{q} + t \) points with \(B \) (Theorem 2.2). By the induction hypothesis (IH), these two hyperplanes \(H_1, H_2 \) through \(\Delta \) respectively intersect \(B \) in unions of \(t \) pairwise disjoint cones \(\langle \Pi_{m'_i}, \text{PG}(2(n-k-1-m'_i-1), \sqrt{q}) \rangle \), \(-1 \leq m'_i \leq n-k-2 \), and \(t \) pairwise disjoint cones \(\langle \Pi_{m''_i}, \text{PG}(2(n-k-1-m''_i-1), \sqrt{q}) \rangle \), \(-1 \leq m''_i \leq n-k-2.\)

Since we assume that one of the \(t \) Baer cones of \(\Delta \cap B \) is a cone \(\langle \Pi_m, \text{PG}(2(n-k-2-m-1), \sqrt{q}) \rangle \), with \(m < n-k-3 \), so with base a Baer subspace \(\text{PG}(s = 2(n-k-2-m-1) \geq 2, \sqrt{q}) \), at least one of these Baer cones in \(B \cap \Delta \) contains a Baer subline \(L_2.\)

Then \(H_1 \), and similarly \(H_2 \), shares with \(B \) a cone of type either \(\langle \Pi_m, \text{PG}(s+2, \sqrt{q}) \rangle \) or \(\langle \Pi_{m+1}, \text{PG}(s, \sqrt{q}) \rangle \), intersecting \(\Delta \) in this Baer cone \(\langle \Pi_m, \text{PG}(s, \sqrt{q}) \rangle \). We denote this particular Baer cone in \(H_1 \) by \(\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle \), and this particular Baer cone in \(H_2 \) by \(\langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle \).

Up to equivalence, there are three possibilities. The first possibility is \(m = m_1 = m_2, s_1 = s_2 = s + 2. \) Then \(\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle \) and \(\langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle \) define a Baer cone with vertex \(\Pi_m \) and base \(\text{PG}(s+4, \sqrt{q}) \), or with an
(m + 1)-dimensional vertex and base $\text{PG}(s + 2, \sqrt{q})$. Up to equivalence, the second possibility is $m_1 = m + 1$ and $m_2 = m$, which then means that $s = s_1$ and $s_2 = s + 2$. The smallest Baer cone containing $\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle$ and $\langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle$ is the Baer cone with vertex Π_{m_1} and base $\text{PG}(s_2, \sqrt{q})$.

The last possibility is that $m_1 = m_2 = m + 1$ and that $s = s_1 = s_2$. In this case, the smallest Baer cone containing $\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle$ and $\langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle$ is the Baer cone with vertex the $(m + 2)$-dimensional space $\langle \Pi_{m_1}, \Pi_{m_2} \rangle$ and with base $\text{PG}(s, \sqrt{q})$.

The following arguments will show for all three cases that this smallest Baer cone B_0 containing $\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle$ and $\langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle$ lies completely in B. In the first part of this proof, we prove our crucial result for proving that B_0 is contained in B.

Part 1. Consider a non-singular point x of $\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle$, not lying in Δ. Let $L_1 \subset B$ be a Baer subline of $\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle$, passing through x and containing a point r of the base $\text{PG}(s, \sqrt{q})$ of the Baer cone $\langle \Pi_m, \text{PG}(s, \sqrt{q}) \rangle$ in Δ. We show that the Baer subgeometry defined by L_1 and $\langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle$ lies completely in B.

Lemma 5.6 proves that if you have a Baer cone $\langle v, L_2 \rangle$ of B, where $L_2 \simeq \text{PG}(1, \sqrt{q})$, L_1 a Baer subline of B not in the plane of v and L_2, and $L_1 \cap L_2 \neq \emptyset$, then the cone with vertex v and base $\langle L_1, L_2 \rangle \simeq \text{PG}(2, \sqrt{q})$ lies completely in B.

By letting vary v over Π_{m_2} and by letting vary L_2 over all Baer sublines through r in $\langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle$, we reach all points of $\langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle$; the cone with vertex v and base $\langle L_1, L_2 \rangle \simeq \text{PG}(2, \sqrt{q})$ lies in B, hence the Baer subgeometry defined by Π_{m_2}, L_1, and $\text{PG}(s_2, \sqrt{q})$ lies completely in B.

Part 2. The Baer cones $\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle$ and $\langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle$ define a (projected) Baer subgeometry B_0 over $\text{GF}(\sqrt{q})$.

Consider in B_0 an arbitrary Baer subgeometry Ω of dimension one larger than the Baer subgeometry $B_0 \cap H_2 = \langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle$, passing through the Baer subgeometry $B_0 \cap H_2 = \langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle$. Then Ω intersects H_1 in a Baer cone of dimension at least one larger than $\langle \Pi_m, \text{PG}(s, \sqrt{q}) \rangle$, so Ω contains points of B_0 in $\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle$, not lying in Δ. This intersection $\Omega \cap H_1$ contains non-singular points of the Baer cone $\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle$, not lying in Δ. For, if there were only such singular points in $H_1 \cap \Omega$, then let r be a point of $\Pi_{m_1} \setminus \Delta$ lying in Ω. Consider the line rr' through r and a point r' of the base $\text{PG}(s, \sqrt{q})$ of the Baer cone $B_0 \cap \Delta = \langle \Pi_m, \text{PG}(s, \sqrt{q}) \rangle$. This line already contains two points r and r' of Ω, so contains at least one Baer subline of Ω. Hence, Ω contains at least one non-singular point x of $\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle$, not lying in Δ. So $\Omega \cap H_1$ intersects $\langle \Pi_{m_1}, \text{PG}(s_1, \sqrt{q}) \rangle$ in a Baer subgeometry of dimension one larger than $\dim(\Pi_m, \text{PG}(s, \sqrt{q}))$. This intersection can be defined uniquely by $\langle \Pi_m, \text{PG}(s, \sqrt{q}) \rangle$ and a Baer subline

18
L_1 joining x to a non-vertex point in $\langle \Pi_m, \text{PG}(s, \sqrt{q}) \rangle$. We have proven in Part 1 that L_1 together with $\langle \Pi_m, \text{PG}(s_2, \sqrt{q}) \rangle$ defines a unique Baer cone, completely lying in B. This Baer cone is in fact Ω. Hence, Ω lies in B.

So we conclude that an arbitrary Baer cone in B_0, of dimension one larger than $\dim(\Pi_{m_2}, \text{PG}(s_2, \sqrt{q}))$, passing through the Baer subgeometry $B_0 \cap H_2 = \langle \Pi_{m_2}, \text{PG}(s_2, \sqrt{q}) \rangle$, lies completely in B. This shows that $B_0 \subseteq B$.

Hence, B contains a Baer cone $B_0 = \langle \pi_{m''}, \text{PG}(2(n - k - m'' - 1), \sqrt{q}) \rangle$, $-1 \leq m'' < n - k - 1$. \qed

Assume that the conditions of the preceding lemma are valid, then using the $t \pmod{\sqrt{q}}$ assumption, $B \setminus B_0$ is a $(t - 1)$-fold $(n - k)$-blocking set, intersecting every k-dimensional space in $(t - 1) \pmod{\sqrt{q}}$ points.

Assume that there is a line L defined over $\text{GF}(q)$ intersecting B in a set of at most $t(\sqrt{q} + 1)$ points, containing a Baer subline L_1. Then, by using the same arguments as in the proof of Lemma 3.2, it is first of all possible to find a $(k - 1)$-dimensional space $\Pi_{k - 1}$ through L containing no other points of B. Since $|B| < tq^{n-k} + q^{n-k-1/3}$, there is a k-dimensional space Δ_k through Δ_{k-1} containing at most t other points of B. Similarly, there is a $(k + 1)$-dimensional space through Δ_k sharing at most $tq + 2tq$ points with B since it is impossible that all these $(k + 1)$-dimensional spaces through Δ_k contain at least $\sqrt{q}q + t$ points of B (Theorem 2.2). The same arguments as in the proof of Lemma 5.6 then prove that it is possible to find an $(n - 2)$-dimensional space Δ through L intersecting B in a union of t pairwise disjoint Baer cones $\langle \pi_{m_i}, \text{PG}(2(n - k - 2 - m_i - 1), \sqrt{q}) \rangle$, $-1 \leq m_i \leq n - k - 3$, $i = 1, \ldots, t$, where for at least one such Baer cone in $\Delta \cap B$, $m_i < n - k - 3$.

Then the conditions of the preceding lemma are met, and it is possible to find a 1-fold $(n - k)$-blocking set B_0 in B, such that $B \setminus B_0$ is a $(t - 1)$-fold $(n - k)$-blocking set.

To obtain the complete characterization of t-fold $(n - k)$-blocking sets in $\text{PG}(n, q)$ of size at most $tq^{n-k} + 2tq^{n-k-1} \sqrt{q}$, it suffices to consider the case that lines are either completely contained in B, or intersect B in at most t distinct points, since it is no longer necessary to assume that Baer sublines are contained in B.

We now show that this implies that B contains an $(n - k)$-dimensional space over $\text{GF}(q)$.

Let Δ be an $(n - 2)$-dimensional space intersecting B in at most $tq^{n-k-2} + 2tq^{n-k-3} \sqrt{q}$ points, so by the induction hypothesis (IH) and also using the fact that there are no Baer sublines contained in B, Δ shares t pairwise disjoint spaces $\text{PG}(n - k - 2, q)$ with B. Consider again two hyperplanes H_1 and H_2 through Δ intersecting B in at most $tq^{n-k-1} + 2tq^{n-k-2} \sqrt{q}$ points. By
the induction hypothesis, and again using that no Baer sublines are contained in B, these two hyperplanes H_1 and H_2 intersect B in t pairwise disjoint subspaces $\text{PG}(n-k-1, q)$.

Let Π_1 and Π_2 be two $(n-k-1)$-dimensional spaces in respectively H_1 and in H_2, both contained in B, and intersecting Δ in the same $(n-k-2)$-dimensional space Π. We now show that Π_1 and Π_2 define an $(n-k)$-dimensional space Π_{n-k} completely contained in B.

Let r be a point of Π and consider two lines L_1 and L_2, through r, lying in respectively Π_1 and in Π_2, but not lying in Δ. Then the plane $\langle L_1, L_2 \rangle$ lies completely in B (Lemma 5.3).

Letting vary the point r in Π and letting vary the lines L_1 and L_2 in Π_1 and in Π_2, the $(n-k)$-dimensional space $\Pi_{n-k} = \langle \Pi_1, \Pi_2 \rangle$ lies completely in B.

By using the $t \pmod{\sqrt{q}}$ assumption, $B \setminus \Pi_{n-k}$ is a $(t-1)$-fold $(n-k)$-blocking set in $\text{PG}(n,q)$, intersecting every k-dimensional space in $(t-1) \pmod{\sqrt{q}}$ points.

The preceding arguments now lead to the desired characterization result.

Theorem 5.8 Let B be a minimal t-fold $(n-k)$-blocking set in $\text{PG}(n,q)$, $q \geq 661$, $t < c_p q^{1/6}/2$, of size at most $|B| \leq tq^{n-k} + 2tq^{n-k-1}\sqrt{q} < tq^{n-k} + c_p q^{n-k-1/3}$, intersecting every k-dimensional space in $t \pmod{\sqrt{q}}$ points.

Then B is a union of t pairwise disjoint cones $\langle \pi_{m_i}, \text{PG}(2(n-k-m_i-1), \sqrt{q}) \rangle$, $-1 \leq m_i \leq n-k-1$, $i = 1, \ldots, t$.

Proof: Let Δ be an $(n-2)$-dimensional space intersecting B in at most $tq^{n-k-2} + 2tq^{n-k-3}\sqrt{q}$ points.

The preceding lemma and arguments show that it is possible to find a 1-fold $(n-k)$-blocking set B_0 in B such that $B \setminus B_0$ is a $(t-1)$-fold $(n-k)$-blocking set, intersecting every k-dimensional space in $(t-1) \pmod{\sqrt{q}}$ points.

By induction on t, this proves the theorem. \square

The preceding result is not the end of the classification since such unions of $t \geq 2$ pairwise disjoint cones $\langle \pi_{m_i}, \text{PG}(2(n-k-m_i-1), \sqrt{q}) \rangle$ only exist if $k \geq n/2$.

Theorem 5.9 Let B be a minimal t-fold $(n-k)$-blocking set in $\text{PG}(n,q)$, q square, $t \geq 2$, which is a union of t pairwise disjoint cones $\langle \pi_{m_i}, \text{PG}(2(n-k-m_i-1), \sqrt{q}) \rangle$, max$\{-1, n-2k-1\} \leq m_i \leq n-k-1$. Then $k > n/2$ if
B contains at least one \((n-k)\)-dimensional space \(\text{PG}(n-k,q)\) and \(k \geq n/2\) in the other cases.

Proof: If \(B\) contains at least two \((n-k)\)-dimensional spaces \(\text{PG}(n-k,q)\) which are disjoint, then \(k > n/2\). If \(B\) contains an \((n-k)\)-dimensional space and a cone \(\langle \pi_m, \text{PG}(2(n-k-m-1),\sqrt{q}) \rangle\), max\(-1, n-2k-1\) \(\leq m < n-k-1\), then since the Baer cone intersects every \(k\)-dimensional space, necessarily \(n-k < k\), and again \(k > n/2\).

We now assume that \(B\) does not contain \((n-k)\)-dimensional spaces \(\text{PG}(n-k,q)\). A Baer cone \(\langle \pi_m, \text{PG}(2(n-k-m-1),\sqrt{q}) \rangle\), max\(-1, n-2k-1\) \(\leq m < n-k-1\), is in fact a projected Baer subgeometry \(\text{PG}(2n-2k,\sqrt{q})\). This defines a vector space \(V(2n-2k+1,\sqrt{q})\).

The projective space \(\text{PG}(n,q)\) defines a vector space \(V(2n+2,\sqrt{q})\) over \(\text{GF}(\sqrt{q})\). If this \((2n+2)\)-dimensional vector space over \(\text{GF}(\sqrt{q})\) contains two disjoint \((2n-2k+1)\)-dimensional subspaces, necessarily \(2(2n-2k+1) \leq 2n+2\), leading to \(k \geq n/2\).

Remark 5.10 The lower bound \(k \geq n/2\) is sharp as the following examples of \(t\)-fold \((n-k)\)-blocking sets in \(\text{PG}(n,q)\) show.

Let \(n = 2n'\). Consider \(t\) pairwise disjoint subgeometries \(\text{PG}(n,\sqrt{q})\), \(i = 1, \ldots, t\), of \(\text{PG}(n = 2n',q)\). They are \(t\) pairwise disjoint \(1\)-fold \(n'\)-blocking sets, so they form together a \(t\)-fold \(n'\)-blocking set.

If \(n = 2n' + 1\), then the lower bound on \(k\) is \(k \geq n' + 1\). Consider the example of the preceding paragraph, lying in \(\text{PG}(2n',q)\), and embed this \(2n'\)-dimensional space into a \((2n' + 1)\)-dimensional space. Then the example of the preceding paragraph forms a \(t\)-fold \(n'\)-blocking set in \(\text{PG}(n = 2n' + 1,q)\), so a \(t\)-fold \((n-k)\)-blocking set with \(k = n' + 1\).

References

Address of the authors:
(S. Ferret: saferret@cage.ugent.be, http://cage.ugent.be/~saferret)
Ghent University, Dept. of Mathematics, Krijgslaan 281-S22, 9000 Gent, Belgium

(L. Storme: ls@cage.ugent.be, http://cage.ugent.be/~ls)
Ghent University, Dept. of Mathematics, Krijgslaan 281-S22, 9000 Gent, Belgium

(P. Sziklai: sziklai@cs.elte.hu, http://www.cs.elte.hu/~sziklai)
Eötvös Loránd University Budapest, Dept. of Computer Science, Pázmány P. s. 1/c, Budapest, Hungary H-1117

(Zs. Weiner: weiner@cs.elte.hu)
Eötvös Loránd University Budapest, Dept. of Computer Science, Pázmány P. s. 1/c, Budapest, Hungary H-1117