TDP-43 Loss-of-Function Causes Neuronal Loss Due to Defective Steroid Receptor-Mediated Gene Program Switching in Drosophila

Lies Vanden Broeck,1,3,4 Marina Naval-Sánchez,2 Yoshitsugu Adachi,5 Danielle Diaper,5 Pierre Dourlen,4 Julien Chapuis,4 Gemot Kleinberger,6,7 Marc Gistelinck,1,3,4 Christine Van Broeckhoven,5,7 Jean-Charles Lambert,4 Frank Hirth,5 Stein Aerts,2 Patrick Callaerts,1,3,* and Bart Dermaut1,3,4,*

1Laboratory of Behavioral and Developmental Genetics
2Laboratory of Computational Biology
Center of Human Genetics, University of Leuven, B3000 Leuven, Belgium
3VIB Center for the Biology of Disease, B3000 Leuven, Belgium
4INSERM U744, Institut Pasteur de Lille, Université de Lille Nord de France, 59019 Lille, France
5Department of Neuroscience, Institute of Psychiatry, MRC Centre for Neurodegeneration Research, King’s College London, SE5 8AF London, UK
6Department of Molecular Genetics, Neurodegenerative Brain Diseases Group, VIB, B2610 Antwerpen, Belgium
7Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, B2610 Antwerpen, Belgium
*Correspondence: patrick.callaerts@cme.vib-kuleuven.be (P.C.), bart.dermaut@pasteur-lille.fr (B.D.)
http://dx.doi.org/10.1016/j.celrep.2012.12.014

SUMMARY

TDP-43 proteinopathy is strongly implicated in the pathogenesis of amyotrophic lateral sclerosis and related neurodegenerative disorders. Whether TDP-43 neurotoxicity is caused by a novel toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased dTDP-43 expression. As a result both cytoplasmic toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased dTDP-43 expression. As a result both cytoplasmic toxic gain-of-function and decreased expression of its normal function. We increased dTDP-43 expression. As a result both cytoplasmic toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased dTDP-43 expression. As a result both cytoplasmic toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased dTDP-43 expression. As a result both cytoplasmic toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased dTDP-43 expression. As a result both cytoplasmic toxic gain-of-function mechanism of the aggregates or by a loss of its normal function.

INTRODUCTION

TDP-43 plays a crucial role in amyotrophic lateral sclerosis (ALS) and related TDP-43 proteinopathies, such as frontotemporal dementia (FTD) (Sreedharan et al., 2008; Arai et al., 2006; Neumann et al., 2006; Kabashi et al., 2008). In these disorders TDP-43-positive inclusions are often located in the neuronal cytoplasm and accompanied by a loss of nuclear TDP-43 expression. As a result both cytoplasmic toxic gain-of-function (GOF) and nuclear loss-of-function (LOF) mechanisms have been proposed (Lee et al., 2011; Xu, 2012). TDP-43 functions in RNA metabolism, including splicing, transcription, and RNA stability (Budini et al., 2011). Recent studies showed that expression levels and alternative splicing of a large number of neuronal transcripts, including noncoding RNAs, are regulated by TDP-43, suggesting a multitude of possible disease mechanisms (Tollervey et al., 2011; Sendtner, 2011; Polydendrou et al., 2011).

In mice TDP-43 is essential for embryogenesis (Kraemer et al., 2010; Sephton et al., 2010; Wu et al., 2010) and TDP-43 haploinsufficiency causes a paralytic phenotype (Kraemer et al., 2010). Postnatal knockout of mouse TDP-43 results in a dramatic loss of body fat, suggesting a metabolic function for TDP-43 (Chiang et al., 2010), and targeted depletion of mouse TDP-43 in motor neurons leads to an ALS-like neurodegenerative phenotype (Wu et al., 2012). Overexpression of TDP-43 in mice induces neuronal loss in a dose-dependent manner and results in altered distributions of Gemini of coiled bodies and mitochondria in motor neurons (Wils et al., 2010; Shan et al., 2010; Lagier-Tourenne et al., 2010). In zebrafish, overexpression and knockdown of TDP-43 cause swimming defects and motor neuron axonal phenotypes (Kabashi et al., 2010). In Drosophila, both gain and loss of TDP-43 (dTDP-43) cause pupal lethality and reduced adult viability, impaired larval locomotor activity, axonal loss, and altered synaptic boutons (Wang et al., 2011; Lin et al., 2011; Ritson et al., 2010; Li et al., 2010; Feigquin et al., 2009). Although these in vivo studies show that both gain and loss of TDP-43 can lead to a variety of neuronal defects, the underlying pathogenic mechanisms are not known.

Here, we have combined deep RNA sequencing, in silico gene network analysis, and classical Drosophila genetics to show that dTDP-43 is a crucial regulator of ecdysone receptor (EcR)-dependent gene network switching at the pupal-to-adult transition. Our data indicate that neuronal gain or loss of dTDP-43 strongly upregulates the expression of the neuronal...
microtubule-associated protein Map205, which leads to aberrant cytoplasmic accumulation of EcR, disrupted EcR signaling, apoptosis of bursicon neurons, and failure to correctly complete the last step of metamorphosis. Because loss of the EcR homolog in mice, liver X receptor β (LXRβ), results in TDP-43-positive motor neuron degeneration (Kim et al., 2008; Bigini et al., 2010), our study suggests that LXR signaling might be disrupted in human TDP-43 proteinopathies. We propose that TDP-43-mediated neurotoxicity is the result of a loss of its normal function.

RESULTS

Gain or Loss of dTDP-43 Leads to Immature Phenotypes Due to Defects of CCAP/Bursicon Neurons at Adult Commitment

To study the neuronal function of dTDP-43, we overexpressed and silenced dTDP-43 in the fly nervous system. Both resulted in immature-looking adult escapers with unexpanded wings, soft cuticle, unretracted ptilinum, a dimpled dorsal thorax, and misoriented scutellar bristles (Figures 1A–1E). Knockdown or overexpression of dTDP-43 in motor neurons resulted in the same immature phenotypes (Table 1). Wing expansion and cuticle hardening in Drosophila are posteclosion events regulated by the secretion of the insect neurohormone bursicon by a subset of 14 crustacean cardioactive peptide (CCAP)-expressing neurons in the ventral nerve cord (Luan et al., 2006). Targeted ablation of CCAP/bursicon neurons leads to pupal lethality with adult escapers showing immature cuticle and wing expansion phenotypes (Park et al., 2003). Knockdown and overexpression of dTDP-43, specifically in CCAP/bursicon neurons, resulted in similar phenotypes, ranging from pupal lethality with adult escapers showing immature cuticle and wing expansion phenotypes (Park et al., 2003). Knockdown and overexpression of dTDP-43, specifically in CCAP/bursicon neurons, resulted in similar phenotypes, ranging from pupal lethality to adult escapers with varying degrees of wing inflation phenotypes (Table 1). Culture temperature correlated with phenotypic severity and overexpression of dTDP-43 caused more severe phenotypes than dTDP-43 knockdown (Table 1). The observed dTDP-43-induced immature phenotypes are thus explained by defects at the level of CCAP/bursicon neurons.

Gain or Loss of dTDP-43 Leads to Apoptosis of CCAP/Bursicon Neurons

In order to further define the nature of the CCAP/bursicon neuronal defects, we expressed the membrane marker mCD8-GFP in CCAP/bursicon neurons to visualize possible morphological defects caused by altered dTDP-43 expression. During metamorphosis, CCAP/bursicon neurons undergo strong EcR-dependent remodeling (Zhao et al., 2008). Pruning of larval structures occurs within the first 30 hr after puparium formation (APF), whereas outgrowth of adult neurites is completed at 60 hr APF (Zhao et al., 2008). Knockdown or overexpression of dTDP-43 did not affect the morphology or number of CCAP neurons in third instar larvae or in pupae up to 60 hr APF (Figure 2A; Figure S1), and outgrowth of adult neurites was normal at 60 hr APF (Figures 1F–1H). However, at 72 hr APF and in newly eclosed adults, the number of CCAP/bursicon neurons was reduced in both loss and gain of dTDP-43 flies (Figure 2A). These results suggest that both increased and decreased expression of dTDP-43 cause immature phenotypes by late pupal neuronal loss after normal metamorphic remodeling.

Because neurodegeneration in human ALS and FTD patients is characterized by ubiquitin-positive neuronal inclusions, we stained CCAP/bursicon neurons with altered dTDP-43 expression using antibodies directed against dTDP-43 and ubiquitin. We observed ubiquitin- and dTDP-43-positive accumulations in the nucleus, perinuclear region, and the cytoplasm of ∼80% of dTDP-43 overexpressing CCAP/bursicon neurons. Ubiquitin-positive inclusions were not observed in dTDP-43-depleted CCAP/bursicon neurons (Figure 2B). Ubiquitin- and dTDP-43-positive accumulations were most clearly visible in dTDP-43 overexpressing neurons that were characterized by abnormal cellular and nuclear morphology likely reflecting end-stage cell
death (Figure 2B). Expression of apoptosis inhibitors p35 or DIAP1 in CCAP/bursicon neurons with increased or decreased dTDP-43 expression rescued the CCAP/bursicon neuronal loss and wing inflation defects (Figure 2C; Figure S2). Together, these results indicate that both increased and decreased expression of dTDP-43 cause immature phenotypes by enhanced apoptotic cell death of CCAP/bursicon neurons starting at 72 hr APF. Our data also suggest that formation of ubiquitin- and dTDP-43-positive inclusions is not a prerequisite for dTDP-43-mediated neurotoxicity in CCAP/bursicon neurons.

Gain and Loss of dTDP-43 Cause Significantly Overlapping Transcriptome Alterations

To identify molecular pathways underlying the specific late pupal neurodegenerative phenotypes, we sequenced transcriptomes of heads with altered dTDP-43 expression at the developmental stage when the CCAP/bursicon neuronal defect was observed (73–90 hr APF; Gene Expression Omnibus [GEO] accession number GSE42844). Pupae overexpressing dTDP-43 were generated by crossing the ubiquitous act5c-GAL4 driver to UAS-dTDP-43-Flag (dTDP-43GOF) (Figure S3A), resulting in moderately increased dTDP-43 transcript and protein levels (Figures S3B and S3C). To produce pupae with ubiquitously decreased dTDP-43 expression, we used transheterozygous combinations of dTDP-43LOF and dTDP-43GOF, two reported mutants (Feiguin et al., 2009) and Df(2R)106, a deficiency uncovering dTDP-43 (Figure S3D). For differential gene expression analysis, sequencing data of the transheterozygous dTDP-43LOF and dTDP-43GOF flies were significantly enriched for a cluster related to the mitochondrial respiratory chain and the muscular actin-myosin cytoskeleton (Figure 3C). Genes that showed altered splicing patterns in dTDP-43GOF and dTDP-43LOF flies were significantly enriched for a cluster related to axonal growth (Figure 3C). Together, these data showed that, in line with our phenotypic observations, decreased and increased dTDP-43 resulted in highly similar transcriptome alterations at the level of coding and noncoding RNA during late pupal stages. The results also highlighted a specific role for dTDP-43 in snoRNA processing, mRNA splicing, mitochondrial respiration, actin-myosin dynamics, axonal growth, and cuticle deposition in late metamorphosis.

Gain or Loss of dTDP-43 Results in a Failure of EcR to Switch Off the br-Mediated Pupal Transcriptional Program

Because the dTDP-43-mediated phenotypes originated at late pupal stages, we wondered if dTDP-43LOF and dTDP-43GOF disrupted specific developmental gene networks during metamorphosis. We therefore looked at the wild-type modEncode developmental time course transcription profiles (Graveley et al., 2011) of all commonly up- and downregulated genes in dTDP-43LOF and dTDP-43GOF late pupae and ranked them according to their fold change in expression. A large fraction of the upregulated genes had developmental expression patterns that peak during late larval/early pupal stages and are repressed at the end of metamorphosis (Figure 4A). Conversely, the downregulated gene set was enriched for genes that are typically switched-on in late pupal stages (Figure 4A). These data demonstrate that dTDP-43LOF and dTDP-43GOF cause a failure to switch gene expression from a pupal to an adult pattern in late metamorphosis, in line with the immature adult phenotypes and late pupal lethality.

To further explore this disrupted metamorphic gene network, we used the integrated target and enhancer prediction tool i-cisTarget to check if the genomic regions of differentially expressed genes were enriched for specific clusters of transcription factor binding sites modeled by a position weight matrix
(PWM) (Aerts et al., 2010; Hermann et al., 2012). In the list of upregulated genes we identified 151 out of 6,383 tested PWM motifs with an enrichment score (E-score) above 2.5 (Table S6). The list contained three highly similar motifs: 5′-CAAGGTC-3′ (ranked first, E-score: 4.75), 3′-GAAGGTCA-5′ (ranked tenth, E-score: 4.27), and 5′-AAGGTCA-3′ (ranked 54th, E-score: 3.30). The latter two corresponded to the recognition motifs of the nuclear hormone receptors Hr39 and the estrogen-related receptor (ERR) and strongly resemble the archetypical AGGTCA half-site consensus motif for nuclear hormone receptors, including EcR (King-Jones and Thummel, 2005) (Figure 4B; Table S6). Next, we used i-cisTarget to detect enrichment of experimentally validated in vivo transcription factor binding sites (derived from modENCODE ChIP-seq data) and retrieved five hits of which two corresponded to EcR (Table S7). EcR binding regions were identified in 44 significantly highly ranked genomic regions of which nine were located upstream of the transcription factor broad (br), a key mediator of ecysdose signaling. Because of the upregulation of br, the identification of predicted and experimentally validated EcR binding sites and because expression levels of EcR or its heterodimeric partner Usp were not altered (Table 2), our results indicated a gene network disruption downstream of the nuclear steroid receptor EcR. In line with this notion, the ten genes from the L71 gene cluster, which are normally induced directly by br only in prepupae (Crossgrove et al., 1996), were strongly expressed in the dTDP-43^{LOF} and dTDP-43^{GOF} late pupae (Table 2).

During metamorphosis br acts as a pupal specifier, and its switching-off by ecysdose at adult commitment is required to change cuticle gene expression from the pupal to the adult program (Zhou and Riddiford, 2002). Supporting a specific disruption of this process, the larval-specific (Lcp65Aa2, Lcp4, Lcp65Aa) and early pupal cuticle genes (Edg84A, PcP, Edg91, Edg78E) were not yet switched-off, whereas the well-characterized adult cuticle gene Acp65Aa was not sufficiently induced in late pupal dTDP-43^{LOF} and dTDP-43^{GOF} flies (Table 2). These results demonstrate that dTDP-43 dysfunction results in the inappropriate continuation of the br-mediated pupal transcriptional program due to the failure of EcR to switch it off.

Gain or Loss of dTDP-43 Causes Cytoplasmic EcR-A Accumulations in CCAP/Bursicon Neurons

Next, we wondered if dTDP-43 dysfunction also disrupted EcR function in the CCAP/bursicon neurons. EcR plays an important role in metamorphic neuronal remodeling, including the CCAP/bursicon neurons (Zhao et al., 2008). EcR codes for three protein isoforms, of which EcR-A and EcR-B1 are predominantly expressed in the central nervous system. At the start of metamorphosis most larval neurons express EcR-B1 when they lose their larval features, whereas EcR-A is the predominant isoform in late metamorphosis (Truman et al., 1994). We observed that EcR-A is expressed at low levels in CCAP/bursicon neurons (Figure 4C). Interestingly, in CCAP/bursicon neurons in which dTDP-43 was up- or downregulated, EcR-A accumulated in the neuronal cytoplasm. These data suggest that increased or decreased dTDP-43 affects EcR signaling by controlling EcR subcellular distribution.

EcR is the ortholog of the mammalian liver X receptors (LXR) (Figure S4A), and loss of LXR function is associated with neuronal degeneration in mice (Andersson et al., 2005; Bigini et al., 2010; Kim et al., 2008; Wang et al., 2002). Interestingly, we obtained evidence for functional (Figure S4B) and physical (Figures S4C–S4E) interactions between TDP-43 and LXR, suggesting that the TDP/LXR link might be functionally conserved in mammals (see the Discussion).

dTDP-43 Binds to Map205 mRNA and Controls Its Transcript Levels to Regulate the Subcellular Distribution of EcR

The most significantly upregulated gene in dTDP-43^{GOF} and dTDP-43^{LOF} flies was Map205 (Figures 3A and 5A; Figure S5A). Map205 is a PAM2 motif (Albrecht and Lengauer, 2004) containing neuronal microtubule binding protein (Rolls et al., 2007). Map205 has no mammalian sequence homologs but is functionally and structurally related to mammalian MAP4 (Pereira et al., 1992). Because the developmental expression profile of Map205 did not follow the dynamic pattern of EcR-responsive genes like br (Figure 4A), we hypothesized that dTDP-43-mediated Map205 overexpression acted upstream of EcR and that dTDP-43 might bind directly to Map205 RNA. RNA immunoprecipitation (RIP) revealed that dTDP-43 bound to its own and Map205 mRNA but not to mRNA of the synaptotagmin genes Syt6 or Syt7, two presynaptic genes whose expression was not significantly altered in our transcriptome analysis (Figure 5B). In addition, neuron-specific silencing of Map205 in dTDP-43^{LOF} mutants strongly suppressed the late pupal lethality resulting in escaper frequencies close to the Mendelian fraction expected for full rescue (Figure S5C) as well as the immature wing inflation phenotypes induced by panneuronal knockdown and overexpression of dTDP-43 (Figure S5F). Map205 RNAi-mediated rescue was caused by efficient Map205 knockdown (Figure S5D) and is not explained by GAL4 dilution effects induced by multiple UAS-construts in the background (Figure S5E). CCAP/bursicon neuron-specific knockdown of Map205 also suppressed the wing inflation phenotypes (Figure S5B) and the loss of bursicon neurons (Figure 5C). Finally, cytoplasmic EcR-A accumulations in CCAP/bursicon neurons with altered dTDP-43 expression decreased significantly when Map205 was downregulated (Figures 5D and 5E). Together, these data support a model in which dTDP-43 controls Map205 expression levels by directly binding to Map205 mRNA to regulate the normal cellular distribution of EcR and hence proper EcR signaling.

DISCUSSION

A Function for dTDP-43 in Map205-Dependent EcR-Dependent Transcriptional Program Switching, Metamorphosis, and Neuronal Survival

Despite the expected wide range of biological functions and pathogenic mechanisms of TDP-43 (Sendtner, 2011), we identified a specific neuronal function of dTDP-43 explaining its essential role during late metamorphosis and early adult maturation in Drosophila (Feiguin et al., 2009; Hanson et al., 2010; Lin et al., 2011). We show that dTDP-43 is a crucial regulator of the survival of the CCAP/bursicon neuronal network, whose main function is...
Number of CCAP/bursicon neurons

A

<table>
<thead>
<tr>
<th></th>
<th>L3</th>
<th>12h APF</th>
<th>36h APF</th>
<th>60h APF</th>
<th>72h APF</th>
<th>adult <24h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ccap/+</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ccap>dTDP-43</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ccap>dTDP-43 RNAi</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B

Burs Ubiquitin

Merge (TDP/Ubi)

ccap>dTDP-43

C

Number of CCAP/bursicon neurons (adults <24h)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ccap/+</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ccap>random RNAi</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ccap>dTDP-43</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ccap>dTDP-43 RNAi</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(legend on next page)
to coordinate the pupal-to-adult transition (Park et al., 2003). In addition, deep RNA sequencing of dTDP-43 gain and loss-of-function mutants revealed that dTDP-43 regulates EcR-br-dependent transcriptional network switching from a pupal to an adult-specific pattern, thereby providing a molecular basis for the late-pupal lethality and immature adult cuticle and wing inflation phenotypes. Interestingly, we demonstrate that dTDP-43 mediates these functions by directly binding to Map205 mRNA to control Map205 expression, which in turn mediates EcR subcellular localization and signaling. Because it has been suggested that EcR nucleocytoplasmic shuttling depends on the microtubule network (Vafopoulou, 2009), Map205 might over- or destabilize microtubules, resulting in cytoplasmic accumulation of EcR. Regardless of the exact mechanism, our study establishes dTDP-43 as a crucial regulator of steroid hormone receptor-mediated transcriptional program switching, which is central for its function in neuronal survival and pupal-to-adult transformation.

TDP-43, Nuclear Hormone Signaling, and Neurodegenerative Disease

Although these findings indicate an important biological function for dTDP-43 during the final stages of Drosophila metamorphosis, they are relevant in the context of human neurodegenerative disease for several reasons. First, we found that dTDP-43 dysfunction disrupts pupal-to-adult transformation by inducing apoptotic cell death rather than defective developmental proliferation or remodeling of CCAP/bursicon neurons. This suggests that, in line with the adult-onset of human neurodegenerative TDP-43 proteinopathies, an evolutionary conserved function of TDP-43 may be to maintain postdevelopmental neuronal integrity. Second, it is intriguing that the CCAP/bursicon neuronal network, a very specific and small subset of neurons in the Drosophila ventral nerve cord, the homologous structure of the vertebrate spinal cord, is particularly vulnerable to dTDP-43 dysfunction. This is reminiscent of the neuronal selectivity seen in ALS and FTD and suggests that Drosophila might be a useful model to study the underlying mechanisms of selective neuronal vulnerability, a major unresolved topic in the human neurodegenerative disease field (Saxena and Caroni, 2011). Third, it is of interest that mutational inactivation of the mouse EcR homologs, LXRα and β, has been reported to cause neuronal degeneration and that loss of mouse LXR−β causes causes TDP-43-positive motor neuron degeneration (Andersson et al., 2005; Bigini et al., 2010). Further supporting a role for disrupted LXR signaling in TDP-43 proteinopathy, we here report that the LXR recognition motif was significantly enriched among genes that have been recently reported to be upregulated in TDP-43-depleted mouse brain (Polymenidou et al., 2011) and that LXR and TDP-43 colocalized and physically interacted in human neuronal cell lines (Figure S4). Interestingly, nuclear hormone receptor signaling has also been implicated in the X-linked human motor neuron degenerative disorder spinal and bulbar muscular dystrophy, which is caused by a polyglutamine tract expansion in the nuclear androgen receptor whose native functions are likely essential to pathogenesis (Nedelsky et al., 2010).

TDP-43 Neurotoxicity: Toxic Gain or Loss of Normal Function?

Our discovery in Drosophila that dTDP-43 plays a major role in Map205-EcR-br-dependent transcriptional program switching and survival of CCAP/bursicon neurons, allowed us to shed some light on the question of whether TDP-43 neurotoxicity in ALS and FTD is mediated by a loss of its normal function or by an unrelated toxic GOF mechanism triggered by misfolded/aggregated TDP-43 (Lee et al., 2011). Although we found that upregulation of dTDP-43 seemed to be able to induce neuronal ubiquitin- and dTDP-43-positive inclusions, it is not clear if they represent true misfolded/aggregated dTDP-43 because further corroboration biochemical evidence is lacking. However, both up- and downregulated dTDP-43 resulted in virtually identical phenotypes, including specific apoptotic loss of CCAP/bursicon neurons, cytoplasmic EcR accumulations, highly similar transcriptome alterations, and a specific disruption of Map205-EcR-br signaling. These data suggest that dTDP-43 LOF is sufficient to induce neuronal cell death and that dTDP-43 overexpression results in its own LOF. Therefore, the formation of ubiquitin- and dTDP-43-positive inclusions is not required to induce neuronal cell death. Although the exact mechanism by which increased dTDP-43 expression results in its LOF remains to be established, our data showing that dTDP-43 strongly binds to mRNA of Map205, which controls EcR signaling, suggest that disruption of this binding by altered dTDP-43 expression is at the heart of this process. dTDP-43 overexpression might lead to a loss of its normal function by disturbing the stoichiometric balance of the TDP-43 containing functional protein complex (Freibau et al., 2010; Sephton et al., 2011) possibly in a dominant-negative manner as has been shown previously for disrupted Notch signaling by presenilin overexpression in Drosophila (Ye and Fortini, 1999). Regardless of the underlying mechanism, our study indicates that dTDP-43 neurotoxicity is more likely caused by a loss of its normal function than by a toxic property
of misfolded/aggregated protein that is independent of its native function. Interestingly, our conclusion is supported by a recent study in mouse in which targeted depletion of TDP-43 in lower motor neurons resulted in postdevelopmental ALS-like phenotypes, including amyotrophy, motor neuron loss, microglial activation, and astrocytosis (Wu et al., 2012).

Our observation of strongly overlapping transcriptome alterations upon increased and decreased dTDP-43 levels seems at odds with a recently published RNA-seq study in Drosophila showing largely nonoverlapping transcriptome alterations upon up- and downregulation of dTDP-43 (Hazelett et al., 2012). However, libraries generated in this study were extracted from dissected central nervous systems of third instar larvae, whereas we isolated RNA from late pupal complete heads. This difference is important as the EcR signaling defect we observed appears to be specific to the pupal-adult transition. In addition, the libraries from complete heads contained a large number of cuticle genes that turned out to be highly informative in identifying the EcR signaling defect.

In conclusion, we propose a model in which neurodegeneration is caused by the loss of the normal function of dTDP-43 in Drosophila. dTDP-43 acts as a central coordinator of a four-step molecular pathway involved in the regulation of gene networks, neuronal survival, and adult maturation: (1) dTDP-43 dysfunction directly upregulates the expression of the neuronal microtubule binding protein Map205; (2) Map205 overexpression leads to aberrant cytoplasmic accumulation of nuclear EcR; (3) disrupted EcR signaling causes a failure to switch gene networks from a pupal to adult pattern; and (4) failure of EcR-dependent gene network switching leads to neuronal apoptosis of bursicon neurons and renders flies unable to complete the final maturation step at the pupal-to-adult transition. Our study lends further support to the view that a loss of normal TDP-43 function rather than a novel toxic GOF constitutes the pathogenic mechanism in human TDP-43 proteinopathies.

EXPERIMENTAL PROCEDURES

Drosophila Stocks

D. melanogaster strains were maintained on standard yeast, commen, and agar-based medium, and test crosses were performed at 25°C unless noted otherwise. The w1118 (Canton-S10) line was used as wild-type
control. RNAi stocks v39690 (Map29dRNAi), v100307 (randomRNAi against CG7948), and v104401 (dTDP-43RNAi) were obtained from the Vienna Drosophila RNAi center (VDRC). Df(2R)106, P(UAS-p35.H)BH1 (UAS-p35), P(UAS-DIAP1.H)F3 (UAS-DIAP1), and GAL4 driver lines P(Act5C-GAL4)25FO1 (act5C-GAL4), P(GD4553) (nsyb-GAL4), P(GawB)elav[C155] (c155-GAL4), and P(GawB)DI42 (D42-GAL4) were obtained from the Bloomington Stock Center. The ccap-GAL4, UAS-mCD8-GFP stock was kindly provided by Randall S. Hews. dTDP-43GOF, dTDP-43LOF, and UAS-dTDP-43-Flag flies were a gift from Fabian Feijgin, and the dTDP-43LOF allele was provided by Fabienne Fiesel.

Immunohistochemistry
Immunostaining on central nervous system was performed using standard techniques. The following primary antibodies were used: mouse monoclonal mouse anti-EcR-A (Development Studies Hybridoma bank) at 1:10, mouse anti-ubiquitin (Cell Signaling Technology, Danvers, MA, USA) at 1:400, rabbit anti-GFP (Invitrogen, Carlsbad, CA, USA) at 1:500, and rabbit anti-dTDP-43 (Abcam, Cambridge, MA, USA) at 1:3000 and anti-Bursicon [kindly provided by Benjamin White] at 1:5,000. Secondary antibodies conjugated to FITC, Cy3, or Cy5 were used at 1:200 (Jackson ImmunoResearch, West Grove, PA, USA). Vertical nerve cords were mounted in Vectashield mounting medium (Vector Laboratories, Burlingame, CA, USA) and analyzed with a Fluoview FV1000 confocal microscope (Olympus). Images of multiple fluorescent-labeled ventral nerve cords were obtained by sequential scanning of each channel at equal laser intensity unless noted otherwise. For the CCAP/bursicon neuron counts, we stained and counted the amount of cell bodies of ten ventral nerve cords. The experimenter was blinded to genotype. One-way ANOVA was used to evaluate significant variation among genotypes; a post hoc Dunns test was used for the CCAP/bursicon neuron counts to correct for different library sizes and then estimates biological variability across samples and tests for differential expression based on the negative binomial distribution model. Genes are considered as differentially expressed when the Benjamini-Hochberg corrected p value is below 0.05. Overlap between gene lists was statistically evaluated by calculating the representation factor (RF) and associated probability. The RF is the number of overlapping genes divided by the expected number of overlapping genes drawn from two independent groups. An RF > 1 indicates more overlap than expected of two independent groups, and an RF < 1 indicates less overlap than expected. Probability was calculated using the exact hypergeometric probability formula.

To quantify and determine isoform abundance and isoform differential expression between dTDP-43GOF and wild-type control and between dTDP-43LOF and wild-type control, we used Cufflinks and Cuffdiff (Trapnell et al., 2012), with the Drosophila melanogaster reference annotation (D. melanogaster FlyBase r5.25), hence avoiding novel isoform identification. To identify genes with altered splicing pattern, we made use of the Cuffdiff output file. We selected genes with multiple alternative transcripts having at least one transcript with FC > 2 (FDR < 0.05) and at least one with FC < -2 (FDR < 0.05) in dTDP-43LOF compared to control and in dTDP-43GOF compared to control.

qRT-PCR
RNA was isolated from 50 heads of w1118, act5c > dTDP-43, dTDP-43GOF, dTDP-43LOF, and cd1420/dcr1/dpp106 Heads were collected in 1 ml of TRI reagent (Sigma-Aldrich, St. Louis, MO, USA) and were ground with a plastic disposable pestle grounded. Total RNA was isolated by using standard procedures. cDNA was generated from 1 μg of RNA of each sample by using an anchored oligo(dT)18 primer and a hexamer primer according to the instructions of the Transcriptor first-strand cDNA synthesis kit (Roche). qRT-PCR were performed on an ABI7000 instrument with qPCR Mastermix Plus for SYBR Green I (Eurogentec, San Diego, CA, USA) with primers designed by PrimerExpress software (Applied Biosystems) (see the Extended Experimental Procedures). Expression levels of transcripts from the various samples were normalized to the housekeeping genes Rlp32, Rps13, and Gadph.

Immunoprecipitation and RNA Identification by qRT-PCR
100 w1118 fly brains were dissected and washed three times in ice-cold PBS. The tissue was teased apart with a Dounce homogenizer followed by centrifugation for 5 min at 1,500 rpm at 4 °C. The tissue was resuspended in the RIPA...
Figure 4. Loss and Gain of dTDP-43 Result in a Failure to Switch Transcriptome Profiles from a Larval/Pupal to Adult Profile and Alter Subcellular Localization and Signaling of EcR

(A) Heat maps of developmental transcriptome profiles of the top 50 up- and downregulated genes in the overlapping fraction between dTDP-43LOF and dTDP-43GOF. E, embryonic stage; L, larval stage; M, metamorphosis; and A, adult. Blue boxes indicate early metamorphosis for the upregulated genes and late metamorphosis for the downregulated genes. The developmental time point when RNA-seq analysis was performed is indicated with an arrow.

(legend continued on next page)
Table 2. List of dTDP-43-Mediated Deregulated Genes Indicating Disruption of a Gene Network Downstream of EcR and br

<table>
<thead>
<tr>
<th>Gene</th>
<th>dTDP-43<sup>LOF</sup></th>
<th>p Value</th>
<th>dTDP-43<sup>GO</sup></th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecsecysone receptor</td>
<td>EcR</td>
<td>0.31</td>
<td>NS</td>
<td>0.09</td>
</tr>
<tr>
<td>Ultraspiracle</td>
<td>Usp</td>
<td>0.71</td>
<td>NS</td>
<td>0.50</td>
</tr>
<tr>
<td>broad</td>
<td>br</td>
<td>1.60</td>
<td>1.7 \times 10<sup>-9</sup></td>
<td>1.50</td>
</tr>
<tr>
<td>L71 gene cluster</td>
<td>Eg71Ea</td>
<td>4.54</td>
<td>2.9 \times 10<sup>-33</sup></td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>Eg71Eb</td>
<td>3.93</td>
<td>9.4 \times 10<sup>-31</sup></td>
<td>3.55</td>
</tr>
<tr>
<td></td>
<td>Eg71Ec</td>
<td>4.52</td>
<td>2.5 \times 10<sup>-45</sup></td>
<td>3.48</td>
</tr>
<tr>
<td></td>
<td>Eg71Ed</td>
<td>4.43</td>
<td>1.3 \times 10<sup>-31</sup></td>
<td>2.89</td>
</tr>
<tr>
<td></td>
<td>Eg71Ef</td>
<td>4.78</td>
<td>2.2 \times 10<sup>-43</sup></td>
<td>4.01</td>
</tr>
<tr>
<td></td>
<td>Eg71Eg</td>
<td>5.37</td>
<td>1.8 \times 10<sup>-36</sup></td>
<td>4.23</td>
</tr>
<tr>
<td></td>
<td>Eg71Eh</td>
<td>Inf</td>
<td>9.0 \times 10<sup>-19</sup></td>
<td>Inf</td>
</tr>
<tr>
<td></td>
<td>Eg71Ei</td>
<td>Inf</td>
<td>6.2 \times 10<sup>-11</sup></td>
<td>Inf</td>
</tr>
<tr>
<td></td>
<td>Eg71Ej</td>
<td>3.09</td>
<td>4.0 \times 10<sup>-23</sup></td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>Eg71Ek</td>
<td>6.57</td>
<td>6.2 \times 10<sup>-42</sup></td>
<td>7.50</td>
</tr>
<tr>
<td>Larval cuticle genes</td>
<td>Lcp65Ag2</td>
<td>4.13</td>
<td>8.2 \times 10<sup>-13</sup></td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td>Lcp4</td>
<td>1.93</td>
<td>7.4 \times 10<sup>-3</sup></td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td>Lcp65Ad</td>
<td>4.06</td>
<td>1.3 \times 10<sup>-38</sup></td>
<td>3.97</td>
</tr>
<tr>
<td>Pupal cuticle genes</td>
<td>Edg84A</td>
<td>5.68</td>
<td>8.5 \times 10<sup>-24</sup></td>
<td>6.41</td>
</tr>
<tr>
<td></td>
<td>Pcp</td>
<td>1.43</td>
<td>3.2 \times 10<sup>-3</sup></td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>Edg91</td>
<td>1.27</td>
<td>2.0 \times 10<sup>-2</sup></td>
<td>1.97</td>
</tr>
<tr>
<td></td>
<td>Edg78E</td>
<td>2.67</td>
<td>1.2 \times 10<sup>-19</sup></td>
<td>2.76</td>
</tr>
<tr>
<td>Adult cuticle gene</td>
<td>Acp65Aa</td>
<td>-1.63</td>
<td>4.5 \times 10<sup>-12</sup></td>
<td>-4.16</td>
</tr>
</tbody>
</table>

NS, not significant; Inf, infinite.

LICENSING INFORMATION

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

ACKNOWLEDGMENTS

L.V.B. and M.G. received PhD fellowships of the Agency for Innovation by Science and Technology in Flanders (IWT). M.N.S. and G.K. hold a PhD fellowship of the Agency for Innovation by Science and Technology in Flanders (IWT). M.N.S. and G.K. hold a PhD fellowship of the Agency for Innovation by Science and Technology in Flanders (IWT). M.N.S. and G.K. hold a PhD fellowship of the Agency for Innovation by Science and Technology in Flanders (IWT).

ACCESSION NUMBERS

The GEO database accession number for the RNA-seq data reported in this paper is GSE42844.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five figures, and seven tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2012.12.014.
the Motor Neurone Disease Association to F.H. C.V.B., and G.K received funding from the FWO, the Methusalem program of the Flemish Government, and the Interuniversity Attraction Poles program P6/43 of the Belgian Science Policy Office (BELSPO). We thank Christiane Hertz-Fowler at the Centre for Genomic Research (University of Liverpool, UK) for sequencing service and assistance in library preparation.

Received: February 13, 2012
Revised: October 29, 2012
Accepted: December 19, 2012
Published: January 17, 2013

REFERENCES

