Advanced search
1 file | 1.12 MB

Analysis of the membrane proteome of ciprofloxacin-resistant macrophages by stable isotope labeling with amino acids in cell culture (SILAC)

(2013) PLOS ONE. 8(3).
Author
Organization
Abstract
Overexpression of multidrug transporters is a well-established mechanism of resistance to chemotherapy, but other changes may be co-selected upon exposure to drugs that contribute to resistance. Using a model of J774 macrophages made resistant to the fluoroquinolone antibiotic ciprofloxacin and comparing it with the wild-type parent cell line, we performed a quantitative proteomic analysis using the stable isotope labeling with amino acids in cell culture technology coupled with liquid chromatography electrospray ionization Fourier transform tandem mass spectrometry (LC-ESI-FT-MS/MS) on 2 samples enriched in membrane proteins (fractions F1 and F2 collected from discontinuous sucrose gradient). Nine hundred proteins were identified with at least 3 unique peptides in these 2 pooled fractions among which 61 (F1) and 69 (F2) showed a significantly modified abundance among the 2 cell lines. The multidrug resistance associated protein Abcc4, known as the ciprofloxacin efflux transporter in these cells, was the most upregulated, together with Dnajc3, a protein encoded by a gene located downstream of Abcc4. The other modulated proteins are involved in transport functions, cell adhesion and cytoskeleton organization, immune response, signal transduction, and metabolism. This indicates that the antibiotic ciprofloxacin is able to trigger a pleiotropic adaptative response in macrophages that includes the overexpression of its efflux transporter.
Keywords
liquid chromatography electrospray ionization fourier transform tandem mass spectrometry, Dnajc3, macrophages, Fluoroquinolone, Abcc4, membrane proteome, western-blot, NF-KAPPA-B, PHOSPHOLIPID-BINDING PROTEINS, GROWTH-FACTOR RECEPTOR, PROSTATE-CANCER, ENDOPLASMIC-RETICULUM, SUBCELLULAR-LOCALIZATION, MULTIDRUG-RESISTANT, EFFLUX TRANSPORTER, PREVENTS APOPTOSIS, J774 MACROPHAGES

Downloads

  • journal.pone.0058285.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 1.12 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Caceres, Nancy E, Maarten Aerts, Béatrice Marquez, Marie-Paule Mingeot-Leclercq, Paul M Tulkens, Bart Devreese, and Françoise Van Bambeke. 2013. “Analysis of the Membrane Proteome of Ciprofloxacin-resistant Macrophages by Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC).” Plos One 8 (3).
APA
Caceres, N. E., Aerts, M., Marquez, B., Mingeot-Leclercq, M.-P., Tulkens, P. M., Devreese, B., & Van Bambeke, F. (2013). Analysis of the membrane proteome of ciprofloxacin-resistant macrophages by stable isotope labeling with amino acids in cell culture (SILAC). PLOS ONE, 8(3).
Vancouver
1.
Caceres NE, Aerts M, Marquez B, Mingeot-Leclercq M-P, Tulkens PM, Devreese B, et al. Analysis of the membrane proteome of ciprofloxacin-resistant macrophages by stable isotope labeling with amino acids in cell culture (SILAC). PLOS ONE. 2013;8(3).
MLA
Caceres, Nancy E, Maarten Aerts, Béatrice Marquez, et al. “Analysis of the Membrane Proteome of Ciprofloxacin-resistant Macrophages by Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC).” PLOS ONE 8.3 (2013): n. pag. Print.
@article{3239987,
  abstract     = {Overexpression of multidrug transporters is a well-established mechanism of resistance to chemotherapy, but other changes may be co-selected upon exposure to drugs that contribute to resistance. Using a model of J774 macrophages made resistant to the fluoroquinolone antibiotic ciprofloxacin and comparing it with the wild-type parent cell line, we performed a quantitative proteomic analysis using the stable isotope labeling with amino acids in cell culture technology coupled with liquid chromatography electrospray ionization Fourier transform tandem mass spectrometry (LC-ESI-FT-MS/MS) on 2 samples enriched in membrane proteins (fractions F1 and F2 collected from discontinuous sucrose gradient). Nine hundred proteins were identified with at least 3 unique peptides in these 2 pooled fractions among which 61 (F1) and 69 (F2) showed a significantly modified abundance among the 2 cell lines. The multidrug resistance associated protein Abcc4, known as the ciprofloxacin efflux transporter in these cells, was the most upregulated, together with Dnajc3, a protein encoded by a gene located downstream of Abcc4. The other modulated proteins are involved in transport functions, cell adhesion and cytoskeleton organization, immune response, signal transduction, and metabolism. This indicates that the antibiotic ciprofloxacin is able to trigger a pleiotropic adaptative response in macrophages that includes the overexpression of its efflux transporter.},
  articleno    = {e58285},
  author       = {Caceres, Nancy E and Aerts, Maarten and Marquez, B{\'e}atrice and Mingeot-Leclercq, Marie-Paule and Tulkens, Paul M and Devreese, Bart and Van Bambeke, Fran\c{c}oise},
  issn         = {1932-6203},
  journal      = {PLOS ONE},
  keyword      = {liquid chromatography electrospray ionization fourier transform tandem mass spectrometry,Dnajc3,macrophages,Fluoroquinolone,Abcc4,membrane proteome,western-blot,NF-KAPPA-B,PHOSPHOLIPID-BINDING PROTEINS,GROWTH-FACTOR RECEPTOR,PROSTATE-CANCER,ENDOPLASMIC-RETICULUM,SUBCELLULAR-LOCALIZATION,MULTIDRUG-RESISTANT,EFFLUX TRANSPORTER,PREVENTS APOPTOSIS,J774 MACROPHAGES},
  language     = {eng},
  number       = {3},
  pages        = {15},
  title        = {Analysis of the membrane proteome of ciprofloxacin-resistant macrophages by stable isotope labeling with amino acids in cell culture (SILAC)},
  url          = {http://dx.doi.org/10.1371/journal.pone.0058285},
  volume       = {8},
  year         = {2013},
}

Altmetric
View in Altmetric
Web of Science
Times cited: