Advanced search
1 file | 2.07 MB Add to list

Unravelling the environmental drivers of deep-sea nematode biodiversity and its relation with carbon mineralisation along a longitudinal primary productivity gradient

(2013) BIOGEOSCIENCES. 10(5). p.3127-3143
Author
Organization
Abstract
Alongside a primary productivity gradient between the Galicia Bank region in the Northeast Atlantic and the more oligotrophic eastern Mediterranean Basin, we investigated the bathymetric (1200-3000 m) and longitudinal variation in several measures for nematode taxon (Shannon-Wiener genus diversity, expected genus richness and generic evenness) and functional diversity (trophic diversity, diversity of life history strategies, biomass diversity and phylogenetic diversity). Our goals were to establish the form of the relation between diversity and productivity (measured as seafloor particulate organic carbon or POC flux), and to verify the positive and negative effect of sediment particle size diversity (SED) and the seasonality in POC flux (SVI), respectively, on diversity, as observed for other oceanographic regions and taxa. In addition, we hypothesised that higher taxon diversity is associated with higher functional diversity, which in turn stimulates nematode carbon mineralisation rates (determined from biomass-dependent respiration estimates). Taxon diversity related positively to seafloor POC flux. Phylogenetic diversity (measured as average taxonomic distinctness) was affected negatively by the magnitude and variability in POC flux, and positively by SED. The latter also showed an inverse relation with trophic diversity. Accounting for differences in total biomass between samples, we observed a positive linear relation between taxon diversity and carbon mineralisation in nematode communities. We could, however, not identify the potential mechanism through which taxon diversity may promote this ecosystem function since none of the functional diversity indices related to both diversity and nematode respiration. The present results suggest potential effects of climate change on deep-sea ecosystem functioning, but further also emphasise the need for a better understanding of nematode functions and their response to evolutionary processes.
Keywords
TAXONOMIC DISTINCTNESS, SPECIES-DIVERSITY, FUNCTIONAL DIVERSITY, MARINE NEMATODES, COMMUNITY STRUCTURE, ECOSYSTEM PROCESSES, SIZE DIVERSITY, MATURITY INDEX, PATTERNS, RICHNESS

Downloads

  • bg-10-3127-2013.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 2.07 MB

Citation

Please use this url to cite or link to this publication:

MLA
Pape, Ellen, et al. “Unravelling the Environmental Drivers of Deep-Sea Nematode Biodiversity and Its Relation with Carbon Mineralisation along a Longitudinal Primary Productivity Gradient.” BIOGEOSCIENCES, vol. 10, no. 5, 2013, pp. 3127–43, doi:10.5194/bg-10-3127-2013.
APA
Pape, E., Campinas Bezerra, T., Jones, D. O., & Vanreusel, A. (2013). Unravelling the environmental drivers of deep-sea nematode biodiversity and its relation with carbon mineralisation along a longitudinal primary productivity gradient. BIOGEOSCIENCES, 10(5), 3127–3143. https://doi.org/10.5194/bg-10-3127-2013
Chicago author-date
Pape, Ellen, Tânia Campinas Bezerra, Daniel OB Jones, and Ann Vanreusel. 2013. “Unravelling the Environmental Drivers of Deep-Sea Nematode Biodiversity and Its Relation with Carbon Mineralisation along a Longitudinal Primary Productivity Gradient.” BIOGEOSCIENCES 10 (5): 3127–43. https://doi.org/10.5194/bg-10-3127-2013.
Chicago author-date (all authors)
Pape, Ellen, Tânia Campinas Bezerra, Daniel OB Jones, and Ann Vanreusel. 2013. “Unravelling the Environmental Drivers of Deep-Sea Nematode Biodiversity and Its Relation with Carbon Mineralisation along a Longitudinal Primary Productivity Gradient.” BIOGEOSCIENCES 10 (5): 3127–3143. doi:10.5194/bg-10-3127-2013.
Vancouver
1.
Pape E, Campinas Bezerra T, Jones DO, Vanreusel A. Unravelling the environmental drivers of deep-sea nematode biodiversity and its relation with carbon mineralisation along a longitudinal primary productivity gradient. BIOGEOSCIENCES. 2013;10(5):3127–43.
IEEE
[1]
E. Pape, T. Campinas Bezerra, D. O. Jones, and A. Vanreusel, “Unravelling the environmental drivers of deep-sea nematode biodiversity and its relation with carbon mineralisation along a longitudinal primary productivity gradient,” BIOGEOSCIENCES, vol. 10, no. 5, pp. 3127–3143, 2013.
@article{3210699,
  abstract     = {{Alongside a primary productivity gradient between the Galicia Bank region in the Northeast Atlantic and the more oligotrophic eastern Mediterranean Basin, we investigated the bathymetric (1200-3000 m) and longitudinal variation in several measures for nematode taxon (Shannon-Wiener genus diversity, expected genus richness and generic evenness) and functional diversity (trophic diversity, diversity of life history strategies, biomass diversity and phylogenetic diversity). Our goals were to establish the form of the relation between diversity and productivity (measured as seafloor particulate organic carbon or POC flux), and to verify the positive and negative effect of sediment particle size diversity (SED) and the seasonality in POC flux (SVI), respectively, on diversity, as observed for other oceanographic regions and taxa. In addition, we hypothesised that higher taxon diversity is associated with higher functional diversity, which in turn stimulates nematode carbon mineralisation rates (determined from biomass-dependent respiration estimates). Taxon diversity related positively to seafloor POC flux. Phylogenetic diversity (measured as average taxonomic distinctness) was affected negatively by the magnitude and variability in POC flux, and positively by SED. The latter also showed an inverse relation with trophic diversity. Accounting for differences in total biomass between samples, we observed a positive linear relation between taxon diversity and carbon mineralisation in nematode communities. We could, however, not identify the potential mechanism through which taxon diversity may promote this ecosystem function since none of the functional diversity indices related to both diversity and nematode respiration. The present results suggest potential effects of climate change on deep-sea ecosystem functioning, but further also emphasise the need for a better understanding of nematode functions and their response to evolutionary processes.}},
  author       = {{Pape, Ellen and Campinas Bezerra, Tânia and Jones, Daniel OB and Vanreusel, Ann}},
  issn         = {{1726-4170}},
  journal      = {{BIOGEOSCIENCES}},
  keywords     = {{TAXONOMIC DISTINCTNESS,SPECIES-DIVERSITY,FUNCTIONAL DIVERSITY,MARINE NEMATODES,COMMUNITY STRUCTURE,ECOSYSTEM PROCESSES,SIZE DIVERSITY,MATURITY INDEX,PATTERNS,RICHNESS}},
  language     = {{eng}},
  number       = {{5}},
  pages        = {{3127--3143}},
  title        = {{Unravelling the environmental drivers of deep-sea nematode biodiversity and its relation with carbon mineralisation along a longitudinal primary productivity gradient}},
  url          = {{http://dx.doi.org/10.5194/bg-10-3127-2013}},
  volume       = {{10}},
  year         = {{2013}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: