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Abstract 

Our ability to detect causal relations and patterns of covariation is easily biased by a 

number of well-known factors. For example, people tend to overestimate the strength of 

the relation between a cue and an outcome if the outcome tends to occur very frequently. 

During the last years, several accounts have attempted to explain the outcome-density bias. 

On the one hand, dual-process performance accounts propose that biases are not due to the 

way associations are encoded, but to the higher-order cognitive processes involved in the 

retrieval and use of this information. In other words, the outcome-density bias is seen as a 

performance effect, not a learning effect. From this point of view, it is predicted that the 

outcome-density bias should be absent in any testing procedure that reduces the motivation 

or opportunity to engage in higher-order cognitive processes. Contrary to this prediction, 

but consistent with the most common single-process learning accounts, our results show 

that the outcome-density effect can be detected when the Implicit Association Test is used 

to measure the strength of cue-outcome associations. 

 

Keywords: outcome-density effect; contingency learning; causal learning; implicit 

association test. 
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Evidence for an illusion of causality when using the Implicit Association Test to 

measure learning 

 

One of the most remarkable features of human beings and other animals is our 

outstanding ability to adapt to the regularities in our environment. Quite surprisingly, 

however, our accurate sensitivity to statistical relations does not make us immune to 

blatant cognitive illusions, some of them with far-reaching consequences. For instance, 

many citizens in developed societies still recur to homeopathy and other complementary or 

alternative medicines (Barnes, Bloom, & Nahin, 2008), despite the fact that they are 

known to be ineffective (Shang et al., 2005) and also despite their huge economic costs 

(Nahin, Barnes, Stussman, & Bloom, 2009). The impact of pseudoscience and erroneous 

causal beliefs in the educative system is equally astonishing (Lilienfeld, Ammirati, & 

David, 2012). 

During the last decades, cognitive psychologists have explored how erroneous beliefs 

arise as the result of confirmation biases, illusory correlations, overreliance on heuristics, 

and, most importantly, illusory perceptions of causality (Gilovich, 1991; Vyse, 1997). 

Current research on associative learning has contributed to our understanding of causal 

illusions by identifying factors that bias our ability to detect the covariation between a 

candidate cause and an effect. One of these factors is the probability with which the to-be-

explained effect occurs. Imagine that you suffer very frequently from headaches and that 

you are looking for a remedy to ameliorate your condition. Even without any treatment, 

headaches tend to disappear very frequently in the interval of a few hours. This warranties 

that, whatever remedy you decide to take when you feel a headache, its consumption is 

very likely to be followed by a recovery, even if the remedy itself is absolutely non-

effective. However, if this experience happens regularly, it is very tempting, almost 
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unavoidable, to conclude that the remedy must be effective, because it has been followed 

by the recovery so many times in the past. Taking this into account, it is hardly surprising 

that until the development of placebo-controlled, double blind tests, the history of medicine 

has been “the history of the placebo effect” (Shapiro & Shapiro, 1997). This example 

illustrates why the overall frequency of an effect can bias the perception of causality. By 

mere chance, frequent effects will usually happen after other factors, which will be seen as 

potential causes. 

This effect has been studied extensively in the area of human contingency learning. 

In these experiments, participants are exposed to a series of trials in which a cue might be 

present or absent and an outcome might follow or not. Their task is to learn to predict the 

outcome based on the presence or absence of the cue in every trial. For example, a typical 

cover story used in these experiments invites participants to imagine that they are medical 

doctors who have to discover whether a patient is allergic to a given food. In each trial, 

they see whether the patient has taken that food and next, whether he or she suffered an 

allergic reaction. At the end of the experiment, participants are usually asked to rate the 

strength of the statistical or causal relationship between the candidate cause (the patient 

eating the food) and the outcome (her suffering an allergic reaction). Many experiments 

conducted with this or related tasks have found that even in situations in which there is no 

statistical relationship between the cue and the outcome, the participants still report that 

such a relationship exists if the outcome occurred in many trials (Allan & Jenkins, 1983; 

Allan, Siegel, & Tangen, 2005; Blanco, Matute, & Vadillo, in press; Musca, Vadillo, 

Blanco, & Matute, 2010). This outcome-density effect also takes place in situations in 

which participants are not judging the relationship between a neutral cue and an outcome, 

but the relationship between their own behavior and a consequence (Alloy & Abramson, 

1979; Matute, 1995; Msetfi, Murphy, Simpson, & Kornbrot, 2005; Shanks, 1985, 1987). 
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Early explanations for the outcome-density bias were framed in associative terms 

(López, Cobos, Caño, & Shanks, 1998; Matute, 1996; Shanks, 1995). For a situation in 

which there is just one cue and one outcome, the standard associative explanation assumes 

that a node representing the cue and a node representing the context compete to become 

associated with the representation of the outcome. The strengths of the cue-outcome and 

the context-outcome associations are updated on a trial-by-trial basis by means of a simple 

error correction rule, such as the one proposed by Rescorla and Wagner (1972) in the area 

of classical conditioning. According to this learning rule, the cue and the context compete 

to become associated with the outcome, so that by the end of training their respective 

associations with the outcome will be proportional to their relative predictive validity. 

When adopting a competitive learning rule, in situations in which there is no statistical 

relation between the cue and the outcome, the context ends up accruing all the associative 

strength. However, it is often assumed that the salience of the context is lower than the 

salience of the cue. This implies that learning is slower for the context than for the cue or, 

in other words, that the context is a poor competitor during the first stages of learning. 

Therefore, early in training, the accidental pairings of the cue and the outcome can result in 

a spurious cue-outcome association that will only disappear afterwards, once the context 

has accrued enough associative strength. In sum, within association formation models of 

learning, the outcome-density effect is understood as a transient, preasymptotic bias arising 

from accidental cue-outcome pairings before the context becomes an effective competitor. 

More recently, however, a dual-process model has been offered to account for the 

outcome-density effect. Allan et al. (2005) conducted a contingency learning experiment in 

which they manipulated the cue-outcome contingency and, orthogonally, the overall 

probability of the outcome. As in most contingency learning experiments, in each training 

trial participants first saw whether the cue was present and had to predict whether the 
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outcome would follow using a yes/no discrete response. After their response, they were 

told whether the outcome really appeared afterwards and proceeded to the next trial. At the 

end of training participants rated the strength of the cue-outcome relationship. The 

judgments collected at the end of training showed the expected outcome-density effect: for 

any given level of cue-outcome contingency, participants’ judgments varied as a function 

of the probability of the outcome. Most interestingly, however, this effect was absent in a 

dependent measure computed from the yes/no responses that participants gave during 

training. Specifically, Allan et al. compared the proportion of “yes” responses in cue-

present trials and the proportion of “yes” responses in cue-absent trials. If participants 

think that there is a positive relationship between the cue and the outcome, they should 

predict the outcome more often when the cue is present than when the cue is absent. 

However, Allan et al. found that this measure was not sensitive to the outcome-density 

effect. From their point of view, the fact that the predictive responses were unaffected 

shows that the outcome-density effect does not influence how people encode the 

relationship between the cue and the outcome. However, participants’ judgments are not 

based solely on the encoded cue-outcome relation. Additional processes involved in the 

production of the judgment would be responsible for the outcome-density effect (see also 

Allan, Siegel, & Hannah, 2007). In other words, the outcome-density effect is assumed to 

be a performance phenomenon, not a learning phenomenon. Quite interestingly, Perales, 

Catena, Shanks, and González (2005) have proposed a similar explanation for a related 

bias that happens when it is the cue, instead of the outcome, that occurs very frequently, 

namely the cue-density effect (see also Matute, Yarritu, & Vadillo, 2011; Vadillo, Musca, 

Blanco, & Matute, 2011). 

Although the theoretical framework proposed by Allan et al. (2005) and Perales et al. 

(2005) is certainly inspiring and sheds new light on these effects, it is based on limited 
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evidence. Dissociations between dependent variables can sometimes reflect the action of 

independent cognitive systems. But they can also be the product of a methodological 

artifact like, for instance, the limited reliability of one of the dependent measures (Shanks 

& St. John, 1994). In the case of the experiments conducted by Allan et al. and Perales et 

al., doubts can be raised about whether the dependent measures collected from trial-by-trial 

predictions are as reliable as the judgments provided at the end of training. For one thing, 

the outcome predictions were collected during training, that is, before the cue-outcome 

association had been properly encoded. Moreover, even if participants believe that there is 

a probabilistic relationship between the cue and the outcome, their predictive responses 

(yes/no) must be discrete. If these shortcomings of using trial-by-trial predictions as a 

dependent measure have a detrimental effect on their reliability, it is hardly surprising that 

they are more likely to remain uninfluenced by contextual manipulations, such as outcome-

density. 

Interestingly, research on the development of illusory correlations in stereotype 

formation can provide useful information in this debate. In these illusory correlation 

studies, participants are typically exposed to information about good and bad behaviors 

shown by two different social groups (Hamilton & Gifford, 1976). In every trial, they see 

information about a desirable or undesirable trait of a member of one group. Most 

importantly, there are more trials showing information about one of the groups than about 

the other. The proportion of desirable traits is also higher than the proportion of 

undesirable traits, although it is the same for both groups. The usual result is that even 

though both social groups show the same proportion of positive and negative traits, the 

group for which more information was shown (i.e., the majority group) is rated more 

positively than the group for which less information was shown (i.e., the minority group). 

In spite of obvious differences, this illusory correlation effect is to some extent similar to 
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the cue- and outcome-density effects explored in the contingency learning literature, 

assuming that social groups play the role of the cue and positive and negative traits play 

the role of the outcome. The higher proportion of one group over the other would mirror 

the cue-density manipulation, and the higher proportion of positive traits over negative 

ones would mirror the outcome-density manipulation. The illusory-correlation effect has 

traditionally been explained in terms of single-process learning accounts. For instance, 

Hamilton and Gifford (1976) argued that the illusory-correlation effect was mainly driven 

by the fact that uncommon events are more salient than frequent events. In the context of 

this paradigm, members of the minority group are, by definition, uncommon and negative 

behaviors are also uncommon. Therefore, their occasional coincidences are very salient, 

which boosts learning about the relationship between the minority group and the negative 

behaviors. More recent accounts differ in the details, but they also address the role of 

learning processes (e.g., Fiedler, 2000; Sherman, Kruschke, Sherman, Percy, Petrocelli, & 

Conrey, 2009). 

In contrast to this dominant view, a recent study by Ratcliff and Nosek (2010) 

obtained support for a dual-process performance interpretation quite similar to the one 

proposed by Allan et al. (2005) and Perales et al. (2005) in the area of contingency 

learning. Unlike previous experiments on illusory correlation, in the study conducted by 

Ratliff and Nosek (2010) participants had to report their explicit attitudes towards the 

majority and the minority groups, and their attitudes also were measured by means of an 

Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998). The IAT is a 

reaction-time task in which participants categorize four sets of words or stimuli. In Ratliff 

and Nosek’s study, participants categorized positive and negative words, on the one hand, 

and the names of people from the majority and the minority groups, respectively. During 

some phases of the IAT, participants had to use one key to respond to positive words and 
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to the names from the majority group and a different key to respond to negative words and 

to the names from the minority group. During some other phases, the response assignment 

was reversed, so that they had to use one key to respond to positive words and to the names 

of the minority group and the other key to respond to negative words and to the names of 

the majority group. If participants have a positive attitude towards the majority group, one 

would expect them to perform better in the first task than in the second task. 

Crucially, Ratliff and Nosek (2010) did not find an illusory correlation effect in the 

IAT scores, even though the explicit measures did reflect a preference for the majority 

group. Although their theoretical interpretation of this finding is framed in different terms, 

it is surprisingly similar to the dual-process account provided by Allan et al. (2005, 2007) 

and Perales et al. (2005) for cue- and outcome-density biases in contingency learning. In 

line with the popular dual-process framework proposed by Gawronski and Bodenhausen 

(2006), Ratliff and Nosek concluded that the fact that only explicit evaluations showed the 

illusory correlation effect suggests that the bias is not due to the way associations are 

encoded in memory (which is assumed to be indexed by the IAT), but to deliberate 

reasoning processes that qualify the expression of these associations (which is assumed to 

influence only explicit measures). In other words, Ratliff and Nosek argued that the 

illusory correlation effect is not a learning phenomenon but a performance phenomenon. 

Although the study of Ratliff and Nosek (2010) is focused on stereotype formation, 

their results are also relevant to our understanding of cue- and outcome-density biases as 

studied in contingency learning research. However, there are remarkable differences 

between the research paradigms used in both traditions that preclude any direct 

comparison. Moreover, as far as we know, the study of Ratliff and Nosek is the only study 

that has used the IAT in research on illusory correlations. Because it is possible that subtle 

aspects of their procedure were responsible for the null result, there is clearly a need for 
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more research on this topic. The purpose of the present experiment is to find out whether 

performance in the IAT is sensitive enough to measure the outcome-density effect that 

usually develops in the standard experimental paradigm used in contingency learning and 

causal judgment studies. On the basis of dual-process accounts such as those provided by 

Allan et al. (2005, 2007) and Perales et al. (2005), one would not expect to observe 

outcome-density effects in the IAT because the effect is assumed to occur not during 

association formation (i.e., learning) but when making explicit contingency judgments (i.e., 

performance).  An association formation model, on the other hand, does attribute the 

outcome-density effect to learning processes and therefore predicts an effect on any 

measure of learning, regardless of whether the measure requires an elaborated, explicit 

judgment or not. 

Method 

Participants and Apparatus 

Forty-eight psychology students at Ghent University participated in the experiment 

in exchange for €4.
1
 The experimental task was programmed in Visual Basic 6.0 using 

Windows API functions QueryPerformanceCounter and QueryPerformanceFrequency to 

register reaction times. 

Design 

Most experiments on the outcome-density effect include a single cue that is paired 

with a single outcome. The participants are exposed to a series of trials in which either the 

cue and the outcome might both be present, or the cue is present but the outcome is not, or 

the cue is absent but the outcome is present, or, finally, both events are absent. By 

manipulating the frequency of each of these trial types, it is possible to expose different 

groups of participants to situations that involve the same overall statistical relationship 

between the cue and the outcome, but with different overall probabilities of the outcome. 
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However, this single-cue design is poorly suited to the requirements of the IAT. Given two 

categories, X and Y, and two attributes, 1 and 2, the IAT is assumed to provide a measure 

of the extent to which the X-1 and the Y-2 associations are stronger than the X-2 and Y-1 

associations. Therefore, in order to make the design of our experiment compatible with the 

requirements of the IAT, the design of the learning phase was doubled, so that each 

participant received information about two cues and two outcomes (also see De Houwer & 

Vandorpe, 2010). 

The design of the experiment is summarized in Figure 1. Two groups of participants 

were trained with two different cues, X and Y, in two different contexts, A and B. X was 

always presented in Context A, Y in Context B. For participants in Group 0.5, cue X was 

equally likely to be followed by outcomes O1 or O2. Therefore, the probability of any of 

the outcomes given X was 0.5. Most importantly, the probability of those outcomes was 

also 0.5 in the absence of X. This means that there was no statistical contingency between 

X and the outcomes or, in other words, that cue X did not provide any additional 

information beyond that conveyed by context A alone. The information provided in 

Context B about Y was exactly the same. 

For participants in Group 0.9, cue X was more likely to be followed by O1. 

However, within context A the probability of O1 was equally high in the absence of X. 

Therefore, just as in the previous condition, O1 was not contingent upon cue X and, 

therefore, cue X did not provide any additional information beyond that conveyed by 

context A. The information given about cue Y in context B was the exact reverse: Cue Y 

was paired more often with O2 than with O1. However, within context B the probability of 

O2 was not higher in the presence than in the absence of Y. 

Given the relatively large number of X-O1 and Y-O2 pairings in Group 0.9 relative 

to Group 0.5, we expected participants in the former group to give higher causal judgments 
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for those relationships by virtue of the outcome-density effect. However, it is unclear 

whether a parallel effect would be observed in an IAT measuring the strength of the X-O1 

and Y-O2 associations. From the point of view of single-process learning models, there is 

no reason why the results observed in the IAT should diverge from those observed in 

explicit ratings. On the other hand, from the point of view of dual-process performance 

models, if the outcome-density bias is due to reasoning processes that take place when 

elaborating the judgments, then there is no reason why the bias should also be observed in 

a reaction time measure that does not require those processes, such as the IAT. 

Procedure 

To the best of our knowledge, the study conducted by De Houwer and Vandorpe 

(2010) is the only published experiment that has used the IAT to measure causal learning 

effects. Therefore, except for minor changes, the procedure used in the present experiment 

was kept as similar as possible to that of De Houwer and Vandorpe (2010). 

Contingency learning task and causal judgments 

All the instructions were given in Dutch. The names of fictitious drugs Dugetil and 

Aubinol, counterbalanced across participants, played the role of cues X and Y. The names 

“Test environment 1” and “Test environment 2”, counterbalanced, were used as contexts A 

and B. The Dutch words huidirritatie (skin irritation) and misselijkheid (nausea), presented 

in red color, played the role of O1 and O2, respectively. 

A trial started with the presentation of the message “Chemical substance used in this 

test” and the name of the cue underneath this message at the top of the screen. In trials in 

which only the context was present, the words “no substance” appeared instead of the cue. 

After 2,000 ms, the message “Result:” and the name of the allergic reaction, “skin 

irritation” or “nausea”, was added at the bottom of the screen for 3,000 ms, with the cues 

still visible. The inter-trial interval was 3,000 ms. 
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Given that the present design uses two different cues, X and Y, and two different 

contexts, A and B, we expected that participants might have some difficulties learning the 

target contingencies. We therefore simplified the task by dividing the general sequence of 

80 trials into four blocks of 20 trials each. Within each block, participants only saw 

information about one cue and one context. Thus, participants received 2 blocks of 20 trials 

each with Cue X in Context A, and 2 additional blocks of 20 trials with Cue Y in Context 

B. For half of the participants, the four blocks provided information about cues X and Y 

following the order X-Y-X-Y and for the other half the order was Y-X-Y-X. Blocks 1 and 

3 always took place in Test environment 1 and Blocks 2 and 4 always took place in Test 

environment 2. 

Immediately, after the contingency learning task, half of the participants performed 

the IAT and then provided causal judgments, while the other half provided causal 

judgments first and then completed the IAT.  Participants were asked to judge to what 

extent cues X and Y caused the “skin irritation” and the extent to which they caused the 

“nausea”. They could enter these causal judgements using a scroll whose left extreme was 

labelled as “it is definitely not the cause” and whose right extreme was “it is definitely the 

cause”. The scroll used by the participants did not show any numerical scale. However, the 

spatial position of their response was translated to a 0-100 scale for statistical analyses. 

Participants made judgments for each cue-outcome combination on a separate screen, with 

judgments about “nausea” always being made before judgments about “skin irritation”. 

Which cue was presented first (cue X or Y) was counterbalanced for each participant. 

Implicit Association Test 

The IAT is built upon the idea that it is easier to categorize two stimuli using the 

same response if they are associated in memory. In our experiment, the IAT consisted of 

seven phases. During Phase 1, in each trial participants were asked to press one key if the 
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word presented on the screen was related to outcome O1 and a different key if the word 

presented on the screen was related to O2. The Dutch words for to itch (jeuken), to scratch 

(krabben), skin rash (huiduitslag), and macula (huidvlekken) were used as stimuli referring 

to the outcome category skin irritation. The Dutch words for vomit (braaksel), throw up 

(overgeven), ill (ziek), and nauseous (misselijk) were used as stimuli referring to the 

outcome category nausea. Participants responded to those two categories by using keys A 

and P on an AZERTY key board. Each outcome stimulus was presented four times, 

resulting in 32 trials.  

During Phase 2, participants were asked to use the same keys, A and P, to report 

whether the word presented on the screen was the name of cue X or the name of cue Y. 

Unlike the case in standard IAT procedures, there was only one stimulus per cue category. 

As in De Houwer and Vandorpe (2010), to solve this problem, we presented each name in 

four different fonts (lower case Arial Black, upper case Arial Black, lower case Fixedsys, 

and upper case Fixedsys), resulting in eight different concept stimuli. Each cue stimulus 

was presented four times, resulting in 32 trials. 

During Phases 3 and 4, participants had to perform both tasks at the same time: They 

had to press one key when the word presented on the screen was either related to O1 or the 

name of cue X and a different key when the word presented on the screen was either 

related to O2 or was the name of cue Y. Although Phase 3 and Phase 4 were identical, 

participants were told that Phase 3 was a practice phase and Phase 4 was a testing phase. In 

each phase, each outcome and cue stimulus was presented twice, resulting again in 32 trials 

per phase. If there is a strong association between X and O1 and an association between Y 

and O2, then we would expect participants’ responses to be relatively fast in Phases 3 and 

4 because the same response is required for cue X and O1, on the one hand, and for Y and 

O2, on the other. 
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Phase 5 was identical to Phase 2, except that the key assignments were reversed: The 

key previously used to respond to cue X was now used to respond to Y and the key 

previously used to respond to Y was now used to respond to X. As in Phase 2, each cue 

stimulus was presented four times, resulting in 32 trials. Finally, during Phases 6 and 7 

participants had to press one key when the word presented on the screen was either related 

to O1 or the name of cue Y and a different key when the word presented on the screen was 

either related to O2 or was the name of cue X. As in the case of Phases 3 and 4, Phase 6 

was presented to participants as a practice phase and Phase 7 was presented as a testing 

phase. Each of them consisted of 32 trials. If there is a strong association between X and 

O1 and an association between Y and O2, then we would expect participants to find this 

task relatively difficult, as it requires them to use the same response for stimuli that are not 

associated (X and O2, on the one hand, and Y and O1, on the other). Therefore, their 

responses should be slower in Phases 6 and 7 than in Phases 3 and 4. 

Before each phase, participants were informed about the assignment of the different 

categories to the left and the right key. In order to reduce variance and keep the 

experimental conditions as constant as possible across participants, neither the assignment 

of outcome/cue categories to the two response keys nor the order of phases in the IAT was 

counterbalanced. The order of trials in each phase was determined randomly for each 

participant. On each trial, a word was presented at the center of the screen until a valid 

response was registered. If the response was correct, the next word appeared after 400 ms. 

If the response was incorrect, a red cross was presented for 400 ms, also at the center of the 

screen, and the next word was presented 400 ms after the red cross disappeared. 

Results 

Several algorithms have been proposed in the literature to score performance in the 

IAT. Perhaps the two most common measures are the logarithmic score (initially used by 



IAT and illusion of causality 15 

Greenwald et al., 1998) and the D600 algorithm proposed by Greenwald, Nosek, and 

Banaji (2003) because of its seemingly higher correlation with self-report measures. For 

the analysis of the present experiment, we computed both of these dependent variables. 

According to the guidelines of Greenwald et al. (2003), the D600 measure uses the reaction 

times of all trials in Phases 3, 4, 6, and 7. The reaction time of incorrect responses is 

replaced by the mean reaction time in its block plus a 600 ms penalty. The score for the 

training phases (3 and 6) is computed as the average of block 6 minus the average of block 

3 divided by the pooled standard deviation of the reaction times in those two blocks. The 

score for the testing phases is computed similarly with data from blocks 7 and 4. The final 

D600 score is the average of the training phases’ score and the testing phases’ score. We 

also computed for each participant the logarithmic IAT score used by Greenwald et al. 

(1998), which takes into account only data from the testing blocks (4 and 7), removing the 

responses from the two first trials and also incorrect responses and any response with 

latency below 300 or above 3000 ms. All reaction times are then log10 transformed, and the 

difference between blocks 7 and 4 is taken as the final dependent variable. Both IAT scores 

were computed in such a way that positive scores indicated that X-O1 and Y-O2 

associations were stronger than X-O2 and Y-O2 associations. The mean IAT scores in each 

group are shown in Table 1. As can be seen, both types of IAT scores suggest that the 

target associations are stronger in Group 0.9 than in Group 0.5. Two t-tests showed, that 

the difference between both groups was significant for the logarithmic IAT score, t(46) = -

2.72, p < .01, d = 0.80, but did not reach conventional levels of significance for the D600, 

t(46) = -1.61, p = .114, d = 0.47. 

The IAT does not provide a measure of the absolute strength of associations, but a 

measure of the relative strength of some associations over others. On the other hand, causal 

judgments require participants to focus on specific cue-outcome associations. Given this 
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divergence, the direct comparison of IAT scores with causal judgments is unwarranted. In 

order to improve the comparability between IAT scores and causal judgments, we 

converted the latter to compute a measure of the relative strength of associations X-O1 and 

Y-O2 over associations X-O2 and Y-O1, more similar to the way the IAT is assumed to 

measure the relative strength of associations. Specifically, we subtracted each participant’s 

ratings for associations X-O2 and Y-O1 from his/her ratings for associations X-O1 and Y-

O2 (i.e., [XO1 + YO2] – [XO2 + YO1]). The means of the resulting dependent variable for 

each group are shown in Table 1. A t-test confirmed that judgments were larger for Group 

0.9 than for Group 0.5, t(46) = -6.84, p < .001, d = 2.02. 

To compare these explicit ratings with the logarithmic IAT scores we standardized 

both measures and submitted them to a 2 (Type of measure: IATLOG vs. Judgments) x 2 

(Group: 0.5 vs. 0.9) ANOVA. This analysis yielded a main effect of Group, F(1, 46) = 

37.80, p < .001, indicating a cue-density effect, and a significant Type of measure x Group 

interaction, F(1, 46) = 4.08, p = .049, indicating that the cue-density effect was somewhat 

larger in judgments than in the IATLOG scores. Given that both measures had been 

standardized, the main effect of Type of measure was logically nonsignificant, F < 1. A 

similar ANOVA using the IATD600 instead of IATLOG scores yielded identical results: a 

main effect of Group, F(1, 46) = 23.65, p < .001, and a Type of measure x Group 

interaction, F(1, 46) = 9.1, p < .005, but no effect of Group, F < 1. 

Table 2 shows the correlations between the three dependent measures: IATD600 

scores, IATLOG scores and converted judgments. As can be seen, all three measures were 

significantly correlated with each other. Taken together with the previous analyses, these 

correlations suggest that all these variables are measuring the same construct, although 

they might differ in their sensitivity to the cue-density manipulation. 

Discussion 
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The results of our experiment show that it is possible to detect an outcome density 

effect both with causal judgments and with the IAT. These results offer no support for 

recent attempts to explain the outcome density bias and other biases in causality detection 

from a dual-process framework. Based on a dissociation between the biases observed in 

causal judgments and the absence of biases in the trial-by-trial predictions that participants 

made in a preparation similar to ours, Allan et al. (2005) and Perales et al. (2005) argued 

that their results could be best accommodated by assuming that participants are able to 

learn the contingencies in an unbiased manner but that their judgments are also influenced 

by deliberate reasoning processes that give rise to the bias. Following a Signal Detection 

Theory approach, they suggested that trial-by-trial predictions reflect participants’ 

sensitivity to the cue-outcome contingency (d’), while causal judgments were also 

influenced by the participants’ response criterion (β) that varied with outcome and cue 

density. In sum, Allan et al. and Perales et al. assumed that a dual-process mechanism is 

necessary to explain why the outcome-density effect is observed in some measures but not 

in others. From their point of view, only dependent measures that require a deliberative 

reasoning process would yield an outcome-density effect. Therefore, it is unlikely that their 

theoretical framework can accommodate the present results. It is unclear how or why the 

reasoning processes responsible for the change in a response criterion could affect 

performance in a task such as the IAT that does not involve a judgment about cue-outcome 

relations. 

Our results also conflict with those of Ratliff and Nosek (2010) in the area of 

stereotype formation. As explained in the Introduction, Ratliff and Nosek conducted an 

experiment on illusory correlation in which participants viewed information about a 

majority group and a minority group. Although both social groups showed exactly the 

same proportion of desirable and undesirable traits, the participants tended to perceive the 
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majority group more positively than the minority group. However, this preference for the 

majority only arose in the explicit measures. An IAT designed to measure their relative 

preference for the majority group failed to find any effect. In this case, it is difficult to 

question the sensitivity of the IAT measure used in this study. Ratliff and Nosek showed 

that when there were real differences between the majority and the minority groups, the 

IAT was able to detect the difference in the participants’ attitudes towards these groups. 

Furthermore, to preclude any limitation in statistical power, their Experiment 2 was 

conducted with a large sample gathered over the Internet with almost 900 participants. The 

divergence between our results and those of Ratliff and Nosek suggests that despite their 

surface similarity, the cue- and outcome-density biases explored in causal learning and the 

illusory correlations studied in stereotype formation research might in fact reflect different 

processes. Alternatively, the minor differences between the stimuli used in their IAT and 

the ones used in the present experiment might account for the different results obtained in 

both studies. 

Although we observed a significant outcome-density effect on the logarithmic IAT 

scores, only a trend in the same direction was observed on the D600 IAT scores. 

Admittedly, the D600 has become more popular in recent research with the IAT, but there 

is no obvious reason why one should favor one scoring algorithm over the other. The 

calculation of these two scores differs in several respects. A major difference between the 

two is that the practice mixed blocks (i.e., Phases 3 and 6) are taken into account in the 

D600 but not in the logarithmic IAT score. The logarithmic IAT also excludes reaction 

times from incorrect responses. However, our inspection of the data suggests that the 

divergence between the D600 and logarithmic IAT scores is mainly due to the fact that 

reaction times are log converted in the calculation of the logarithmic IAT but not in the 

D600 score.
2
 In fact, we observed that the crucial effect of group in the analysis of the 
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D600 scores became significant if all reaction times were first log converted, t(46) = -2.04, 

p = .047, d = 0.60. Log transforming RT has the advantage that it reduces the impact of 

extremely long RTs and hence normalizes the typically skewed RT distribution. The way 

in which the logarithmic IAT score is calculated is also more akin to standard practice in 

the experimental reaction time research than the D600 score. The recommendation of 

Greenwald et al. (2003) to use the D600 score was based exclusively on its capacity to 

register individual differences. While the validation of the logarithmic IAT score used 

discriminant validity as a criterion (i.e., whether the IAT measured something different 

from explicit measures), the validation of the D600 score was based on positive 

correlations with self-report measures (i.e., convergent validity; see Greenwald et al., 

2003). However, there is currently no research on whether a D600 measure is also better at 

detecting effects of experimental manipulations. In any case, the fact that we observed a 

clearly significant, large sized outcome-density effect in the logarithmic IAT scores, a 

trend of the same effect in the D600 score (which became significant when log-

transforming RTs before calculating the D600 score), and a significant correlation between 

both scores provides a strong basis for concluding that the outcome-density effect in IAT 

performance is genuine.  

Although our results strongly suggest that a single-process account is able to account 

for the outcome-density effect, it is important to note that a contribution of performance-

related processes to the outcome-density effect cannot be excluded. As shown above, the 

effect of the outcome density manipulation was somewhat larger on the participants’ 

judgments than on their IAT scores. A potential explanation for this asymmetry is that 

learning processes (measured with the IAT) are responsible for part of the outcome density 

effect and that, additionally, performance related processes further enhance this effect in 

judgments. An alternative and more parsimonious interpretation of this result is that both 
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the IAT and judgments were mainly measuring learning processes, but the latter were more 

sensitive than the former. In any case, the fact that the outcome density effect was found in 

the IAT scores shows that at least part of the effect must be attributed to processes different 

than those involved in the production of a judgment. 

Previous failures to detect the outcome- and cue-density biases might have been due 

to the use of an insensitive dependent measure. As explained above, both Allan et al. 

(2005) and Perales et al. (2005) used the trial-by-trial predictive responses of participants 

to compute a dependent measure that reflected their online perception of contingency 

between the cue and the outcome. However, if participants believe that there is a 

probabilistic relationship between the cue and the outcome, these discrete yes/no responses 

might not be an optimal way to express that knowledge. Furthermore, these predictions are 

made during the training phase, including therefore many measures from trials in which 

participants are still learning what the relationship between the cue and the outcome is. 

In a related experiment, we recently tried to find out whether the cue-density bias 

could be measured by using a predictive question (Vadillo et al., 2011). Unlike Allan et al. 

(2005) and Perales et al. (2005), however, participants had to answer this predictive 

question at the end of the experiment (i.e., once the training phase was over and they 

presumably had learned the relationship between cue and outcome) and by means of a 0-

100 rating scale (i.e., as opposed to yes/no discrete responses). Contrary to their results, we 

observed that under these conditions the cue-density bias was even stronger in the 

predictive question than in the causal ones. 

Together with the present results, these findings suggest that there is nothing special 

in causal judgments that make them more sensitive than other measures to cue- and 

outcome-density biases in contingency learning. Indeed, both the cue- and the outcome-

density effect can be observed successfully with any measure of the participant’s 
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perception of the cue-outcome association, as long as the measure is valid and sensitive 

enough. Such a conclusion fits well with an association formation view that attributes 

illusory correlations such as the outcome-density effect to processes during learning. 

Whether or not performance-related factors enhance this effect remains an open question 

that future research should address. However, in the absence of additional evidence, single-

process learning accounts seem to offer the most parsimonious explanation for the 

outcome-density bias. 
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Footnotes 

 

1
 The experiment was conducted with an initial sample of 32 participants, which yielded a 

pattern of results virtually identical to the one reported in the present paper. Given that the 

D600 score failed to yield conclusive results, we added a smaller sample of 16 participants 

to get clearer results. The p-values of all the effects that were already significant with the 

original sample became lower after adding the 16 additional participants. In the original 

sample, the difference between both groups in the D600 score was nonsignificant, t(30) = -

1.08, p = .289, d = 0.39, but the logarithmic score yielded a significant difference, t(30) = -

2.28, p < .05, d = 0.83. 

 

2
 The other important difference between the logarithmic score and the D600 score is that 

the former is computed just with trials from blocks 4 and 7. However, computing the D600 

score just with blocks 4 and 7 did not make it more sensitive to our manipulation, t(46) = -

1.417, p = .163, d = 0.42. 
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Table 1 

Descriptive statistics 

 

 Group 0.5 Group 0.9 

Dependent Measure Mean SEM Mean SEM 

IATD600 0.290 0.068 0.456 0.076 

IATLOG 0.014 0.006 0.040 0.007 

Judgments 3.333 8.521 115.666 14.033 
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Table 2 

Correlations between dependent measures 

 

 IATD600 IATLOG 

IATLOG .499 (.000) - 

Judgments .305 (.035) .299 (.039) 

Note. Numbers outside brackets refer to the correlation coefficient r and numbers between 

brackets represent the corresponding p values. 
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Figure Captions 

 

Figure 1. Design summary of the experiment. Numbers within each contingency table 

represent the number of trials of that type seen by participants in each group. Context 

A and Context B were two different Testing environments for chemical substances X 

and Y, counterbalanced. O1 and O2 were skin irritation and nausea, counterbalanced. 

 



IAT and illusion of causality 31 

 

 

 

G
ro

u
p

 .5
G

ro
u

p
 .9

Context A

10 10

10 10

O1 O2

X

¬X

Context B

10 10

10 10

O1 O2

Y

¬Y

18 2

18 2

O1 O2

X

¬X

2 18

2 18

O1 O2

Y

¬Y

 

 

 

Figure #1 


