Homogeneously Alloyed CdSe$^{1-x}$S$_x$ QDs (0 ≤ x ≤ 1): an Efficient Synthesis for Full Optical Tunability

Tangi Aubert, Marco Cirillo, Stijn Flamée, Rik van Deun, Holger Lange, Christian Thomsen, Zeger Hens

1 Physics and Chemistry of Nanostructures, Ghent University, Belgium
2 L3 – Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Belgium
3 Institut für Festkörperphysik, TU Berlin, Germany
† Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Belgium

INTRODUCTION

In the field of fluorescent semiconductor quantum dots (QDs), alloyed QDs open up new possibilities and opportunities. Indeed, these systems allow to tune the optical properties of the nanocrystals without changing their size. This is of particular interest for the integration of the QDs in devices such as LEDs or for their use as biological labels. We recently developed a novel method for the synthesis of CdSe and ZnSe binary QDs in colloidal solutions that is fast and highly efficient. This method is based on a heterogeneous Se-ODE precursor consisting of a simple dispersion of Se powder (200 mesh) in octadecene (ODE) and showing very high reactivity towards Cd precursor. In this contribution we will demonstrate that this method can be extended to the synthesis of CdSe$^{1-x}$S$_x$ homogeneously alloyed QDs (0 ≤ x ≤ 1).

Synthesis

- ambient condition (air)
- T = 260°C
- 5 min reaction
- nearly full yield
- high solid load
allow large production

Se-ODE vs. S-ODE

formation of pure CdSe and CdS (x = 0 and 1)
equivalent reactivity of both Se and S precursors towards Cd
prerequisite for homogeneous alloying

Structure and morphology

TEM of CdSe$_{0.5}$S$_{0.5}$ QDs
XRD vs. composition
- Ø ~ 3 nm with myristic acid size can be tuned with the length of the carboxylic acid
- zincblende structure
- lattice parameter shifts linearly with composition

Raman analysis

- LO frequency shifts with composition
- narrow FWHM for x = 0, 0.5 and 1
- large FWHM for uneven compositions
homogeneous alloying

CdSe$_{1-x}$S$_x$/CdS core-shell QDs

- confinement energy decreases faster for higher S content when growing CdS layers due to smaller band offset
- increase of the PLQY is less pronounced

Optical properties

- efficient tuning of the band gap with the composition

CONCLUSION

We developed a new, fast and phosphine-free method for the synthesis of alloyed CdSe$_{1-x}$S$_x$ QDs with 0 ≤ x ≤ 1. The equivalent reactivity of the heterogeneous Se-ODE and homogeneous S-ODE precursors towards the Cd precursor leads to a homogeneous alloying as demonstrated by Raman spectroscopy. The optical properties of the QDs could easily be tuned by changing their composition. For CdSe$_{1-x}$S$_x$/CdS core-shell QDs, the efficiency of the shell in confining the exciton in the core decreases when increasing the S content due to a smaller interfacial band offset.

References

1 Flamée, Z. Hens et al., submitted
2 Aubert, Z. Hens et al., submitted

Acknowledgement

Authors acknowledge BelSpO (IAP 7.35, photonics@be), FWO-Vlaanderen (project G.0760.12), German Research Foundation (project LA 2901/1-1), Max Kade Foundation and Hercules Foundation (project AUGE/09/024 – Advanced Luminescence Setup) for financial support.