Advanced search
1 file | 198.64 KB Add to list

A characterization of multiple (n-k)-blocking sets in projective spaces of square order

(2012) ADVANCES IN GEOMETRY. 12(4). p.739-756
Author
Organization
Abstract
In [10], it was shown that small t-fold (n - k)-blocking sets in PG(n, q), q = p(h), p prime, h >= 1, intersect every k-dimensional space in t (mod p) points. We characterize in this article all t-fold (n k)-blocking sets in PG(n, q), q square, q >= 661, t < c(p)q(1/6)/2, vertical bar B vertical bar < tq(n-k) + 2tq(n-k-1) root q, intersecting every k-dimensional space in t (mod root q) points.
Keywords
Q), NUMBER, PG(N, FINITE-FIELD, SMALL BLOCKING SETS, PLANES, ARCS

Downloads

  • arttfoldleopeterzsuzsasandy adv geomrevisedfinal.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 198.64 KB

Citation

Please use this url to cite or link to this publication:

MLA
Ferret, Sandy et al. “A Characterization of Multiple (n-k)-blocking Sets in Projective Spaces of Square Order.” ADVANCES IN GEOMETRY 12.4 (2012): 739–756. Print.
APA
Ferret, S., Storme, L., Sziklai, P., & Weiner, Z. (2012). A characterization of multiple (n-k)-blocking sets in projective spaces of square order. ADVANCES IN GEOMETRY, 12(4), 739–756.
Chicago author-date
Ferret, Sandy, Leo Storme, Peter Sziklai, and Zsuzsa Weiner. 2012. “A Characterization of Multiple (n-k)-blocking Sets in Projective Spaces of Square Order.” Advances in Geometry 12 (4): 739–756.
Chicago author-date (all authors)
Ferret, Sandy, Leo Storme, Peter Sziklai, and Zsuzsa Weiner. 2012. “A Characterization of Multiple (n-k)-blocking Sets in Projective Spaces of Square Order.” Advances in Geometry 12 (4): 739–756.
Vancouver
1.
Ferret S, Storme L, Sziklai P, Weiner Z. A characterization of multiple (n-k)-blocking sets in projective spaces of square order. ADVANCES IN GEOMETRY. 2012;12(4):739–56.
IEEE
[1]
S. Ferret, L. Storme, P. Sziklai, and Z. Weiner, “A characterization of multiple (n-k)-blocking sets in projective spaces of square order,” ADVANCES IN GEOMETRY, vol. 12, no. 4, pp. 739–756, 2012.
@article{3260012,
  abstract     = {{In [10], it was shown that small t-fold (n - k)-blocking sets in PG(n, q), q = p(h), p prime, h >= 1, intersect every k-dimensional space in t (mod p) points. We characterize in this article all t-fold (n k)-blocking sets in PG(n, q), q square, q >= 661, t < c(p)q(1/6)/2, vertical bar B vertical bar < tq(n-k) + 2tq(n-k-1) root q, intersecting every k-dimensional space in t (mod root q) points.}},
  author       = {{Ferret, Sandy and Storme, Leo and Sziklai, Peter and Weiner, Zsuzsa}},
  issn         = {{1615-715X}},
  journal      = {{ADVANCES IN GEOMETRY}},
  keywords     = {{Q),NUMBER,PG(N,FINITE-FIELD,SMALL BLOCKING SETS,PLANES,ARCS}},
  language     = {{eng}},
  number       = {{4}},
  pages        = {{739--756}},
  title        = {{A characterization of multiple (n-k)-blocking sets in projective spaces of square order}},
  url          = {{http://dx.doi.org/10.1515/advgeom-2012-0019}},
  volume       = {{12}},
  year         = {{2012}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: