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Abstract

Let V be a 6-dimensional vector space over a field F equipped with a nondegener-
ate alternating bilinear form f . The group GL(V ) has a natural action on the third
exterior power

∧3 V of V which defines five families of nonzero trivectors of V . Four
of these families are always orbits regardless of the structure of the underlying field
F. The orbits contained in the fifth family are in one-to-one correspondence with
the quadratic extensions of F that are contained in a fixed algebraic closure of F.
We will divide those orbits corresponding to the nonseparable quadratic extensions
into suborbits for the action of the symplectic group Sp(V, f) ∼= Sp6(F) associated
with (V, f) on

∧3 V .
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1 Introduction

Throughout this paper, let V denote a 6-dimensional vector space over a field F and let
f denote a nondegenerate alternating bilinear form on V . With the pair (V, f), there
is associated a symplectic group Sp(V, f) ∼= Sp6(F) which consists of all θ ∈ GL(V ) for
which f(x̄θ, ȳθ) = f(x̄, ȳ), ∀x̄, ȳ ∈ V . The group Sp(V, f) consists of those elements
of GL(V ) that map hyperbolic bases of (V, f) to hyperbolic bases of (V, f). With a
hyperbolic basis of (V, f) we mean an ordered basis (ē1, f̄1, ē2, f̄2, ē3, f̄3) of V such that
f(ēi, ēj) = f(f̄i, f̄j) = 0 and f(ēi, f̄j) = δij for all i, j ∈ {1, 2, 3}. Here, δij denotes the
Kronecker delta.

The group GL(V ) and its subgroup Sp(V, f) have a natural action on the third exterior
power

∧3 V of V . Indeed, for every θ ∈ GL(V ), there exists a unique
∧3(θ) ∈ GL(

∧3 V )
such that

∧3(θ)(v̄1∧ v̄2∧ v̄3) = θ(v̄1)∧θ(v̄2)∧θ(v̄3), ∀v̄1, v̄2, v̄3 ∈ V . The elements of
∧3 V

are called the trivectors of V . Two trivectors χ1 and χ2 of V are called G-equivalent,
where G is either GL(V ) or Sp(V, f), if there exists a θ ∈ G such that

∧3(θ)(χ1) = χ2.

1



Let F be a fixed algebraic closure of F. For every quadratic extension F′ of F contained
in F, there exist µF′ , λF′ ∈ F∗ := F \ {0} such that pF′(X) := µF′X

2 − (µF′λF′ + µF′ +
λF′)X + λF′ is an irreducible quadratic polynomial of F[X] and F′ ⊆ F is the quadratic
extension of F defined by pF′(X). We define χ∗F′ := µF′ · v̄1 ∧ v̄2 ∧ v̄3 + λF′ · v̄4 ∧ v̄5 ∧ v̄6 +
(v̄1 + v̄4)∧ (v̄2 + v̄5)∧ (v̄3 + v̄6), where {v̄1, v̄2, . . . , v̄6} is some basis of V . Different choices
for µF′ , λF′ and (v̄1, v̄2, . . . , v̄6) usually give rise to distinct trivectors, but as shown in De
Bruyn [3], the GL(V )-equivalence class of the trivector χ∗F′ only depends on F′ and not
on the particular choices of µF′ , λF′ and (v̄1, v̄2, . . . , v̄6).

A complete classification of all GL(V )-equivalence classes of trivectors of V was ob-
tained in Revoy [10].

Proposition 1.1 ([10]) Let {v̄∗1, v̄∗2, . . . , v̄∗6} be a fixed basis of V . Then every nonzero
trivector of V is GL(V )-equivalent with precisely one of the following trivectors:

(A) v̄∗1 ∧ v̄∗2 ∧ v̄∗3;
(B) v̄∗1 ∧ v̄∗2 ∧ v̄∗3 + v̄∗1 ∧ v̄∗4 ∧ v̄∗5;
(C) v̄∗1 ∧ v̄∗2 ∧ v̄∗3 + v̄∗4 ∧ v̄∗5 ∧ v̄∗6;
(D) v̄∗1 ∧ v̄∗2 ∧ v̄∗4 + v̄∗2 ∧ v̄∗3 ∧ v̄∗5 + v̄∗3 ∧ v̄∗1 ∧ v̄∗6;
(E) χ∗F′ for some quadratic extension F′ of F contained in F.

Other classification results for GL(V )-equivalence classes of trivectors of V , valid for
certain classes of fields, can also be found in Cohen & Helminck [1] and Reichel [9].
A nonzero trivector of V is said to be of Type (X) ∈ {(A), (B), (C), (D), (E)} if it is
GL(V )-equivalent with (one of) the trivector(s) described in (X) of Proposition 1.1. The
description of the trivectors of Type (E) given above is different from the ones given in
[1] and [10]. The above description is taken from [3].

With the pair (V, f), there is associated a symplectic dual polar space DW (5,F). This
is the point-line geometry whose points [resp., lines] are the totally isotropic 3-spaces
[resp., totally isotropic 2-spaces] of V (with respect to f), with incidence being reverse
containment. A hyperplane H of a point-line geometry S is a set of points, distinct from
the whole point set, having the property that every line of S has either precisely one or
all its points in H. The knowledge of the Sp(V, f)-equivalence classes of trivectors of V
is important for the classification and study of the hyperplanes of DW (5,F) arising from
its so-called Grassmann embedding, as well as the study of the relationships between the
hyperplanes of DW (5,F) and the hyperplanes of the plane Grassmannian of PG(V ). The
latter is a certain point-line geometry into which DW (5,F) is fully embeddable.

Popov [8, Section 3] obtained a complete classification of all Sp(V, f)-equivalence classes
of trivectors of V , assuming the underlying field F is algebraically closed and of charac-
teristic distinct from 2. Popov’s method heavily relies on the decomposition of

∧3 V as a
direct sum of two subspaces Ω1 and Ω2 of respective dimensions 14 and 6 (which are also
submodules for the action of Sp(V, f) on

∧3 V ). This decomposition is only valid for fields
of characteristic distinct from 2. Popov’s proof also relies on a result of Igusa [7] regarding
the Sp(V, f)-equivalence classes of trivectors contained in Ω1. This classification result of
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Igusa also assumes that the underlying field is algebraically closed and of characteristic
distinct from 2. We are interested in the classification of all Sp(V, f)-equivalence classes of
trivectors without imposing any restrictions on the underlying field F. Such classification
results were already obtained in De Bruyn & Kwiatkowski [4] for trivectors of Type (A),
(B), (C), in De Bruyn & Kwiatkowski [6] for trivectors of Type (D) and in De Bruyn
& Kwiatkowski [5] for trivectors of Type (E) under the additional assumption that the
corresponding quadratic field extension is separable. The present paper deals with those
trivectors of Type (E) whose corresponding quadratic field extensions are nonseparable.
More precisely, we will solve the following problem.

Let F′ be a fixed nonseparable quadratic extension of F contained in F. Let
EF′ denote the set of all trivectors of V which are GL(V )-equivalent with χ∗F′ .
Then determine the Sp(V, f)-equivalence classes into which EF′ splits.

Since F′ is a nonseparable quadratic extension of F, the characteristic of F is 2 and there
exists a nonsquare a in F such that F′ is the extension of F defined by the irreducible
quadratic polynomial X2+a. Let (ē∗1, f̄

∗
1 , ē
∗
2, f̄

∗
2 , ē
∗
3, f̄

∗
3 ) be a fixed hyperbolic basis of (V, f).

For all h1, h2, h3 ∈ F∗, we define

χ1(h1, h2, h3) :=
a+ 1

a
· ē∗1 ∧ ē∗2 ∧ ē∗3 + (a+ 1)h1h2h3 · f̄ ∗1 ∧ f̄ ∗2 ∧ f̄ ∗3

+(ē∗1 + h1f̄
∗
1 ) ∧ (ē∗2 + h2f̄

∗
2 ) ∧ (ē∗3 + h3f̄

∗
3 ).

Any trivector of V which is Sp(V, f)-equivalent with a trivector of the form χ1(h1, h2, h3)
for some h1, h2, h3 ∈ F∗ is called a trivector of Type (E1’).

For every k ∈ F∗ and all h1, h2 ∈ F satisfying h1h2(a + 1)2 6= 1, we define the following
trivector of V :

χ2(k, h1, h2) :=
1

a
· ē∗1 ∧ (ē∗2 + h1(a+ 1)f̄ ∗3 ) ∧ f̄ ∗2 + k · f̄ ∗1 ∧ ē∗3 ∧ (h2(a+ 1)ē∗2 + f̄ ∗3 )

+
1

(a+ 1)2
· (ē∗1 + kf̄ ∗1 ) ∧ (ē∗2 + (a+ 1)ē∗3 + h1(a+ 1)f̄ ∗3 ) ∧ (h2(a+ 1)ē∗2

+(a+ 1)f̄ ∗2 + f̄ ∗3 ).

Any trivector of V which is Sp(V, f)-equivalent with a trivector of the form χ2(k, h1, h2)
for some k, h1, h2 ∈ F satisfying k 6= 0 and h1h2(a + 1)2 6= 1 is called a trivector of Type
(E2’).

For all h1, h2 ∈ F with h1 6= 0, we define

χ3(h1, h2) :=
1

a
· ē∗1 ∧ (ē∗2 + ē∗3) ∧ f̄ ∗2 + ē∗2 ∧ f̄ ∗1 ∧ (ē∗1 + h1f̄

∗
3 )

+
1

a+ 1
· (ē∗1 + ē∗2) ∧ (ē∗3 + h1f̄

∗
3 ) ∧

(
(a+ 1)2h2ē

∗
1 + f̄ ∗1 + f̄ ∗2

)
.

Any trivector of V which is Sp(V, f)-equivalent with a trivector of the form χ3(h1, h2) for
some h1 ∈ F∗ and some h2 ∈ F is called a trivector of Type (E3’).

The following two theorems are the main results of this paper.
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Theorem 1.2 The trivectors of V that are GL(V )-equivalent with χ∗F′ are precisely the
trivectors of Type (E1′), (E2′) and (E3′).

Theorem 1.3 (1) Let i, j ∈ {1, 2, 3} with i 6= j. Then no trivector of Type (Ei’) is
Sp(V, f)-equivalent with a trivector of Type (Ej’).

(2) Let h1, h2, h3, h
′
1, h
′
2, h
′
3 ∈ F∗. Then the two trivectors χ1(h1, h2, h3) and χ1(h′1, h

′
2,

h′3) of V are Sp(V, f)-equivalent if and only if there exists a matrix A ∈ SL(3,F′) such
that diag(h′1, h

′
2, h
′
3) = A · diag(h1, h2, h3) · AT.

(3) Let k, h1, h2, k
′, h′1, h

′
2 ∈ F with k 6= 0 6= k′ and h1h2(a + 1)2 6= 1 6= h′1h

′
2(a + 1)2.

Then the two trivectors χ2(k, h1, h2) and χ2(k′, h′1, h
′
2) of V are Sp(V, f)-equivalent if and

only if k = k′, h1h2 = h′1h
′
2 and there exist X, Y, Z, U ∈ F such that h′1 = h1(X2 + aY 2) +

h2(Z2 + aU2) + (XU + Y Z).
(4) Let h1, h2, h

′
1, h
′
2 ∈ F with h1 6= 0 6= h′1. Then the two trivectors χ3(h1, h2) and

χ3(h′1, h
′
2) of V are Sp(V, f)-equivalent if and only if h1 = h′1 and h2 + h′2 is of the form

h1(X2 + aY 2) + Y for some X, Y ∈ F.

In Theorem 1.3, diag(h1, h2, h3) denotes the diagonal (3 × 3)-matrix whose entry in the
i-th row and i-th column (i ∈ {1, 2, 3}) is equal to hi.

The machinery that we will use to classify all Sp(V, f)-equivalence classes of trivectors
belonging to EF′ will be developed in Section 3. The vector space V can naturally be
extended to a 6-dimensional vector space V ′ over F′. We consider two forms f ′ and g on
V ′ which will play an important role in the proof. The first form f ′ is just the alternating
bilinear form on V ′ obtained by extending f . The second “form” g is usually not bilinear.
At the end of Section 3 (Corollary 3.18), we will divide the family EF′ of trivectors into
three subfamilies such that trivectors belonging to distinct subfamilies are never Sp(V, f)-
equivalent. We will show that these three subfamilies correspond to the three families of
trivectors defined above ((E1’), (E2’) and (E3’)). Sections 4, 5 and 6 are devoted to
the classification of the Sp(V, f)-equivalence classes of trivectors that belong to the three
subfamilies described in Corollary 3.18.

We will see in Corollary 3.6 that the elements of EF′ are trivectors of Type (D) when
regarded as trivectors of V ′. All Sp(V ′, f ′)-equivalence classes of trivectors of Type (D)
of V ′ were determined in De Bruyn & Kwiatkowski [6]. We will recall this classification
in Section 2. In Sections 4, 5 and 6, we will also determine those Sp(V ′, f ′)-equivalence
classes of trivectors of Type (D) to which the elements of EF′ belong.

2 On the trivectors of Type (D)

In this section, we recall the classification of the Sp(V ′, f ′)-equivalence classes of trivectors
of Type (D) as given in De Bruyn & Kwiatkowski [6].

Let V ′ be a 6-dimensional vector space over the field F′ equipped with a nondegenerate
alternating bilinear form f ′. Let (ē∗1, f̄

∗
1 , ē
∗
2, f̄

∗
2 , ē
∗
3, f̄

∗
3 ) be a fixed hyperbolic basis of (V ′, f ′).

We now define a number of trivectors of V ′.
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• We define

γ1 := ē∗1 ∧ ē∗2 ∧ f̄ ∗2 + ē∗2 ∧ f̄ ∗1 ∧ ē∗3 + f̄ ∗1 ∧ ē∗1 ∧ f̄ ∗3 .

• For every λ ∈ F′ \ {0}, we define

γ2(λ) := λ · ē∗1 ∧ ē∗2 ∧ f̄ ∗3 + ē∗2 ∧ f̄ ∗1 ∧ ē∗3 + f̄ ∗1 ∧ ē∗1 ∧ f̄ ∗2 ,
γ5(λ) := ē∗1 ∧ ē∗2 ∧ f̄ ∗3 + λ · ē∗2 ∧ ē∗3 ∧ (f̄ ∗1 + f̄ ∗2 + f̄ ∗3 )− ē∗3 ∧ ē∗1 ∧ f̄ ∗2 .

• For all λ1, λ2 ∈ F′ \ {0}, we define

γ3(λ1, λ2) := ē∗1 ∧ ē∗2 ∧ f̄ ∗3 + λ1 · ē∗2 ∧ ē∗3 ∧ f̄ ∗1 + λ2 · ē∗3 ∧ ē∗1 ∧ f̄ ∗2 ,
γ4(λ1, λ2) := ē∗1 ∧ ē∗2 ∧ f̄ ∗3 + λ1 · ē∗2 ∧ ē∗3 ∧ (f̄ ∗1 + f̄ ∗3 ) + λ2 · ē∗3 ∧ ē∗1 ∧ f̄ ∗2 .

• If char(F′) 6= 2, then we define the following additional trivector:

γ6 := −ē∗1 ∧ ē∗2 ∧ f̄ ∗2 + ē∗2 ∧ ē∗3 ∧ f̄ ∗1 + ē∗3 ∧ ē∗1 ∧ f̄ ∗3 .

• If |F′| = 2, then we define the following additional trivector:

γ7 := ē∗1 ∧ ē∗2 ∧ f̄ ∗2 + ē∗2 ∧ ē∗3 ∧ (f̄ ∗1 + f̄ ∗3 ) + ē∗3 ∧ ē∗1 ∧ f̄ ∗3 .

Let i ∈ {1, 2, . . . , 7}. Any trivector of V ′ which is Sp(V ′, f ′)-equivalent with some γi-
trivector defined above is called a trivector of Type (Di). The following results were
proved in De Bruyn & Kwiatkowski [6].

Proposition 2.1 ([6, Theorems 1.2, 1.3 and 1.4]) (1) The trivectors of Type (D)
of V ′ are precisely the trivectors of Type (D1), (D2), (D3), (D4), (D5), (D6) and (D7).

(2) Let i, j ∈ {1, 2, ..., 7} with i 6= j. Then no trivector of Type (Di) is Sp(V ′, f ′)-
equivalent with a trivector of Type (Dj).

(3) If λ, λ′ ∈ F′ \ {0}, then the trivectors γ2(λ) and γ2(λ′) are Sp(V ′, f ′)-equivalent if
and only if λ = λ′.

(4) Let λ1, λ2, λ
′
1, λ
′
2 ∈ F′ \ {0}. Then the trivectors γ3(λ1, λ2) and γ3(λ′1, λ

′
2) are

Sp(V ′, f ′)-equivalent if and only if the matrices

 1
λ1

0 0

0 1
λ2

0

0 0 1
λ1λ2

 and


1
λ′1

0 0

0 1
λ′2

0

0 0 1
λ′1λ
′
2


are congruent.

(5) Let λ1, λ2, λ
′
1, λ
′
2 ∈ F′ \ {0}. Then the trivectors γ4(λ1, λ2) and γ4(λ′1, λ

′
2) are

Sp(V ′, f ′)-equivalent if and only if λ1 = λ′1 and there exist X, Y ∈ F′ such that Y 2 +

λ1XY + λ1X
2 =

λ′2
λ2

.
(6) Let λ, λ′ ∈ F′ \{0}. If char(F′) = 2, then γ5(λ) and γ5(λ′) are Sp(V ′, f ′)-equivalent

if and only if λ+λ′

λλ′
is of the form X2 + X for some X ∈ F′. If char(F′) 6= 2, then the

trivectors γ5(λ) and γ5(λ′) are always Sp(V ′, f ′)-equivalent.
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Remark. If {v̄1, v̄2, . . . , v̄6} is a basis of V ′, then χ = v̄1∧v̄2∧v̄4+v̄2∧v̄3∧v̄5+v̄3∧v̄1∧v̄6 is
a trivector of Type (D) of V ′. By Lemma 3.1 of [6], the 3-space 〈v̄1, v̄2, v̄3〉 of V ′ is uniquely
determined by χ. We call it the base 3-space of χ. In the above list of trivectors of Type
(D), γ1 and γ2(λ) are those trivectors whose base 3-space is not totally isotropic, while
γ3(λ1, λ2), γ4(λ1, λ2), γ5(λ), γ6 and γ7 are those trivectors whose base 3-space is totally
isotropic.

3 Development of the machinery for the classification

The aim of this section is to develop the machinery that we will use to obtain our desired
classification results.

Let F be a field of characteristic 2, denote by F a fixed algebraic closure of F and
suppose F′ ⊆ F is the nonseparable quadratic extension of F defined by the irreducible
quadratic polynomial X2 + a ∈ F[X]. Let δ be the unique element of F′ \ F such that
δ2 = a.

Let V ′ be a 6-dimensional vector space over F′ equipped with a nondegenerate al-
ternating bilinear form f ′. Denote by {v̄∗1, v̄∗2, v̄∗3, v̄∗4, v̄∗5, v̄∗6} a fixed basis of V ′ such that
f ′(v̄∗i , v̄

∗
j ) ∈ F for all i, j ∈ {1, 2, . . . , 6} (e.g., take for (v̄∗1, v̄

∗
2, v̄
∗
3, v̄
∗
4, v̄
∗
5, v̄
∗
6) an arbitrary

hyperbolic basis of (V ′, f ′)). Let V denote the set of all F-linear combinations of the
elements of {v̄∗1, v̄∗2, v̄∗3, v̄∗4, v̄∗5, v̄∗6} and let f denote the restriction of f ′ to V . Then V can
be regarded in a natural way as a 6-dimensional vector space over F, and f defines a
nondegenerate alternating bilinear form on V .

The following two lemmas are special cases of a more general result, see e.g. De Bruyn
[2, Section 4].

Lemma 3.1 For every hyperbolic basis B = (ē1, f̄1, ē2, f̄2, ē3, f̄3) of (V ′, f ′), let πB denote
the linear map from

∧3 V ′ to V ′ defined by

πB(ē1 ∧ ē2 ∧ ē3) = πB(ē1 ∧ ē2 ∧ f̄3) = πB(ē1 ∧ f̄2 ∧ ē3) = πB(ē1 ∧ f̄2 ∧ f̄3) = ō,

πB(f̄1 ∧ ē2 ∧ ē3) = πB(f̄1 ∧ ē2 ∧ f̄3) = πB(f̄1 ∧ f̄2 ∧ ē3) = πB(f̄1 ∧ f̄2 ∧ f̄3) = ō,

πB(ē1 ∧ ē2 ∧ f̄2) = πB(ē1 ∧ ē3 ∧ f̄3) = ē1, πB(f̄1 ∧ ē2 ∧ f̄2) = πB(f̄1 ∧ ē3 ∧ f̄3) = f̄1,

πB(ē2 ∧ ē1 ∧ f̄1) = πB(ē2 ∧ ē3 ∧ f̄3) = ē2, πB(f̄2 ∧ ē1 ∧ f̄1) = πB(f̄2 ∧ ē3 ∧ f̄3) = f̄2,

πB(ē3 ∧ ē1 ∧ f̄1) = πB(ē3 ∧ ē2 ∧ f̄2) = ē3, πB(f̄3 ∧ ē1 ∧ f̄1) = πB(f̄3 ∧ ē2 ∧ f̄2) = f̄3.

Then πB is independent of the chosen hyperbolic basis B of (V ′, f ′).

Lemma 3.2 For every hyperbolic basis B = (ē1, f̄1, ē2, f̄2, ē3, f̄3) of (V ′, f ′), let π′B denote
the linear map from

∧4 V ′ to
∧2 V ′ defined by

π′B(ē1∧ f̄1∧ ē2∧ ē3) = ē2∧ ē3, π
′
B(ē1∧ f̄1∧ ē2∧ f̄3) = ē2∧ f̄3, π

′
B(ē1∧ f̄1∧ f̄2∧ ē3) = f̄2∧ ē3,

π′B(ē1∧ f̄1∧ f̄2∧ f̄3) = f̄2∧ f̄3, π
′
B(ē2∧ f̄2∧ ē1∧ ē3) = ē1∧ ē3, π

′
B(ē2∧ f̄2∧ ē1∧ f̄3) = ē1∧ f̄3,
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π′B(ē2∧ f̄2∧ f̄1∧ ē3) = f̄1∧ ē3, π
′
B(ē2∧ f̄2∧ f̄1∧ f̄3) = f̄1∧ f̄3, π

′
B(ē3∧ f̄3∧ ē1∧ ē2) = ē1∧ ē2,

π′B(ē3∧ f̄3∧ ē1∧ f̄2) = ē1∧ f̄2, π
′
B(ē3∧ f̄3∧ f̄1∧ ē2) = f̄1∧ ē2, π

′
B(ē3∧ f̄3∧ f̄1∧ f̄2) = f̄1∧ f̄2,

π′B(ē1 ∧ f̄1 ∧ ē2 ∧ f̄2) = ē1 ∧ f̄1 + ē2 ∧ f̄2, π′B(ē1 ∧ f̄1 ∧ ē3 ∧ f̄3) = ē1 ∧ f̄1 + ē3 ∧ f̄3,

π′B(ē2 ∧ f̄2 ∧ ē3 ∧ f̄3) = ē2 ∧ f̄2 + ē3 ∧ f̄3.

Then π′B is independent of the chosen hyperbolic basis B of (V ′, f ′).

Let π :
∧3 V ′ ∪

∧4 V ′ → V ′ ∪
∧2 V ′ be the map which sends α to πB(α) if α ∈

∧3 V ′ and
to π′B(α) if α ∈

∧4 V ′. Here, B is some arbitrary hyperbolic basis of (V ′, f ′). Observe
that by Lemmas 3.1 and 3.2, the map π is an invariant, that means, is independent of the
considered hyperbolic basis B of (V ′, f ′).

Let Sp(V, f) ∼= Sp6(F) and Sp(V ′, f ′) ∼= Sp6(F′) denote the symplectic groups associated
with the respective pairs (V, f) and (V ′, f ′). Every θ ∈ GL(V ) may be naturally extended
to an element of GL(V ′) which we will also denote by θ. Following this convention, we
thus have that GL(V ) ⊂ GL(V ′) and Sp(V, f) ⊂ Sp(V ′, f ′). Recall that if χ1, χ2 ∈

∧3 V ′

and G is one of the groups GL(V ′), GL(V ), Sp(V ′, f ′), Sp(V, f), then χ1 and χ2 are called
G-equivalent if χ2 =

∧3(θ)(χ1) for some θ ∈ G.
If we put µF′ = a+1 and λF′ = a+1

a
, then F′ ⊆ F is the quadratic extension of F defined

by the quadratic polynomial µF′X
2 +(µF′λF′+µF′+λF′)X+λF′ = (a+1)(X2 + 1

a
) ∈ F[X].

So, we can put

χ∗F′ :=
a+ 1

a
· v̄∗1 ∧ v̄∗3 ∧ v̄∗5 + (a+ 1) · v̄∗2 ∧ v̄∗4 ∧ v̄∗6 + (v̄∗1 + v̄∗2) ∧ (v̄∗3 + v̄∗4) ∧ (v̄∗5 + v̄∗6).

We now define a certain map φ :
∧3 V ′ →

∧3 V . If χ ∈
∧3 V ′, then there exist unique

χ1, χ2 ∈
∧3 V such that χ = χ1 + δχ2, and we define

φ(χ) :=
1

a
· χ1 + χ2.

With this definition, we have

χ∗F′ := φ
(

(v̄∗1 + δv̄∗2) ∧ (v̄∗3 + δv̄∗4) ∧ (v̄∗5 + δv̄∗6)
)
.

Lemma 3.3 If θ ∈ GL(V ), then
∧3(θ) ◦ φ = φ ◦

∧3(θ).

Proof. Let χ = χ1 + δχ2 be an arbitrary element of
∧3 V ′, where χ1, χ2 ∈

∧3 V . Since
θ ∈ GL(V ),

∧3(θ)(χ1) ∈
∧3 V and

∧3(θ)(χ2) ∈
∧3 V . Now,

∧3(θ) ◦ φ(χ) =
∧3(θ)( 1

a
·

χ1 +χ2) = 1
a
·
∧3(θ)(χ1) +

∧3(θ)(χ2) and φ ◦
∧3(θ)(χ) = φ

(∧3(θ)(χ1) + δ ·
∧3(θ)(χ2)

)
=

1
a
·
∧3(θ)(χ1) +

∧3(θ)(χ2). �

The following observation should be clear.
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Lemma 3.4 The trivectors of Type (E) of V belonging to EF′ are precisely the trivectors

of the form φ
(

(v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6)
)

, where {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} is some

basis of V .

The proof of the following lemma consists of a straightforward computation.

Lemma 3.5 If v̄1, v̄2, . . . , v̄6 are vectors of V , then φ
(

(v̄1 +δv̄2)∧(v̄3 +δv̄4)∧(v̄5 +δv̄6)
)

=

(v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ ( 1
a
v̄5 + v̄6) + (v̄3 + δv̄4) ∧ (v̄5 + δv̄6) ∧ ( 1

a
v̄1 + v̄2) + (v̄5 + δv̄6) ∧

(v̄1 + δv̄2) ∧ ( 1
a
v̄3 + v̄4).

The following is a straightforward corollary of Lemma 3.5.

Corollary 3.6 The trivectors of Type (E) of V belonging to EF′ are trivectors of Type
(D) when regarded as trivectors of V ′.

Lemma 3.7 If {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} and {w̄1, w̄2, w̄3, w̄4, w̄5, w̄6} are two bases of V such

that φ
(

(v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6)
)

= φ
(

(w̄1 + δw̄2) ∧ (w̄3 + δw̄4) ∧ (w̄5 + δw̄6)
)

,

then (v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6) = (w̄1 + δw̄2) ∧ (w̄3 + δw̄4) ∧ (w̄5 + δw̄6).

Proof. If {ū1, ū2, ū3, ū4, ū5, ū6} and {ū′1, ū′2, ū′3, ū′4, ū′5, ū′6} are two bases of V ′ such that
ū1 ∧ ū2 ∧ ū4 + ū2 ∧ ū3 ∧ ū5 + ū3 ∧ ū1 ∧ ū6 = ū′1 ∧ ū′2 ∧ ū′4 + ū′2 ∧ ū′3 ∧ ū′5 + ū′3 ∧ ū′1 ∧ ū′6, then
〈ū1, ū2, ū3〉 = 〈ū′1, ū′2, ū′3〉, see [6, Lemma 3.1]. This fact in combination with Lemma 3.5
yields that 〈v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6〉 = 〈w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6〉. So, there exist
λ1, λ2 ∈ F with (λ1, λ2) 6= (0, 0) such that (v̄1+δv̄2)∧(v̄3+δv̄4)∧(v̄5+δv̄6) = (λ1+λ2δ)·(w̄1+
δw̄2)∧(w̄3+δw̄4)∧(w̄5+δw̄6). Now, let χ1 and χ2 be the unique elements of

∧3 V such that
(w̄1+δw̄2)∧(w̄3+δw̄4)∧(w̄5+δw̄6) = χ1+δχ2. Then χ1 and χ2 are linearly independent and
(v̄1+δv̄2)∧(v̄3+δv̄4)∧(v̄5+δv̄6) = (χ1+δχ2)·(λ1+δλ2) = (λ1·χ1+aλ2·χ2)+δ(λ1·χ2+λ2·χ1).

From φ
(

(w̄1 + δw̄2)∧ (w̄3 + δw̄4)∧ (w̄5 + δw̄6)
)

= φ
(

(v̄1 + δv̄2)∧ (v̄3 + δv̄4)∧ (v̄5 + δv̄6)
)

,

we find
1

a
· χ1 + χ2 =

λ1

a
· χ1 + λ2 · χ2 + λ1 · χ2 + λ2 · χ1.

Since χ1 and χ2 are linearly independent, we find 1
a

= λ1

a
+ λ2 and 1 = λ1 + λ2. Hence,

λ1 = 1, λ2 = 0 and (v̄1 +δv̄2)∧(v̄3 +δv̄4)∧(v̄5 +δv̄6) = (w̄1 +δw̄2)∧(w̄3 +δw̄4)∧(w̄5 +δw̄6).
�

Let Ω denote the set of all trivectors of V ′ of the form (v̄1 + δv̄2)∧ (v̄3 + δv̄4)∧ (v̄5 + δv̄6),
where {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} is some basis of V . Then φ : Ω →

∧3 V defines a bijection
between Ω and the set of trivectors of Type (E) of V belonging to EF′ .

Lemma 3.8 Let χ1, χ2 ∈ Ω. Then φ(χ1) and φ(χ2) are Sp(V, f)-equivalent if and only
if χ1 and χ2 are Sp(V, f)-equivalent.
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Proof. The trivectors χ1 and χ2 are Sp(V, f)-equivalent if and only if χ2 =
∧3(θ)(χ1)

for some θ ∈ Sp(V, f), i.e., if and only if φ(χ2) = φ
(∧3(θ)(χ1)

)
=
∧3(θ)(φ(χ1)) for some

θ ∈ Sp(V, f). The latter condition is equivalent with φ(χ1) and φ(χ2) being Sp(V, f)-
equivalent. �

The determination of the Sp(V, f)-equivalence classes of trivectors of Type (E) contained
in EF′ is thus equivalent with the determination of the Sp(V, f)-orbits on the elements of
Ω.

For every vector v̄ ∈ V ′, we define Re(v̄) := v̄1 and Im(v̄) := v̄2, where v̄1 and v̄2 are the
unique vectors of V for which v̄ = v̄1 + δv̄2. For every η ∈ F′, we define Re(η) := η1 and
Im(η) := η2, where η1 and η2 are the unique elements of F for which η = η1 + δη2. If
A = (aij)1≤i,j≤3 is a (3 × 3)-matrix with entries in F′, then Re(A) [resp., Im(A)] denotes
the (3× 3)-matrix whose (i, j)-th entry is equal to Re(aij) [resp., Im(aij)] (i, j ∈ {1, 2, 3}).
If ∗ is a vector of V ′, an element of F′ or a (3× 3)-matrix over F′, then Re(∗) and Im(∗)
are respectively called the real and imaginary part of ∗.
Let τ : V ′ → V ′ be the following map:

(v̄1 + δv̄2)τ := v̄2 + δv̄1 (v̄1, v̄2 ∈ V ).

Clearly, τ ◦ θ = θ ◦ τ for every θ ∈ GL(V ), (x̄1 + x̄2)τ = x̄τ1 + x̄τ2 for all x̄1, x̄2 ∈ V ′ and
(λx̄)τ = λx̄τ for every x̄ ∈ V ′ and every λ ∈ F.

Let g : V ′ × V ′ → F′ be the following map:

g(x̄, ȳ) := f ′(x̄, ȳτ ) (x̄, ȳ ∈ V ′).

In the following lemma, we collect some properties of the map g.

Lemma 3.9 (1) If x̄, ȳ ∈ V ′ and θ ∈ Sp(V, f), then g(x̄θ, ȳθ) = g(x̄, ȳ).
(2) If x̄1, x̄2, ȳ1, ȳ2 ∈ V ′, then g(x̄1 + x̄2, ȳ1) = g(x̄1, ȳ1) + g(x̄2, ȳ1) and g(x̄1, ȳ1 + ȳ2) =

g(x̄1, ȳ1) + g(x̄1, ȳ2).
(3) If x̄, ȳ ∈ V ′ and λ ∈ F′, then g(λx̄, ȳ) = λ · g(x̄, ȳ) and g(x̄, λȳ) = λ · g(x̄, ȳ) + (a+

1) · Im(λ) · f ′(x̄, ȳ).

Proof. (1) We have g(x̄θ, ȳθ) = f ′(x̄θ, (ȳθ)τ ) = f ′(x̄θ, (ȳτ )θ) = f ′(x̄, ȳτ ) = g(x̄, ȳ).

(2) This follows from the fact that (ȳ1 + ȳ2)τ = ȳτ1 + ȳτ2 and the fact that f ′ is bilinear.

(3) The first equality follows from the fact that f ′ is bilinear in its first component. To
prove the second equality, put λ := λ1 + δλ2 and ȳ := ȳ1 + δȳ2 where λ1, λ2 ∈ F and
ȳ1, ȳ2 ∈ V . Then we have that

g(x̄, λȳ) = g(x̄, (λ1 + δλ2) · (ȳ1 + δȳ2))

= g(x̄, λ1ȳ1 + aλ2ȳ2 + δ(λ1ȳ2 + λ2ȳ1))

= f ′(x̄, λ1ȳ2 + λ2ȳ1 + δ(λ1ȳ1 + aλ2ȳ2))

= λ1 · f ′(x̄, ȳ2) + λ2 · f ′(x̄, ȳ1) + δ ·
(
λ1 · f ′(x̄, ȳ1) + λ2a · f ′(x̄, ȳ2)

)
.

9



On the other hand, λ · g(x̄, ȳ) + (a+ 1) · Im(λ) · f ′(x̄, ȳ) is equal to

(λ1 + λ2δ) · f ′(x̄, ȳ2 + δȳ1) + (a+ 1)λ2 · f ′(x̄, ȳ1 + δȳ2) =

λ1·f ′(x̄, ȳ2)+λ1δ·f ′(x̄, ȳ1)+λ2δ·f ′(x̄, ȳ2)+λ2a·f ′(x̄, ȳ1)+(a+1)λ2·f ′(x̄, ȳ1)+(a+1)λ2δ·f ′(x̄, ȳ2)

= λ1 · f ′(x̄, ȳ2) + λ1δ · f ′(x̄, ȳ1) + aλ2δ · f ′(x̄, ȳ2) + λ2 · f ′(x̄, ȳ1).

So g(x̄, λȳ) = λ · g(x̄, ȳ) + (a+ 1) · Im(λ) · f ′(x̄, ȳ). �

If ū1, ū2, . . . , ūk are k ≥ 1 vectors of V ′ and h ∈ {f ′, g}, then Mh(ū1, ū2, . . . , ūk) denotes
the (k × k)-matrix over F′ whose (i, j)-th entry is equal to h(ūi, ūj) (i, j ∈ {1, 2, . . . , k}).

Lemma 3.10 Let {ū1, ū2, ū3} and {v̄1, v̄2, v̄3} be two sets of linearly independent vectors
of V ′ such that 〈ū1, ū2, ū3〉 = 〈v̄1, v̄2, v̄3〉. Let A = (aij)1≤i,j≤3 be the (3 × 3)-matrix over
F′ such that [v̄1, v̄2, v̄3]T = A · [ū1, ū2, ū3]T. Then

Mf ′(v̄1, v̄2, v̄3) = A ·Mf ′(ū1, ū2, ū3) · AT,

Mg(v̄1, v̄2, v̄3) = A ·Mg(ū1, ū2, ū3) · AT + (a+ 1) · A ·Mf ′(ū1, ū2, ū3) · Im(A)T.

Proof. For all i, j ∈ {1, 2, 3}, we have

f ′(v̄i, v̄j) = f ′(
3∑

k=1

aikūk,
3∑
l=1

ajlūl) =
3∑

k=1

3∑
l=1

aik ·f ′(ūk, ūl)·ajl =
(
A·Mf ′(ū1, ū2, ū3)·AT

)
ij
.

Invoking Lemma 3.9, we also have

g(v̄i, v̄j) = g(
3∑

k=1

aikūk,
3∑
l=1

ajlūl) =
3∑

k=1

3∑
l=1

aikg(ūk, ajlūl)

=
3∑

k=1

3∑
l=1

(
aik · g(ūk, ūl) · ajl + (a+ 1) · aik · f ′(ūk, ūl) · Im(ajl)

)
=

(
A ·Mg(ū1, ū2, ū3) · AT + (a+ 1) · A ·Mf ′(ū1, ū2, ū3) · (Im(A))T

)
ij
.

Hence, Mf ′(v̄1, v̄2, v̄3) = A ·Mf ′(ū1, ū2, ū3) · AT and Mg(v̄1, v̄2, v̄3) = A ·Mg(ū1, ū2, ū3) ·
AT + (a+ 1) · A ·Mf ′(ū1, ū2, ū3) · Im(A)T. �

Lemma 3.11 Let {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} and {w̄1, w̄2, w̄3, w̄4, w̄5, w̄6} be two bases of V , and
let θ be the unique element of GL(V ) mapping (v̄1, v̄2, v̄3, v̄4, v̄5, v̄6) to (w̄1, w̄2, w̄3, w̄4, w̄5,
w̄6). Then θ ∈ Sp(V, f) if and only if Mf ′(v̄1 +δv̄2, v̄3 +δv̄4, v̄5 +δv̄6) = Mf ′(w̄1 +δw̄2, w̄3 +
δw̄4, w̄5 + δw̄6) and Mg(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) = Mg(w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6).

Proof. Suppose θ ∈ Sp(V, f). Then for all i, j ∈ {1, 3, 5}, we have f ′(w̄i + δw̄i+1, w̄j +
δw̄j+1) = f ′(v̄θi +δv̄

θ
i+1, v̄

θ
j+δv̄

θ
j+1) = f ′(v̄i+δv̄i+1, v̄j+δv̄j+1) and g(w̄i+δw̄i+1, w̄j+δw̄j+1) =

g(v̄θi + δv̄θi+1, v̄
θ
j + δv̄θj+1) = g(v̄i + δv̄i+1, v̄j + δv̄j+1). It follows that Mf ′(v̄1 + δv̄2, v̄3 +
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δv̄4, v̄5 + δv̄6) = Mf ′(w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6) and Mg(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) =
Mg(w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6).

Conversely, suppose that Mf ′(v̄1+δv̄2, v̄3+δv̄4, v̄5+δv̄6) = Mf ′(w̄1+δw̄2, w̄3+δw̄4, w̄5+
δw̄6) and Mg(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) = Mg(w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6). Let i, j ∈
{1, 3, 5}. From f ′(v̄i+δv̄i+1, v̄j+δv̄j+1) = f ′(w̄i+δw̄i+1, w̄j+δw̄j+1) and f ′(v̄i+δv̄i+1, v̄j+1+
δv̄j) = g(v̄i+δv̄i+1, v̄j+δv̄j+1) = g(w̄i+δw̄i+1, w̄j+δw̄j+1) = f ′(w̄i+δw̄i+1, w̄j+1 +δw̄j), we
find f ′(v̄i + δv̄i+1, v̄j) = f ′(w̄i + δw̄i+1, w̄j) and f ′(v̄i + δv̄i+1, v̄j+1) = f ′(w̄i + δw̄i+1, w̄j+1).
Since f ′(v̄i, v̄j), f

′(v̄i, v̄j+1), f ′(v̄i+1, v̄j), f
′(v̄i+1, v̄j+1), f ′(w̄i, w̄j), f

′(w̄i, w̄j+1), f ′(w̄i+1, w̄j)
and f ′(w̄i+1, w̄j+1) belong to F, the latter two equations imply that f ′(v̄i, v̄j) = f ′(w̄i, w̄j),
f ′(v̄i, v̄j+1) = f ′(w̄i, w̄j+1), f ′(v̄i+1, v̄j) = f ′(w̄i+1, w̄j) and f ′(v̄i+1, v̄j+1) = f ′(w̄i+1, w̄j+1).
So, we have that f ′(v̄θk, v̄

θ
l ) = f ′(v̄k, v̄l) for all k, l ∈ {1, 2, 3, 4, 5, 6}. This implies that

θ ∈ Sp(V, f). �

Lemma 3.12 Let {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} and {w̄1, w̄2, w̄3, w̄4, w̄5, w̄6} be two bases of V . Put

χ1 := φ
(

(v̄1 +δv̄2)∧(v̄3 +δv̄4)∧(v̄5 +δv̄6)
)

, χ2 := φ
(

(w̄1 +δw̄2)∧(w̄3 +δw̄4)∧(w̄5 +δw̄6)
)

,

M1 := Mf ′(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6), M2 := Mf ′(w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6), N1 :=
Mg(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) and N2 := Mg(w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6). Then χ1

and χ2 are Sp(V, f)-equivalent if and only if there exists a matrix A ∈ SL(3,F′) such that
M2 = AM1A

T and N2 = AN1A
T + (a+ 1) · A ·M1 · Im(A)T.

Proof. Suppose χ1 and χ2 are Sp(V, f)-equivalent and let θ ∈ Sp(V, f) such that∧3(θ)(χ1) = χ2. Then φ
(

(w̄1 + δw̄2) ∧ (w̄3 + δw̄4) ∧ (w̄5 + δw̄6)
)

=
∧3(θ)

[
φ
(

(v̄1 + δv̄2) ∧

(v̄3 + δv̄4)∧ (v̄5 + δv̄6)
)]

= φ
(

(v̄θ1 + δv̄θ2)∧ (v̄θ3 + δv̄θ4)∧ (v̄θ5 + δv̄θ6)
)

. Hence, 〈w̄1 + δw̄2, w̄3 +

δw̄4, w̄5 +δw̄6〉 = 〈v̄θ1 +δv̄θ2, v̄
θ
3 +δv̄θ4, v̄

θ
5 +δv̄θ6〉 and (v̄θ1 +δv̄θ2)∧(v̄θ3 +δv̄θ4)∧(v̄θ5 +δv̄θ6) = (w̄1 +

δw̄2)∧(w̄3 +δw̄4)∧(w̄5 +δw̄6) by Lemma 3.7. Now, let A be the nonsingular (3×3)-matrix
over F′ such that [w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6]T = A · [v̄θ1 + δv̄θ2, v̄

θ
3 + δv̄θ4, v̄

θ
5 + δv̄θ6]T. Since

(w̄1+δw̄2)∧(w̄3+δw̄4)∧(w̄5+δw̄6) = (v̄θ1 +δv̄θ2)∧(v̄θ3 +δv̄θ4)∧(v̄θ5 +δv̄θ6), we have det(A) = 1.
Now, Mf ′(v̄

θ
1 + δv̄θ2, v̄

θ
3 + δv̄θ4, v̄

θ
5 + δv̄θ6) = M1 and Mg(v̄

θ
1 + δv̄θ2, v̄

θ
3 + δv̄θ4, v̄

θ
5 + δv̄θ6) = N1.

Lemma 3.10 now implies that M2 = AM1A
T and N2 = AN1A

T + (a+ 1) ·A ·M1 · Im(A)T.
Conversely, suppose that M2 = AM1A

T and N2 = AN1A
T +(a+1) ·A ·M1 · Im(A)T for

some matrix A ∈ SL(3,F′). Let ū1, ū2, ū3, ū4, ū5 and ū6 be the unique vectors of V such
that [w̄1 +δw̄2, w̄3 +δw̄4, w̄5 +δw̄6]T = A · [ū1 +δū2, ū3 +δū4, ū5 +δū6]T. Since det(A) = 1,
we have (w̄1 +δw̄2)∧(w̄3 +δw̄4)∧(w̄5 +δw̄6) = (ū1 +δū2)∧(ū3 +δū4)∧(ū5 +δū6) and hence

χ2 = φ
(

(ū1 + δū2) ∧ (ū3 + δū4) ∧ (ū5 + δū6)
)

. From Lemma 3.10, we easily derive that

Mf ′(ū1+δū2, ū3+δū4, ū5+δū6) = M1 and Mg(ū1+δū2, ū3+δū4, ū5+δū6) = N1. Since also
Mf ′(v̄1 +δv̄2, v̄3 +δv̄4, v̄5 +δv̄6) = M1 and Mg(v̄1 +δv̄2, v̄3 +δv̄4, v̄5 +δv̄6) = N1, by Lemma
3.11 there exists a θ ∈ Sp(V, f) mapping (v̄1, v̄2, v̄3, v̄4, v̄5, v̄6) to (ū1, ū2, ū3, ū4, ū5, ū6).

Then χ2 = φ
(

(ū1+δū2)∧(ū3+δū4)∧(ū5+δū6)
)

= φ
(

(v̄θ1 +δv̄θ2)∧(v̄θ3 +δv̄θ4)∧(v̄θ5 +δv̄θ6)
)

=∧3(θ)
[
φ
(

(v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6)
)]

=
∧3(θ)(χ1). So, χ1 and χ2 are Sp(V, f)-

equivalent. �
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Lemma 3.13 (1) For all x̄ ∈ V ′, we have g(x̄, x̄) ∈ F.
(2) For all x̄, ȳ ∈ V ′, we have g(x̄, ȳ) + g(ȳ, x̄) = (a+ 1) · Im(f ′(x̄, ȳ)).
(3) For all x̄, ȳ ∈ V ′, we have f ′(x̄τ , ȳτ ) + f ′(x̄, ȳ) = (a+ 1) · Im(g(x̄, ȳ)).

Proof. (1) If v̄1 and v̄2 are the unique vectors of V such that x̄ = v̄1 + δv̄2, then
g(x̄, x̄) = f ′(v̄1 + δv̄2, v̄2 + δv̄1) = (1 + δ2) · f ′(v̄1, v̄2) = (a+ 1) · f ′(v̄1, v̄2) ∈ F.

(2) Let v̄1, v̄2, v̄3 and v̄4 be the unique vectors of V such that x̄ = v̄1 + δv̄2 and ȳ =
v̄3 +δv̄4. Then g(x̄, ȳ)+g(ȳ, x̄) = f ′(v̄1 +δv̄2, v̄4 +δv̄3)+f ′(v̄3 +δv̄4, v̄2 +δv̄1) = f ′(v̄1, v̄4)+
a·f ′(v̄2, v̄3)+δ ·f ′(v̄2, v̄4)+δ ·f ′(v̄1, v̄3)+f ′(v̄3, v̄2)+δ ·f ′(v̄3, v̄1)+δ ·f ′(v̄4, v̄2)+a·f ′(v̄4, v̄1) =
(a+ 1) · (f ′(v̄1, v̄4) + f ′(v̄2, v̄3)) and Im(f ′(v̄1 + δv̄2, v̄3 + δv̄4)) = f ′(v̄2, v̄3) + f ′(v̄1, v̄4).

(3) By (2), we have f ′(x̄τ , ȳτ ) + f ′(x̄, ȳ) = g(ȳτ , x̄) + g(x̄, ȳτ ) = (a+ 1) · Im(f ′(x̄, ȳτ )) =
(a+ 1) · Im(g(x̄, ȳ)). �

The following is an immediate consequence of Lemma 3.13.

Corollary 3.14 Suppose v̄1, v̄2, v̄3, v̄4, v̄5, v̄6 ∈ V . Then Mf ′(v̄1+δv̄2, v̄3+δv̄4, v̄5+δv̄6, v̄2+
δv̄1, v̄4 + δv̄3, v̄6 + δv̄5) is equal to [

M1 M2

M3 M4

]
,

where M1 = Mf ′(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6), M2 = Mg(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6),
M4 = M1 + (a+ 1) · Im(M2) and M3 = MT

2 = M2 + (a+ 1) · Im(M1). So, if all entries of
M1 belong to F, then M2 = M3 is a symmetric matrix.

Let O3 denote the (3× 3)-matrix over F′ all whose entries are equal to 0. Let M∗ denote
the following (3× 3)-matrix over F′:

M∗ =

 0 0 0
0 0 1
0 1 0

 .
For a proof of the following lemma, see e.g. [5, Lemma 3.14].

Lemma 3.15 ([5]) Let A = (aij)1≤i,j≤3 be a matrix of SL(3,F′). Then A ·M∗ ·AT = M∗

if and only if a11 = 1, a12 = a13 = 0 and a22a33 − a23a32 = 1.

Lemma 3.16 Let ū1, ū2 and ū3 be three linearly independent vectors of V ′. Then there
exist three linearly independent vectors v̄1, v̄2 and v̄3 such that v̄1 ∧ v̄2 ∧ v̄3 = ū1 ∧ ū2 ∧ ū3

and Mf ′(v̄1, v̄2, v̄3) is equal to either O3 or M∗.

Proof. Suppose 〈ū1, ū2, ū3〉 is a totally isotropic 3-dimensional subspace. Then put
(v̄1, v̄2, v̄3) := (ū1, ū2, ū3). Clearly, v̄1 ∧ v̄2 ∧ v̄3 = ū1 ∧ ū2 ∧ ū3 and Mf ′(v̄1, v̄2, v̄3) = O3.

Suppose 〈ū1, ū2, ū3〉 is not totally isotropic. Then there exist v̄2, v̄3 ∈ 〈ū1, ū2, ū3〉 such
that f ′(v̄2, v̄3) = 1. Let U denote the unique 1-space of 〈ū1, ū2, ū3〉 such that f ′(ū, v̄) = 0
for every ū ∈ U and every v̄ ∈ 〈ū1, ū2, ū3〉. If v̄1 denotes the unique vector of U such that
v̄1 ∧ v̄2 ∧ v̄3 = ū1 ∧ ū2 ∧ ū3, then Mf ′(v̄1, v̄2, v̄3) = M∗. �
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Lemma 3.17 Let {ū1, ū2, ū3, ū4, ū5, ū6}, {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} and {w̄1, w̄2, w̄3, w̄4, w̄5, w̄6}
be three bases of V . Suppose Mf ′(ū1 + δū2, ū3 + δū4, ū5 + δū6) = O3, Mf ′(v̄1 + δv̄2, v̄3 +
δv̄4, v̄5 + δv̄6) = Mf ′(w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6) = M∗, g(v̄1 + δv̄2, v̄1 + δv̄2) 6= 0 and

g(w̄1+δw̄2, w̄1+δw̄2) = 0. Then the trivectors χ1 := φ
(

(ū1+δū2)∧(ū3+δū4)∧(ū5+δū6)
)

,

χ2 := φ
(

(v̄1+δv̄2)∧(v̄3+δv̄4)∧(v̄5+δv̄6)
)

and χ3 := φ
(

(w̄1+δw̄2)∧(w̄3+δw̄4)∧(w̄5+δw̄6)
)

of V are mutually non-Sp(V, f)-equivalent.

Proof. Suppose χ1 and χi are Sp(V, f)-equivalent for some i ∈ {2, 3}. Then by Lemma
3.12, there exists a matrix A ∈ SL(3,F′) such that M∗ = A · O3 · AT = O3, clearly a
contradiction.

Suppose χ2 and χ3 are Sp(V, f)-equivalent. Then there exists a θ ∈ Sp(V, f) such
that χ3 =

∧3(θ)(χ2). By Lemmas 3.3 and 3.7, this implies that (w̄1 + δw̄2) ∧ (w̄3 +
δw̄4) ∧ (w̄5 + δw̄6) = (v̄θ1 + δv̄θ2) ∧ (v̄θ3 + δv̄θ4) ∧ (v̄θ5 + δv̄θ6). Since f ′(v̄1 + δv̄2, v̄) = 0 for all
v̄ ∈ 〈v̄1+δv̄2, v̄3+δv̄4, v̄5+δv̄6〉, we have f ′(v̄θ1+δv̄θ2, w̄) = 0 for all w̄ ∈ 〈v̄θ1+δv̄θ2, v̄

θ
3+δv̄θ4, v̄

θ
5+

δv̄θ6〉 = 〈w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6〉. Since Mf ′(w̄1 + δw̄2, w̄3 + δw̄4, w̄5 + δw̄6) = M∗,
we have v̄θ1 + δv̄θ2 = η(w̄1 + δw̄2) for some η ∈ F∗. By (1) and (3) of Lemma 3.9, we
then have g(v̄1 + δv̄2, v̄1 + δv̄2) = g(v̄θ1 + δv̄θ2, v̄

θ
1 + δv̄θ2) = g(η(w̄1 + δw̄2), η(w̄1 + δw̄2)) =

η2 · g(w̄1 + δw̄2, w̄1 + δw̄2). This is impossible since g(v̄1 + δv̄2, v̄1 + δv̄2) 6= 0 while
g(w̄1 + δw̄2, w̄1 + δw̄2) = 0. �

The following is an immediate consequence of Lemmas 3.4, 3.16 and 3.17.

Corollary 3.18 Precisely one of the following cases occurs for a trivector χ ∈ EF′:

(A) χ = φ
(

(v̄1 + δv̄2)∧ (v̄3 + δv̄4)∧ (v̄5 + δv̄6)
)

for some basis {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} of V

satisfying Mf ′(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) = O3;

(B) χ = φ
(

(v̄1 + δv̄2)∧ (v̄3 + δv̄4)∧ (v̄5 + δv̄6)
)

for some basis {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} of V

satisfying Mf ′(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) = M∗ and g(v̄1 + δv̄2, v̄1 + δv̄2) 6= 0;

(C) χ = φ
(

(v̄1 + δv̄2)∧ (v̄3 + δv̄4)∧ (v̄5 + δv̄6)
)

for some basis {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} of V

satisfying Mf ′(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) = M∗ and g(v̄1 + δv̄2, v̄1 + δv̄2) = 0.

So, we have three cases to consider when classifying all Sp(V, f)-equivalence classes of
trivectors of Type (E) of V that are contained in EF′ . We will deal with each of these
three cases in a separate section.

4 Treatment of Case (A) of Corollary 3.18

In this section, we determine the Sp(V, f)-equivalence classes of trivectors that are con-
tained in the subfamily of EF′ corresponding to Case (A) of Corollary 3.18.
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Suppose χ is a trivector of Type (E) of V which is GL(V )-equivalent with χ∗F′ such

that χ = φ
(

(ū1 + δū2) ∧ (ū3 + δū4) ∧ (ū5 + δū6)
)

for some basis {ū1, ū2, ū3, ū4, ū5, ū6} of

V satisfying Mf ′(ū1 + δū2, ū3 + δū4, ū5 + δū6) = O3.

Lemma 4.1 Let {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} be a basis of V such that Mf ′(v̄1 +δv̄2, v̄3 +δv̄4, v̄5 +
δv̄6) = O3. Then there exists a basis {w̄1, w̄2, w̄3} of W := 〈v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6〉
such that w̄1 ∧ w̄2 ∧ w̄3 = (v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6), Mf ′(w̄1, w̄2, w̄3) = O3 and
Mg(w̄1, w̄2, w̄3) is diagonal.

Proof. Suppose {w̄1, w̄2, w̄3} is a basis of W . Then Mf ′(w̄1, w̄2, w̄3) = O3. Corollary 3.14
implies that Mg(w̄1, w̄2, w̄3) is symmetric. Also, since Mf ′(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6, v̄2 +
δv̄1, v̄4 +δv̄3, v̄6 +δv̄5) is nonsingular and Mf ′(w̄1, w̄2, w̄3) = O3, the matrix Mg(w̄1, w̄2, w̄3)
should be nonsingular. Lemma 3.9 now implies that g defines a nonsingular bilinear form
on W . For every vector w̄ ∈ W , we denote by w̄⊥g the set of all vectors w̄′ ∈ W for which
g(w̄, w̄′) = 0.

If all diagonal elements of Mg(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) were equal to 0, then since
Mg(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) is (skew-)symmetric, it would also be singular which is
impossible. So, there exist a w̄′1 ∈ {v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6} and w̄′2, w̄

′
3 ∈ (w̄′1)⊥g

such that g(w̄′1, w̄
′
1) 6= 0 and w̄′1 ∧ w̄′2 ∧ w̄′3 = (v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6). If

g(w̄′2, w̄
′
2) 6= 0 or g(w̄′3, w̄

′
3) 6= 0, then there exist a w̄2 ∈ {w̄′2, w̄′3} and a w̄3 ∈ w̄

⊥g

2

such that g(w̄2, w̄2) 6= 0 and w̄2 ∧ w̄3 = w̄′2 ∧ w̄′3. If we moreover put w̄1 := w̄′1, then
w̄1 ∧ w̄2 ∧ w̄3 = (v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6) and Mg(w̄1, w̄2, w̄3) is diagonal.

So, we may suppose that g(w̄′2, w̄
′
2) = 0 = g(w̄′3, w̄

′
3). Then

Mg(w̄
′
1, w̄

′
2, w̄

′
3) =

 µ1 0 0
0 0 µ2

0 µ2 0


for some µ1 ∈ F∗ and some µ2 ∈ F′\{0}. If we define (w̄1, w̄2, w̄3) := (w̄′1 + µ1

µ2
w̄′2 +w̄′3, w̄

′
2 +

µ2

µ1
w̄′1, w̄

′
3 + w̄′1), then w̄1 ∧ w̄2 ∧ w̄3 = w̄′1 ∧ w̄′2 ∧ w̄′3 = (v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6)

and Mg(w̄1, w̄2, w̄3) = diag(µ1,
µ2

2

µ1
, µ1). �

By Lemma 4.1, we know that there exists a basis {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} of V such that
Mf ′(v̄1+δv̄2, v̄3+δv̄4, v̄5+δv̄6) = O3, Mg(v̄1+δv̄2, v̄3+δv̄4, v̄5+δv̄6) = diag(h1(a+1), h2(a+

1), h3(a+ 1)) and χ = φ
(

(v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6)
)

for some h1, h2, h3 ∈ F∗.
From (a+ 1)hi = g(v̄2i−1 + δv̄2i, v̄2i−1 + δv̄2i) = f ′(v̄2i−1 + δv̄2i, v̄2i + δv̄2i−1) = (a+ 1) ·

f ′(v̄2i−1, v̄2i) for every i ∈ {1, 2, 3}, we find f ′(v̄1, v̄2) = h1, f ′(v̄3, v̄4) = h2 and f ′(v̄5, v̄6) =
h3.

From 0 = g(v̄2i−1 + δv̄2i, v̄2j−1 + δv̄2j) = f ′(v̄2i−1 + δv̄2i, v̄2j + δv̄2j−1) = 0 and f ′(v̄2i−1 +
δv̄2i, v̄2j−1 + δv̄2j) = 0, we find f ′(v̄2i−1 + δv̄2i, v̄2j) = f ′(v̄2i−1 + δv̄2i, v̄2j−1) = 0 and hence
f ′(v̄2i−1, v̄2j) = f ′(v̄2i, v̄2j) = f ′(v̄2i−1, v̄2j−1) = f ′(v̄2i, v̄2j−1) = 0 for all i, j ∈ {1, 2, 3} with
i 6= j. So, f ′(v̄i, v̄j) = 0 if i, j ∈ {1, 2, 3, 4, 5, 6} with i 6= j and {i, j} different from {1, 2},
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{3, 4} and {5, 6}. This implies that there exists a hyperbolic basis (ē1, f̄1, ē2, f̄2, ē3, f̄3) of
(V, f) such that

v̄1 = ē1, v̄2 = h1f̄1, v̄3 = ē2, v̄4 = h2f̄2, v̄5 = ē3, v̄6 = h3f̄3.

So,

χ = φ
(

(v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6)
)

=
a+ 1

a
· v̄1 ∧ v̄3 ∧ v̄5 + (a+ 1) · v̄2 ∧ v̄4 ∧ v̄6 + (v̄1 + v̄2) ∧ (v̄3 + v̄4) ∧ (v̄5 + v̄6)

=
a+ 1

a
· ē1 ∧ ē2 ∧ ē3 + (a+ 1)h1h2h3 · f̄1 ∧ f̄2 ∧ f̄3

+(ē1 + h1f̄1) ∧ (ē2 + h2f̄2) ∧ (ē3 + h3f̄3).

It follows that χ is Sp(V, f)-equivalent with χ1(h1, h2, h3).

Reversing the above procedure, we see that the trivector χ1(h1, h2, h3) is of the form

φ
(

(v̄∗1 + δv̄∗2) ∧ (v̄∗3 + δv̄∗4) ∧ (v̄∗5 + δv̄∗6)
)

, where {v̄∗1, v̄∗2, v̄∗3, v̄∗4, v̄∗5, v̄∗6} is some basis of V

satisfying Mf ′(v̄
∗
1 + δv̄∗2, v̄

∗
3 + δv̄∗4, v̄

∗
5 + δv̄∗6) = O3 and Mg(v̄

∗
1 + δv̄∗2, v̄

∗
3 + δv̄∗4, v̄

∗
5 + δv̄∗6) =

diag(h1(a + 1), h2(a + 1), h3(a + 1)). So, χ1(h1, h2, h3) is GL(V )-equivalent with χ∗F′ by
Lemma 3.4.

The following proposition, which is precisely Theorem 1.3(2), is a corollary of Lemma
3.12 and the above discussion.

Proposition 4.2 Let h1, h2, h3, h
′
1, h
′
2, h
′
3 ∈ F∗. Then the two trivectors χ1(h1, h2, h3) and

χ1(h′1, h
′
2, h
′
3) of V are Sp(V, f)-equivalent if and only if there exists a matrix A ∈ SL(3,F′)

such that diag(h′1, h
′
2, h
′
3) = A · diag(h1, h2, h3) · AT.

By Corollary 3.6, we know that the trivector χ1(h1, h2, h3) is a trivector of Type (D) when
regarded as a trivector of V ′. One can now ask to which of the trivectors mentioned in
Section 2 χ1(h1, h2, h3) is Sp(V ′, f ′)-equivalent to. The following proposition answers this
question.

Proposition 4.3 For all h1, h2, h3 ∈ F∗, the trivector χ1(h1, h2, h3) of V ′ is Sp(V ′, f ′)-
equivalent with the trivector γ3(h1

h3
, h2

h3
) of V ′.

Proof. The trivector χ1(h1, h2, h3) = (ē∗1 + δh1f̄
∗
1 ) ∧ (ē∗2 + δh2f̄

∗
2 ) ∧ ( 1

a
ē∗3 + h3f̄

∗
3 ) + (ē∗2 +

δh2f̄
∗
2 )∧ (ē∗3 + δh3f̄

∗
3 )∧ ( 1

a
ē∗1 +h1f̄

∗
1 ) + (ē∗3 + δh3f̄

∗
3 )∧ (ē∗1 + δh1f̄

∗
1 )∧ ( 1

a
ē∗2 +h2f̄

∗
2 ) is equal to

ē′1 ∧ ē′2 ∧ f̄ ′3 + h1

h3
· ē′2 ∧ ē′3 ∧ f̄ ′1 + h2

h3
· ē′3 ∧ ē′1 ∧ f̄ ′2, where (ē′1, f̄

′
1, ē
′
2, f̄

′
2, ē
′
3, f̄

′
3) is the hyperbolic

basis of (V ′, f ′) defined by

ē′1 =
(1 + δ)h3

δ
(ē∗1 + δh1f̄

∗
1 ), ē′2 =

(1 + δ)h3

δ
(ē∗2 + δh2f̄

∗
2 ), ē′3 =

(1 + δ)h3

δ
(ē∗3 + δh3f̄

∗
3 ),

f̄ ′1 =
a

(a+ 1)h1h3

(
1

a
ē∗1+h1f̄

∗
1 ), f̄ ′2 =

a

(a+ 1)h2h3

(
1

a
ē∗2+h2f̄

∗
2 ), f̄ ′3 =

a

(a+ 1)h2
3

(
1

a
ē∗3+h3f̄

∗
3 ).

So, χ1(h1, h2, h3) is Sp(V ′, f ′)-equivalent with γ3(h1

h3
, h2

h3
). �
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5 Treatment of Case (B) of Corollary 3.18

In this section, we determine the Sp(V, f)-equivalence classes of trivectors that are con-
tained in the subfamily of EF′ corresponding to Case (B) of Corollary 3.18.

Suppose χ is a trivector of Type (E) of V which is GL(V )-equivalent with χ∗F′ such

that χ = φ
(

(ū1 + δū2) ∧ (ū3 + δū4) ∧ (ū5 + δū6)
)

for some basis {ū1, ū2, ū3, ū4, ū5, ū6} of

V satisfying Mf ′(ū1 + δū2, ū3 + δū4, ū5 + δū6) = M∗ and g(ū1 + δū2, ū1 + δū2) 6= 0.

Lemma 5.1 Let {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} be a basis of V such that Mf ′(v̄1 +δv̄2, v̄3 +δv̄4, v̄5 +
δv̄6) = M∗ and g(v̄1 + δv̄2, v̄1 + δv̄2) 6= 0. Then there exists a basis {w̄1, w̄2, w̄3} of
W = 〈v̄1 +δv̄2, v̄3 +δv̄4, v̄5 +δv̄6〉 such that w̄1∧w̄2∧w̄3 = (v̄1 +δv̄2)∧(v̄3 +δv̄4)∧(v̄5 +δv̄6),
Mf ′(w̄1, w̄2, w̄3) = M∗ and Mg(w̄1, w̄2, w̄3) is diagonal. Moreover, if Mg(w̄1, w̄2, w̄3) =
diag(k(a+ 1), h1(a+ 1), h2(a+ 1)), then k 6= 0 and h1h2(a+ 1)2 6= 0.

Proof. Put w̄1 := v̄1 + δv̄2 and let U denote the set of all vectors ū ∈ W for which
g(ū, w̄1) = 0. By Lemma 3.9, U is a subspace of W . In fact, it is a 2-dimensional
subspace of W not containing the vector w̄1.

We prove that there exists a vector w̄2 ∈ U for which g(w̄2, w̄2) 6= 0. Suppose to the
contrary that g(ū, ū) = 0, ∀ū ∈ U . Let w̄′2 be an arbitrary vector of U and let w̄′3 be a
vector of U such that f ′(w̄′2, w̄

′
3) = 1. Then g(w̄′2, w̄

′
2) = g(δw̄′3, δw̄

′
3) = 0. By Lemmas 3.9

and 3.13, g(w̄′2 + δw̄′3, w̄
′
2 + δw̄′3) = g(w̄′2, w̄

′
2) + g(w̄′2, δw̄

′
3) + g(δw̄′3, w̄

′
2) + g(δw̄′3, δw̄

′
3) =

0+δ ·g(w̄′2, w̄
′
3)+(a+1)·f ′(w̄′2, w̄′3)+δ ·g(w̄′3, w̄

′
2)+0 = (a+1)+δ ·

(
g(w̄′2, w̄

′
3)+g(w̄′3, w̄

′
2)
)

=

(a+ 1) + δ(a+ 1) · Im(f ′(w̄′2, w̄
′
3)) = a+ 1 6= 0. So, we have a contradiction, proving that

there must exist a w̄2 ∈ U for which g(w̄2, w̄2) 6= 0.
The set U ′ of all vectors ū ∈ U for which g(ū, w̄2) = 0 is a subspace of U by Lemma

3.9. Since g(w̄2, w̄2) 6= 0, it is a 1-dimensional subspace of U . So, there must exist a
unique w̄3 ∈ U ′ such that w̄1 ∧ w̄2 ∧ w̄3 = (v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6). We have

f ′(w̄1, w̄2) = f ′(w̄1, w̄3) = 0, f ′(w̄2, w̄3) · w̄1 = π(w̄1∧ w̄2∧ w̄3) = π
(

(v̄1 +δv̄2)∧ (v̄3 +δv̄4)∧

(v̄5 + δv̄6)
)

= v̄1 + δv̄2 = w̄1 and hence f ′(w̄2, w̄3) = 1. So, Mf ′(w̄1, w̄2, w̄3) = M∗. By

Corollary 3.14, the matrix Mg(w̄1, w̄2, w̄3) is symmetric. Since g(w̄2, w̄1) = g(w̄3, w̄1) =
g(w̄3, w̄2) = 0, one gets that Mg(w̄1, w̄2, w̄3) is a diagonal matrix. If Mg(w̄1, w̄2, w̄3) =
diag(k(a+ 1), h1(a+ 1), h2(a+ 1)) for some k, h1, h2 ∈ F, then Mf ′(w̄1, w̄2, w̄3, w̄

τ
1 , w̄

τ
2 , w̄

τ
3)

is equal to
0 0 0 k(a+ 1) 0 0
0 0 1 0 h1(a+ 1) 0
0 1 0 0 0 h2(a+ 1)

k(a+ 1) 0 0 0 0 0
0 h1(a+ 1) 0 0 0 1
0 0 h2(a+ 1) 0 1 0


by Corollary 3.14. Since Mf ′(w̄1, w̄2, w̄3, w̄

τ
1 , w̄

τ
2 , w̄

τ
3) is nonsingular, we have k 6= 0 and

h1h2(a+ 1)2 6= 1. �
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By Lemma 5.1, we may suppose that χ = φ
(

(v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6)
)

where

{v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} is a basis of V such that Mf ′(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) = M∗ and
Mg(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) = diag(k(a+ 1), h1(a+ 1), h2(a+ 1)) for some k, h1, h2 ∈ F
satisfying k 6= 0 and h1h2(a+ 1)2 6= 1.

Since k(a+ 1) = g(v̄1 + δv̄2, v̄1 + δv̄2) = f ′(v̄1 + δv̄2, v̄2 + δv̄1) = (a+ 1) · f ′(v̄1, v̄2), we have
f ′(v̄1, v̄2) = k. In a similar way, one proves that f ′(v̄3, v̄4) = h1 and f ′(v̄5, v̄6) = h2.

Since f ′(v̄1 + δv̄2, v̄3 + δv̄4) = 0 and g(v̄1 + δv̄2, v̄3 + δv̄4) = f ′(v̄1 + δv̄2, v̄4 + δv̄3) = 0,
we have f ′(v̄1 + δv̄2, v̄3) = 0 and f ′(v̄1 + δv̄2, v̄4) = 0 and hence

f ′(v̄1, v̄3) = f ′(v̄2, v̄3) = f ′(v̄1, v̄4) = f ′(v̄2, v̄4) = 0.

In a similar way, one proves that

f ′(v̄1, v̄5) = f ′(v̄1, v̄6) = f ′(v̄2, v̄5) = f ′(v̄2, v̄6) = 0.

Since f ′(v̄3 + δv̄4, v̄5 + δv̄6) = 1 and g(v̄3 + δv̄4, v̄5 + δv̄6) = f ′(v̄3 + δv̄4, v̄6 + δv̄5) = 0, we
have f ′(v̄3 + δv̄4, v̄5) = 1

a+1
and f ′(v̄3 + δv̄4, v̄6) = δ

a+1
and hence

f ′(v̄3, v̄5) =
1

a+ 1
, f ′(v̄4, v̄5) = 0, f ′(v̄3, v̄6) = 0, f ′(v̄4, v̄6) =

1

a+ 1
.

So, Mf ′(v̄1, v̄2, v̄3, v̄4, v̄5, v̄6) is equal to

0 k 0 0 0 0
k 0 0 0 0 0
0 0 0 h1

1
a+1

0

0 0 h1 0 0 1
a+1

0 0 1
a+1

0 0 h2

0 0 0 1
a+1

h2 0

 .

Now, put v̄′1 := v̄1, v̄′2 := v̄2, v̄′3 := v̄3 + h1(a + 1)v̄6, v̄′4 := v̄4, v̄′5 := v̄5 and v̄′6 :=
h2(a+ 1)v̄3 + v̄6. Then Mf ′(v̄

′
1, v̄
′
2, v̄
′
3, v̄
′
4, v̄
′
5, v̄
′
6) is equal to

0 k 0 0 0 0
k 0 0 0 0 0

0 0 0 0 h1h2(a+1)2+1
a+1

0

0 0 0 0 0 h1h2(a+1)2+1
a+1

0 0 h1h2(a+1)2+1
a+1

0 0 0

0 0 0 h1h2(a+1)2+1
a+1

0 0


.

So, there exists a hyperbolic basis (ē1, f̄1, ē2, f̄2, ē3, f̄3) of (V, f) such that

v̄′1 = ē1, v̄
′
2 = kf̄1, v̄

′
3 =

h1h2(a+ 1)2 + 1

a+ 1
ē2, v̄

′
4 = ē3, v̄

′
5 = f̄2, v̄

′
6 =

h1h2(a+ 1)2 + 1

a+ 1
f̄3.
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Then

v̄1 = ē1, v̄2 = kf̄1, v̄3 =
1

a+ 1
(ē2+h1(a+1)f̄3), v̄4 = ē3, v̄5 = f̄2, v̄6 =

1

a+ 1
(h2(a+1)ē2+f̄3).

So,

χ =
a+ 1

a
· v̄1 ∧ v̄3 ∧ v̄5 + (a+ 1) · v̄2 ∧ v̄4 ∧ v̄6 + (v̄1 + v̄2) ∧ (v̄3 + v̄4) ∧ (v̄5 + v̄6)

=
1

a
· ē1 ∧ (ē2 + h1(a+ 1)f̄3) ∧ f̄2 + k · f̄1 ∧ ē3 ∧ (h2(a+ 1)ē2 + f̄3) +

1

(a+ 1)2
·

(ē1 + kf̄1) ∧ (ē2 + (a+ 1)ē3 + h1(a+ 1)f̄3) ∧ (h2(a+ 1)ē2 + (a+ 1)f̄2 + f̄3).

Hence, χ is Sp(V, f)-equivalent with the trivector χ2(k, h1, h2).

Reversing the above procedure, we see that the trivector χ2(k, h1, h2) is of the form φ
(

(v̄∗1+

δv̄∗2) ∧ (v̄∗3 + δv̄∗4) ∧ (v̄∗5 + δv̄∗6)
)

where {v̄∗1, v̄∗2, v̄∗3, v̄∗4, v̄∗5, v̄∗6} is some basis of V satisfying

Mf ′(v̄
∗
1 + δv̄∗2, v̄

∗
3 + δv̄∗4, v̄

∗
5 + δv̄∗6) = M∗ and Mg(v̄

∗
1 + δv̄∗2, v̄

∗
3 + δv̄∗4, v̄

∗
5 + δv̄∗6) = diag(k(a+

1), h1(a+ 1), h2(a+ 1)). So, χ2(k, h1, h2) is GL(V )-equivalent with χ∗F′ by Lemma 3.4.

We will now determine under which conditions two trivectors of Type (E2’) are Sp(V, f)-
equivalent. Let k, h1, h2, k

′, h′1, h
′
2 ∈ F with k 6= 0 6= k′ and h1h2(a+1)2 6= 1 6= h′1h

′
2(a+1)2.

By Lemma 3.12, the two trivectors χ2(k, h1, h2) and χ2(k′, h′1, h
′
2) are Sp(V, f)-equivalent

if and only if there exists a matrix A ∈ SL(3,F′) such that

M∗ = A ·M∗ · AT,

diag(k′(a+ 1), h′1(a+ 1), h′2(a+ 1)) = A · diag(k(a+ 1), h1(a+ 1), h2(a+ 1)) · AT

+(a+ 1) · A ·M∗ · Im(A)T.

Now, the latter condition is equivalent to

diag(k′, h′1, h
′
2) = A · diag(k, h1, h2) · AT + A ·M∗ · Im(A)T.

By Lemma 3.15, A has the form  1 0 0
a21 a22 a23

a31 a32 a33

 ,
where a21, a22, a23, a31, a32, a33 ∈ F such that a22a33− a23a32 = 1. One now computes that
A · diag(k, h1, h2) · AT is equal to k ka21 ka31

ka21 ka2
21 + h1a

2
22 + h2a

2
23 ka21a31 + h1a22a32 + h2a23a33

ka31 ka31a21 + h1a32a22 + h2a33a23 ka2
31 + h1a

2
32 + h2a

2
33
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and that

A ·M∗ · Im(A)T =

 0 0 0
0 a23 · Im(a22) + a22 · Im(a23) a23 · Im(a32) + a22 · Im(a33)
0 a33 · Im(a22) + a32 · Im(a23) a33 · Im(a32) + a32 · Im(a33)

 .
The condition diag(k′, h′1, h

′
2) = A ·diag(k, h1, h2) ·AT +A ·M∗ · Im(A)T is then equivalent

with k′ = k, a21 = a31 = 0 and[
h′1 0
0 h′2

]
= B ·

[
h1 0
0 h2

]
·BT +B ·

[
0 1
1 0

]
· Im(B)T,

where B is the matrix

[
a22 a23

a32 a33

]
. So, we have

Proposition 5.2 Let k, h1, h2, k
′, h′1, h

′
2 ∈ F with k 6= 0 6= k′ and h1h2(a + 1)2 6= 1 6=

h′1h
′
2(a+ 1)2. Then the trivectors χ2(k, h1, h2) and χ2(k′, h′1, h

′
2) are Sp(V, f)-equivalent if

and only if k = k′ and there exists a matrix A ∈ SL(2,F′) over F′ such that[
h′1 0
0 h′2

]
= A ·

[
h1 0
0 h2

]
· AT + A ·

[
0 1
1 0

]
· Im(A)T.

Lemma 5.3 Let h1, h2, h
′
1, h
′
2 ∈ F and α, β, γ, ν ∈ F′. Put A :=

[
α β
γ ν

]
. Then the

conditions 
det(A) = 1,[
h′1 0
0 h′2

]
= A ·

[
h1 0
0 h2

]
· AT + A ·

[
0 1
1 0

]
· Im(A)T

are equivalent with each of the following two equivalent sets of equations:
h′1 = α2h1 + β2h2 + Im(αβ),
h′2 = γ2h1 + ν2h2 + Im(γν),
(βh2 + Im(α)) · ν + (αh1 + Im(β)) · γ = 0,
α · ν + β · γ = 1,
h′1 = α2h1 + β2h2 + Im(αβ),
h′2 = γ2h1 + ν2h2 + Im(γν),
(γh1 + Im(ν)) · α + (νh2 + Im(γ)) · β = 0,
ν · α + γ · β = 1.

Proof. One can easily verify that Im(λ1λ2) = λ1 · Im(λ2) + λ2 · Im(λ1) for all λ1, λ2 ∈ F′.
Taking this fact into account, a straightforward computation gives that the conditions of
the lemma are equivalent with:

(1) h′1 = α2h1 + β2h2 + Im(αβ),
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(2) h′2 = γ2h1 + ν2h2 + Im(γν),
(3) αν + βγ = 1,
(4) (βh2 + Im(α)) · ν + (αh1 + Im(β)) · γ = 0,
(5) (γh1 + Im(ν)) · α + (νh2 + Im(γ)) · β = 0.

Now, (βh2 + Im(α)) · ν + (αh1 + Im(β)) · γ + (γh1 + Im(ν)) · α + (νh2 + Im(γ)) · β =
Im(α) ·ν+ Im(ν) ·α+ Im(β) ·γ+ Im(γ) ·β = Im(αν)+ Im(βγ) = Im(αν+βγ). So, assuming
the validity of (3), we see that (4) and (5) are equivalent. �

Lemma 5.4 Let h1, h2, h
′
1, h
′
2 ∈ F and α, β, γ, ν ∈ F′ such that αν + βγ = 1 and[

h′1 0
0 h′2

]
= A ·

[
h1 0
0 h2

]
· AT + A ·

[
0 1
1 0

]
· Im(A)T,

where A :=

[
α β
γ ν

]
. Then h1h2 = h′1h

′
2.

Proof. We make use of the first set of equations given in Lemma 5.3. Consider the
following linear system of two variables γ and ν:{

(βh2 + Im(α)) · ν + (αh1 + Im(β)) · γ = 0,
α · ν + β · γ = 1.

The determinant of this system is equal to h′1 and we have that

νh′1 = αh1 + Im(β), γh′1 = βh2 + Im(α).

Using this, we find

(h′1)2h′2 = (γh′1)2h1 + (νh′1)2h2 + Im((γh′1)(νh′1))

= (βh2 + Im(α))2h1 + (αh1 + Im(β))2h2 + Im((βh2 + Im(α))(αh1 + Im(β)))

= β2h2
2h1 + Im(α)2h1 + α2h2

1h2 + Im(β)2h2 + h1h2 · Im(αβ) + Im(α)2h1

+Im(β)2h2

= h1h2(α2h1 + β2h2 + Im(αβ))

= h1h2h
′
1.

So, if h′1 6= 0, then h1h2 = h′1h
′
2. If h′1 = 0 and one of h1, h2 is 0, then also h1h2 = h′1h

′
2.

Suppose therefore that h′1 = 0, h1 6= 0 and h2 6= 0. Then βh2 + Im(α) = 0 and

αh1 + Im(β) = 0. So, α = Im(β)
h1
∈ F and β = Im(α)

h2
∈ F. It follows that Im(α) = Im(β) = 0

and hence that α = β = 0. This is however impossible since αν + βγ = 1. �

Lemma 5.5 (1) Let k, h1, h2 ∈ F such that k 6= 0 and h1h2(a + 1)2 6= 1. Then the
trivector χ2(k, h1, h2) is Sp(V, f)-equivalent with the trivector χ2(k, h2, h1).

(2) Let k, h1 ∈ F with k 6= 0. Then the trivector χ2(k, 0, 0) is Sp(V, f)-equivalent with
both χ2(k, h1, 0) and χ2(k, 0, h1).
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Proof. (1) This follows from symmetry, or alternatively, one can take A =

[
0 1
1 0

]
in

Proposition 5.2.
(2) We may suppose that h1 6= 0. By part (1), it suffices to prove that χ2(k, 0, 0) and

χ2(k, h1, 0) are Sp(V, f)-equivalent. By Lemma 5.3, it suffices to prove that there exist
α, β, γ, ν satisfying

h1 = Im(αβ), 0 = Im(γν), 0 = Im(α) · ν + Im(β) · γ, 1 = αν + βγ.

Now, take α and β arbitrary such that h1 = Im(αβ) and put ν = Im(β)
Im(αβ)

= Im(β)
h1

and

γ = Im(α)
Im(αβ)

= Im(α)
h1

. Then all required conditions are satisfied. �

Proposition 5.6 Let k, h1, h2, k
′, h′1, h

′
2 ∈ F with k 6= 0 6= k′ and h1h2(a + 1)2 6= 1 6=

h′1h
′
2(a + 1)2. Then χ2(k, h1, h2) and χ2(k′, h′1, h

′
2) are Sp(V, f)-equivalent if and only if

k = k′, h1h2 = h′1h
′
2 and there exist α, β ∈ F′ such that h′1 = α2h1 + β2h2 + Im(αβ).

Proof. By Proposition 5.2, Lemma 5.3 and Lemma 5.4, these conditions are necessary.
Conversely, suppose that k = k′, h1h2 = h′1h

′
2 and there exist α, β ∈ F′ such that

h′1 = α2h1 + β2h2 + Im(αβ). We need to prove that χ2(k, h1, h2) and χ2(k′, h′1, h
′
2) are

Sp(V, f)-equivalent. By Lemma 5.5(2) and the fact that h1h2 = h′1h
′
2, we may suppose

that h1, h2, h
′
1, h
′
2 are distinct from 0. The linear system{

(βh2 + Im(α)) · ν + (αh1 + Im(β)) · γ = 0,
α · ν + β · γ = 1

has a unique solution for γ and ν, since the determinant of the system is equal to α2h1 +
β2h2 + Im(αβ) = h′1 6= 0. If we put h′′2 := γ2h1 + ν2h2 + Im(γν), then by Proposition 5.2
and Lemma 5.3, χ2(k, h1, h2) and χ2(k′, h′1, h

′′
2) are Sp(V, f)-equivalent. This implies that

h1h2 = h′1h
′′
2 by Lemma 5.4. Since also h1h2 = h′1h

′
2, we have h′2 = h′′2. Hence, χ2(k, h1, h2)

and χ2(k′, h′1, h
′
2) are Sp(V, f)-equivalent. �

The following corollary to Proposition 5.6 is precisely Theorem 1.3(3).

Corollary 5.7 Let k, h1, h2, k
′, h′1, h

′
2 ∈ F with k 6= 0 6= k′ and h1h2(a + 1)2 6= 1 6=

h′1h
′
2(a + 1)2. Then χ2(k, h1, h2) and χ2(k′, h′1, h

′
2) are Sp(V, f)-equivalent if and only if

k = k′, h1h2 = h′1h
′
2 and there exist X, Y, Z, U ∈ F such that h′1 = h1(X2 +aY 2)+h2(Z2 +

aU2) + (XU + Y Z).

Proof. Put α = X + δY and β = Z + δU in Proposition 5.6. �

As before, let k ∈ F∗ and h1, h2 ∈ F such that h1h2(a+1)2 6= 1. By Corollary 3.6, we know
that the trivector χ2(k, h1, h2) is a trivector of Type (D) when regarded as a trivector of
V ′. One can now ask to which of the trivectors mentioned in Section 2 χ2(k, h1, h2) is
Sp(V ′, f ′)-equivalent to. The following proposition answers this question.
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Proposition 5.8 Let k ∈ F∗ and h1, h2 ∈ F such that h1h2(a + 1)2 6= 1. Then the
trivector χ2(k, h1, h2) is Sp(V ′, f ′)-equivalent with the trivector γ2(λ) of V ′, where λ =
k2

a2 (1 + h1h2(a+ 1)2).

Proof. Put χ := χ2(k, h1, h2). Then

χ =
(
ē∗1 + δkf̄ ∗1

)
∧
( ē∗2
a+ 1

+ h1f̄
∗
3 + δē∗3

)
∧
( f̄ ∗2
a

+ h2ē
∗
2 +

f̄ ∗3
a+ 1

)
+
( ē∗2
a+ 1

+ h1f̄
∗
3 + δē∗3

)
∧
(
f̄ ∗2 + h2δē

∗
2 +

δ

a+ 1
f̄ ∗3

)
∧
( ē∗1
a

+ kf̄ ∗1

)
+
(
f̄ ∗2 + h2δē

∗
2 +

δ

a+ 1
f̄ ∗3

)
∧
(
ē∗1 + δkf̄ ∗1

)
∧
( ē∗2
a(a+ 1)

+
h1

a
f̄ ∗3 + ē∗3

)
.

Since f ′(ē∗1 + δkf̄ ∗1 ,
ē∗2
a+1

+ h1f̄
∗
3 + δē∗3) = 0, f ′(ē∗1 + δkf̄ ∗1 , f̄

∗
2 + h2δē

∗
2 + δ

a+1
f̄ ∗3 ) = 0 and

f ′(
ē∗2
a+1

+ h1f̄
∗
3 + δē∗3, f̄

∗
2 + h2δē

∗
2 + δ

a+1
f̄ ∗3 ) = 1, the base 3-space of the trivector χ of V ′

is not totally isotropic. So, χ is Sp(V ′, f ′)-equivalent with either γ1 or γ2(λ) for some
λ ∈ F∗. We also have

χ =
1

a
· ē∗1 ∧ (ē∗2 + h1(a+ 1)f̄ ∗3 ) ∧ f̄ ∗2 + k · f̄ ∗1 ∧ ē∗3 ∧ (h2(a+ 1)ē∗2 + f̄ ∗3 ) +

1

(a+ 1)2
·

(ē∗1 + kf̄ ∗1 ) ∧ (ē∗2 + (a+ 1)ē∗3 + h1(a+ 1)f̄ ∗3 ) ∧ (h2(a+ 1)ē∗2 + (a+ 1)f̄ ∗2 + f̄ ∗3 ).

We now compute π(χ ∧ π(χ)). We have

π(χ) =
1

a
ē∗1 + kf̄ ∗1

and

χ ∧ π(χ) =
k

a
· ē∗1 ∧ f̄ ∗1 ∧ ē∗3 ∧

(
h2(a+ 1)ē∗2 + f̄ ∗3

)
+
k

a
· ē∗1 ∧ f̄ ∗1 ∧

(
ē∗2 + h1(a+ 1)f̄ ∗3

)
∧

f̄ ∗2 +
k

a(a+ 1)
· ē∗1 ∧ f̄ ∗1 ∧

(
ē∗2 + (a+ 1)ē∗3 + h1(a+ 1)f̄ ∗3

)
∧(

h2(a+ 1)ē∗2 + (a+ 1)f̄ ∗2 + f̄ ∗3

)
= ē∗1 ∧ f̄ ∗1 ∧

(k(1 + h1h2(a+ 1)2)

a(a+ 1)
· ē∗2 ∧ f̄ ∗3 +

k(a+ 1)

a
· ē∗3 ∧ f̄ ∗2

)
.

So,

π(χ ∧ π(χ)) =
k(1 + h1h2(a+ 1)2)

a(a+ 1)
· ē∗2 ∧ f̄ ∗3 +

k(a+ 1)

a
· ē∗3 ∧ f̄ ∗2 .

Since π(χ) ∧ π(χ ∧ π(χ)) is not a completely decomposable trivector, χ cannot be
Sp(V ′, f ′)-equivalent with γ1 by Section 4 of [6]. So, χ is Sp(V ′, f ′)-equivalent with γ2(λ)
for some λ ∈ F∗. By Section 4 of [6], the precise value of λ is obtained by multiplying the

coefficients of ē∗2 ∧ f̄ ∗3 and ē∗3 ∧ f̄ ∗2 in π(χ ∧ π(χ)). So, λ = k2(1+h1h2(a+1)2)
a2 . �
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6 Treatment of Case (C) of Corollary 3.18

In this section, we determine the Sp(V, f)-equivalence classes of trivectors that are con-
tained in the subfamily of EF′ corresponding to Case (C) of Corollary 3.18.

Suppose χ is a trivector of Type (E) of V which is GL(V )-equivalent with χ∗F′ such

that χ = φ
(

(ū1 + δū2) ∧ (ū3 + δū4) ∧ (ū5 + δū6)
)

for some basis {ū1, ū2, ū3, ū4, ū5, ū6} of

V satisfying Mf ′(ū1 + δū2, ū3 + δū4, ū5 + δū6) = M∗ and g(ū1 + δū2, ū1 + δū2) = 0.

Lemma 6.1 Let {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} be a basis of V such that Mf ′(v̄1 +δv̄2, v̄3 +δv̄4, v̄5 +
δv̄6) = M∗ and g(v̄1 + δv̄2, v̄1 + δv̄2) = 0. Let k be an arbitrary element of F′ \ {0}.
Then there exists a basis {w̄1, w̄2, w̄3} of W := 〈v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6〉 such that
w̄1∧w̄2∧w̄3 = (v̄1 +δv̄2)∧(v̄3 +δv̄4)∧(v̄5 +δv̄6), Mf ′(w̄1, w̄2, w̄3) = M∗ and Mg(w̄1, w̄2, w̄3)
is of the form  0 0 k

0 λ1 0
k 0 λ2


for some λ1, λ2 ∈ F with λ1 6= 0.

Proof. Put w̄1 := v̄1 +δv̄2. Let U denote the set of all vectors ū ∈ W for which g(ū, w̄1) =
0. Then U is a subspace of W by Lemma 3.9. By Lemma 3.13(2), U also consists of all
vectors ū ∈ W for which g(w̄1, ū) = 0. If U = W , then we would have f ′(w̄1, v̄) = 0 for all
v̄ ∈ V , clearly a contradiction. So, U is a 2-dimensional subspace of W . By Lemma 3.9(3),
there exists a vector w̄3 ∈ W \ U such that g(w̄3, w̄1) = k. Then also g(w̄1, w̄3) = k by
Lemma 3.13(2). Now, let U ′ denote the set of all vectors ū ∈ W for which g(ū, w̄3) = 0.
Then U ′ is a subspace of W (by Lemma 3.9) which should be two-dimensional since
w̄1 6∈ U ′. Since w̄1 ∈ U and w̄1 6∈ U ′, U ∩U ′ is a one-dimensional subspace. Let w̄2 be the
unique vector of U ∩U ′ such that (v̄1 + δv̄2)∧ (v̄3 + δv̄4)∧ (v̄5 + δv̄6) = w̄1∧ w̄2∧ w̄3. Since

f ′(w̄2, w̄3) · w̄1 = π(w̄1∧ w̄2∧ w̄3) = π
(

(v̄1 + δv̄2)∧ (v̄3 + δv̄4)∧ (v̄5 + δv̄6)
)

= v̄1 + δv̄2 = w̄1,

we have f ′(w̄2, w̄3) = 1. So, Mg(w̄1, w̄2, w̄3) should be a symmetric matrix by Corollary
3.14. Since g(w̄1, w̄1) = g(w̄2, w̄1) = g(w̄2, w̄3) = 0 and g(w̄3, w̄1) = k, this implies that
Mg(w̄1, w̄2, w̄3) has the form  0 0 k

0 λ1 0
k 0 λ2


for some λ1, λ2 ∈ F. By Corollary 3.14, we have that Mf ′(w̄1, w̄2, w̄3, w̄

τ
1 , w̄

τ
2 , w̄

τ
3) is equal

to 
0 0 0 0 0 k
0 0 1 0 λ1 0
0 1 0 k 0 λ2

0 0 k 0 0 (a+ 1) · Im(k)
0 λ1 0 0 0 1
k 0 λ2 (a+ 1) · Im(k) 1 0

 .
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Since the determinant of Mf ′(w̄1, w̄2, w̄3, w̄
τ
1 , w̄

τ
2 , w̄

τ
3) is distinct from 0, we have that λ1 6=

0. �

Now, let k be a fixed element of F∗, to be determined later. By Lemma 6.1, we may

suppose that χ = φ
(

(v̄1 + δv̄2) ∧ (v̄3 + δv̄4) ∧ (v̄5 + δv̄6)
)

where {v̄1, v̄2, v̄3, v̄4, v̄5, v̄6} is a

basis of V such that Mf ′(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) = M∗ and

Mg(v̄1 + δv̄2, v̄3 + δv̄4, v̄5 + δv̄6) =

 0 0 k(a+ 1)
0 h1(a+ 1) 0

k(a+ 1) 0 h2(a+ 1)

 ,
for some h1, h2 ∈ F with h1 6= 0.

Since g(v̄1+δv̄2, v̄1+δv̄2) = 0, g(v̄3+δv̄4, v̄3+δv̄4) = h1(a+1) and g(v̄5+δv̄6, v̄5+δv̄6) =
h2(a+ 1), we have

f ′(v̄1, v̄2) = 0, f ′(v̄3, v̄4) = h1, f ′(v̄5, v̄6) = h2.

From f ′(v̄1 + δv̄2, v̄3 + δv̄4) = 0 and f ′(v̄1 + δv̄2, v̄4 + δv̄3) = g(v̄1 + δv̄2, v̄3 + δv̄4) = 0, we
find

f ′(v̄1, v̄3) = f ′(v̄1, v̄4) = f ′(v̄2, v̄3) = f ′(v̄2, v̄4) = 0.

Since f ′(v̄1 + δv̄2, v̄5 + δv̄6) = 0 and f ′(v̄1 + δv̄2, v̄6 + δv̄5) = g(v̄1 + δv̄2, v̄5 + δv̄6) = k(a+ 1),
we have f ′(v̄1 + δv̄2, v̄6) = k and f ′(v̄1 + δv̄2, v̄5) = kδ and hence

f ′(v̄1, v̄5) = 0, f ′(v̄1, v̄6) = k, f ′(v̄2, v̄5) = k, f ′(v̄2, v̄6) = 0.

Similarly as in the treatment of Case (B), the facts that f ′(v̄3 + δv̄4, v̄5 + δv̄6) = 1 and
f ′(v̄3 + δv̄4, v̄6 + δv̄5) = g(v̄3 + δv̄4, v̄5 + δv̄6) = 0 imply that

f ′(v̄3, v̄5) =
1

a+ 1
, f ′(v̄4, v̄5) = 0, f ′(v̄3, v̄6) = 0, f ′(v̄4, v̄6) =

1

a+ 1
.

So, Mf ′(v̄1, v̄2, v̄3, v̄4, v̄5, v̄6) is equal to

0 0 0 0 0 k
0 0 0 0 k 0
0 0 0 h1

1
a+1

0

0 0 h1 0 0 1
a+1

0 k 1
a+1

0 0 h2

k 0 0 1
a+1

h2 0

 .

Now, put

v̄′1 := v̄1, v̄′2 := v̄2, v̄′3 := (a+1)kv̄3+v̄2, v̄′4 := (a+1)kv̄4+v̄1, v̄′5 := v̄5+
h2

k
v̄1, v̄′6 := v̄6.
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Easy formulas are obtained if we put k := 1
a+1

. Then Mf ′(v̄
′
1, v̄
′
2, v̄
′
3, v̄
′
4, v̄
′
5, v̄
′
6) is equal to

0 0 0 0 0 1
a+1

0 0 0 0 1
a+1

0

0 0 0 h1 0 0
0 0 h1 0 0 0
0 1

a+1
0 0 0 0

1
a+1

0 0 0 0 0

 .

So, there exists a hyperbolic basis (ē1, f̄1, ē2, f̄2, ē3, f̄3) of (V, f) such that

v̄′1 = ē1, v̄
′
6 =

1

a+ 1
f̄1, v̄

′
2 = ē2, v̄

′
5 =

1

a+ 1
f̄2, v̄

′
3 = ē3, v̄

′
4 = h1f̄3.

Then:

v̄1 = ē1, v̄6 =
1

a+ 1
f̄1, v̄2 = ē2, v̄5 =

1

a+ 1
f̄2 + (a+ 1)h2ē1, v̄3 = ē3 + ē2, v̄4 = h1f̄3 + ē1.

So,

χ =
a+ 1

a
· v̄1 ∧ v̄3 ∧ v̄5 + (a+ 1) · v̄2 ∧ v̄4 ∧ v̄6 + (v̄1 + v̄2) ∧ (v̄3 + v̄4) ∧ (v̄5 + v̄6)

=
1

a
· ē1 ∧ (ē2 + ē3) ∧ f̄2 + ē2 ∧ (h1f̄3 + ē1) ∧ f̄1 +

1

a+ 1
· (ē1 + ē2) ∧ (ē3 + h1f̄3) ∧

(f̄1 + f̄2 + (a+ 1)2h2ē1).

So, χ is Sp(V, f)-equivalent with χ3(h1, h2).

Reversing the above procedure, we see that the trivector χ3(h1, h2) is of the form φ
(

(v̄∗1 +

δv̄∗2) ∧ (v̄∗3 + δv̄∗4) ∧ (v̄∗5 + δv̄∗6)
)

where {v̄∗1, v̄∗2, v̄∗3, v̄∗4, v̄∗5, v̄∗6} is some basis of V satisfying

Mf ′(v̄
∗
1 + δv̄∗2, v̄

∗
3 + δv̄∗4, v̄

∗
5 + δv̄∗6) = M∗ and

Mg(v̄
∗
1 + δv̄∗2, v̄

∗
3 + δv̄∗4, v̄

∗
5 + δv̄∗6) =

 0 0 1
0 h1(a+ 1) 0
1 0 h2(a+ 1)

 .
So, χ3(h1, h2) is GL(V )-equivalent with χ∗F′ by Lemma 3.4.

We will now determine under which conditions two trivectors of Type (E3’) are Sp(V, f)-
equivalent. Let h1, h2, h

′
1, h
′
2 ∈ F with h1 6= 0 6= h′1. As before, put k := 1

a+1
. The two

trivectors χ3(h1, h2) and χ3(h′1, h
′
2) are Sp(V, f)-equivalent if and only if there exists a

matrix A ∈ SL(3,F′) such that

M∗ = A ·M∗ · AT, (1) 0 0 (a+ 1)k
0 (a+ 1)h′1 0

(a+ 1)k 0 (a+ 1)h′2

 = A ·

 0 0 (a+ 1)k
0 (a+ 1)h1 0

(a+ 1)k 0 (a+ 1)h2

 · AT

+(a+ 1) · A ·M∗ · Im(A)T. (2)
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By (1) and Lemma 3.15, we have that A has the form 1 0 0
a21 a22 a23

a31 a32 a33

 , (3)

where a21, a22, a23, a31, a32, a33 ∈ F such that a22 · a33 − a23 · a32 = 1. By (2), we have 0 0 k
0 h′1 0
k 0 h′2

 = A ·

 0 0 k
0 h1 0
k 0 h2

 · AT + A ·M∗ · Im(A)T. (4)

By (3), we have that

A ·M∗ · Im(A)T =

 0 0 0
0 a23 · Im(a22) + a22 · Im(a23) a23 · Im(a32) + a22 · Im(a33)
0 a33 · Im(a22) + a32 · Im(a23) a33 · Im(a32) + a32 · Im(a33)

 .
By (3), we also have

A ·

 0 0 k
0 h1 0
k 0 h2

 · AT =

 0 0 k
ka23 a22h1 ka21 + h2a23

ka33 h1a32 ka31 + h2a33

 ·
 1 a21 a31

0 a22 a32

0 a23 a33

 .
Comparing the (1, 2)-entries and the (1, 3)-entries in both sides of the equality (4), we see
that a23 = 0 and a33 = 1. Since a22 · a33 − a23 · a32 = 1, we also have that a22 = 1. So, we
find that

A ·M∗ · Im(A)T = diag(0, 0, Im(a32))

and

A ·

 0 0 k
0 h1 0
k 0 h2

 · AT =

 0 0 k
0 h1 ka21

k h1a32 ka31 + h2

 ·
 1 a21 a31

0 1 a32

0 0 1


=

 0 0 k
0 h1 ka21 + h1a32

k ka21 + h1a32 h1a
2
32 + h2

 .
Equation (4) is then equivalent with

h′1 = h1,
ka21 + h1a32 = 0,
h′2 = h2 + h1a

2
32 + Im(a32).

The second equation implies that a21 = h1a32

k
. The third equation implies that h′2 =

h2 + h1(X2 + aY 2) + Y , if we put a32 = X + δY where X, Y ∈ F. So, we can conclude:
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Proposition 6.2 Let h1, h2, h
′
1, h
′
2 ∈ F with h1 6= 0 6= h′1. Then the two trivectors

χ3(h1, h2) and χ3(h′1, h
′
2) of V are Sp(V, f)-equivalent if and only if h1 = h′1 and h2 + h′2

is of the form h1(X2 + aY 2) + Y for some X, Y ∈ F.

Proposition 6.2 is precisely Theorem 1.3(4).

As before, let h1, h2 ∈ F with h1 6= 0. By Corollary 3.6, we know that the trivector
χ3(h1, h2) is a trivector of Type (D) when regarded as a trivector of V ′. One can now
ask to which of the trivectors mentioned in Section 2 χ3(h1, h2) is Sp(V ′, f ′)-equivalent
to. The following proposition answers this question.

Proposition 6.3 Let h1, h2 ∈ F with h1 6= 0. Then the trivector χ3(h1, h2) is Sp(V ′, f ′)-
equivalent with γ1.

Proof. Put χ := χ3(h1, h2). Then

χ =
(
ē∗1 + δē∗2

)
∧
(
ē∗2 + ē∗3 + δē∗1 + δh1f̄

∗
3

)
∧
( f̄ ∗2
a(a+ 1)

+
a+ 1

a
h2ē
∗
1 +

f̄ ∗1
a+ 1

)
+
(
ē∗2 + ē∗3 + δē∗1 + δh1f̄

∗
3

)
∧
( f̄ ∗2
a+ 1

+ (a+ 1)h2ē
∗
1 +

δ

a+ 1
f̄ ∗1

)
∧
( ē∗1
a

+ ē∗2

)
+
( f̄ ∗2
a+ 1

+ (a+ 1)h2ē
∗
1 +

δ

a+ 1
f̄ ∗1

)
∧
(
ē∗1 + δē∗2

)
∧
( ē∗2
a

+
ē∗3
a

+ h1f̄
∗
3 + ē∗1

)
.

Since f ′(ē∗1 +δē∗2, ē
∗
2 + ē∗3 +δē∗1 +δh1f̄

∗
3 ) = 0, f ′(ē∗1 +δē∗2,

f̄∗2
a+1

+(a+1)h2ē
∗
1 + δ

a+1
f̄ ∗1 ) = 0 and

f ′(ē∗2 + ē∗3 + δē∗1 + δh1f̄
∗
3 ,

f̄∗2
a+1

+ (a+ 1)h2ē
∗
1 + δ

a+1
f̄ ∗1 ) = 1, the base 3-space of the trivector

χ of V ′ is not totally isotropic. So, χ is Sp(V ′, f ′)-equivalent with either γ1 or γ2(λ) for
some λ ∈ F∗. We also have

χ =
1

a
· ē∗1 ∧ (ē∗2 + ē∗3) ∧ f̄ ∗2 + ē∗2 ∧ f̄ ∗1 ∧ (ē∗1 + h1f̄

∗
3 )

+
1

a+ 1
· (ē∗1 + ē∗2) ∧ (ē∗3 + h1f̄

∗
3 ) ∧

(
(a+ 1)2h2ē

∗
1 + f̄ ∗1 + f̄ ∗2

)
.

We now compute π(χ) ∧ π(χ ∧ π(χ)). We have π(χ) = 1
a
ē∗1 + ē∗2 and

χ ∧ π(χ) =
h1

a
· ē∗1 ∧ ē∗2 ∧ f̄ ∗1 ∧ f̄ ∗3 +

1

a
· ē∗1 ∧ ē∗2 ∧ (ē∗3 + h1f̄

∗
3 ) ∧ (f̄ ∗1 + f̄ ∗2 )

+
1

a
· ē∗1 ∧ ē∗2 ∧ f̄ ∗2 ∧ ē∗3

1

a
· ē∗1 ∧ ē∗2 ∧

(
ē∗3 ∧ f̄ ∗1 + h1 · f̄ ∗3 ∧ f̄ ∗2

)
.

Hence, π(χ∧ π(χ)) = 1
a
·ē∗2∧ē∗3+h1

a
·ē∗1∧f̄ ∗3 and π(χ)∧ π(χ∧ π(χ)) = 1

a2 ·ē∗1∧ē∗2∧(ē∗3+h1af̄
∗
3 ).

Since π(χ) ∧ π(χ ∧ π(χ)) is completely decomposable, the trivector χ = χ3(h1, h2) must
be Sp(V ′, f ′)-equivalent with γ1, see Section 4 of [6]. �
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