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Samenvatting

Reservoir Computing
Het laatste decennium wordt gekenmerkt door een sterke toename in reken-
vermogen, hetgeen de opkomst van het onderzoeksdomein van Machinaal
Leren (ML) mogelijk maakte. Het doel is om problemen in dataverwerking
op te lossen die zeer moeilijk of zelfs onmogelijk met klassieke programma’s
kunnen worden benaderd, maar gewoonlijk door menselijke wezens als een-
voudig of zelfs triviaal worden aanzien. Voorbeelden hiervan zijn onder meer
spraakverwerking, gezichtsherkenning, en de motorcontrole vereist om op
twee benen te lopen. In plaats van een expliciete reeks instructies te volgen
zal ML trachten de te verwerken data te modelleren met een parametriseer-
baar wiskundig model, hetgeen dan geoptimaliseerd kan worden om een taak
zo goed mogelijk op te lossen.
Eén van de hoofdtypes van ML modellen zijn zogenaamde Neurale Netwerken
(NN). Ze vormen een sterk geconceptualiseerde representatie van de func-
tie van hersencellen, en bestaan uit een groot aantal neuronen (elementaire
verwerkingseenheden) die onderling met elkaar verbonden zijn. Neurale net-
werken bestaan al verschillende decennia en hebben bewezen een krachtige
oplossing te bieden voor een variëteit aan applicaties.
Een specifieke variant van NNs zijn recurrente NNs (RNN). Deze hebben
interne terugkoppelingslussen, hetgeen ze dynamisch maakt en dus geschikt
om tijdsgebonden informatie te verwerken. In de praktijk blijkt dat RNNs
trainen voor realistische toepassingen niet altijd triviaal is, en word gehin-
derd door een aantal problemen. Hierdoor is er een recente trend ontstaan
die het trainproces sterk vereenvoudigt. Het RNN word willekeurig opge-
bouwd, en blijft onveranderd, afgezien van enkele globale parameters. Enkel
een uitleeslaag wordt getraind, hetgeen een veel eenvoudiger probleem is.
Toen eenmaal duidelijk werd dat deze strategie opmerkelijk goed werkt werd
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het duidelijk dat het RNN vervangen kan worden door eender welk random
dynamisch systeem, gegeven aan enkele voorwaarden wordt voldaan. De
term Reservoir Computing (RC) werd geïntroduceerd, waarin het reservoir
het dynamische systeem is dat bewerkingen uitvoert op de invoerdata. Het
reservoir concept is toegepast of klassiek RNNs (gekend als Echo State Net-
works), gepulste neurale netwerken (Liquid State Machines), en een waaier
aan fysieke en abstracte implementatieplatformen.

Deze thesis
Het feit dat een willekeurig dynamisch systeem een krachtige computationele
entiteit kan zijn is intrigerend, en vormde de basis van een nieuw veld van
theoretisch onderzoek. Mijn thesis draagt bij tot de kennis in dit domein
door het raamwerk van RC uit te breiden naar een ruimere set van situaties.
In het bijzonder bestudeerde ik reservoirs in continue tijd, en oneindig grote
reservoirs.
Mijn werk kan opgesplitst worden in drie hoofdthemas. De eerste heeft be-
trekking op hoe reservoirs informatie over hun invoergeschiedenis op kunnen
slaan in transiënte dynamische toestanden. Het tweede deel weid uit over
hoe reservoirs oneindig groot kunnen worden, en toch nog toepasbaar zijn op
applicaties. Het laatste deel kijkt voorbij de gewone RC opstelling, en gaat
over hoe we de lessen die we hebben getrokken uit RC kunnen toepassen om
klassieke leeralgoritmes te verbeteren, en hoe we architecturen van RNNs
kunnen ontwerpen om uitdagende problemen aan te pakken.

Eigenschappen van geheugen
Een reservoir is een dynamisch systeem. Dit betekent dat zijn huidige toe-
stand afhangt van de geschiedenis van het invoersignaal. Deze eigenschap is
wenselijk aangezien tijdsgebonden taken zoals spraakherkenning een integra-
tie van tijdsgebonden informatie vereisen. Precies hoe en hoeveel reservoirs
van hun recent invoersignaal onthouden is een goed bestudeerd probleem.
de aanname die echter altijd werd gemaakt is dat het te onthouden signaal
bestaat uit ééndimensionaal ruis in discrete tijd.
Ik heb dit onderzoek veralgemeend voor twee belangrijke situaties: dat waar
de invoer meerdere dimensies heeft, en dat waar het invoersignaal en het
reservoir in continue tijd bestaan. Ik toon aan dat voor beide gevallen we
het oorspronkelijke raamwerk kunnen herdefiniëren. Ik presenteer een diep-
gravende studie naar de eigenschappen die nodig zijn om reservoirs adequaat
geheugen te geven voor beide gevallen. Ik toon aan dat voor continue tijd
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systemen we in staat zijn om bekende wiskundige concepten te gebruiken die
de dynamica van discrete tijd reservoirs die wenselijke eigenschappen hebben
transformeert naar het continue tijdsdomein.
Ik eindig dit onderzoek met de beperkingen van het huidige raamwerk waarin
geheugen is gedefiniëerd te bespreken, en ik bespreek meer algemene, niet-
lineaire extensies. Ik stel een manier voor waarop het geheugen van een
reservoir kan worden gevisualiseerd op elk moment in de tijd, hetgeen een
alternatieve interpretatie biedt voor geheugen in reservoirs.

Oneindige reservoirs
Het kan bewezen worden dat een oneindig groot reservoir computationeel
universeel is: het kan alle mogelijke bewerkingen uitvoeren op zijn invoer-
signaal. In de realiteit kunnen we reservoirs niet oneindig groot maken, maar
ik toon aan dat we iets kunnen doen dat bijna net zo goed is: we kunnen
een kernfunctie definiëren die op tijdsreeksen inwerkt en die gedefiniëerd is
als het inproduct van de geasociëerde interne toestanden. Dit is het equiva-
lent van zulke oneindig grote systemen, en laat toe om oneindige reservoirs
werkelijk toe te passen, met het nadeel dat we beperkt worden in de hoeveel-
heid data waarop zulk een systeem getraind kan worden. De geassocieerde
kernfunctie noem ik recurrente kernfuncties.
Ik lijd de recurrente kernfuncties af voor een brede set van RNN types, en ik
toon aan hoe deze gebruikt kunnen worden om uitspraken te doen over de
stabiliteit ven de onderliggende dynamische systemen. Niet alleen kunnen
recurrente kernfuncties gebruikt worden om uitdagende problemen op te los-
sen, ze kunnen ook dienen als een potentieel middel om grote dynamische
systemen te bestuderen.

Leeralgoritmes en architecturen
In het laatste deel beschouw ik de beperkingen van RC, en presenteer ik inlei-
dend onderzoek naar klassieke leeralgoritmes. Eerst toon ik aan dat met een
sterk vereenvoudigde versie van klassieke leeralgoritmes we reeds een sterke
toename in prestatie kunnen meten. Ook wanneer we enkel de invoerrepre-
sentatie trainen presteert het model beter. Deze strategie heeft voordelen
voor eenvoud en stabiliteit, aangezien het netwerk niet plots onstabiel kan
worden tijdens de leerfase, hetgeen kan gebeuren als we een leeralgoritme
toepassen op het volledige netwerk.
In het volgende deel bespreek ik de algemene problemen die voorkomen bij
het trainen van een RNN op een moeilijke taak. Ik ontwerp een een gelaagde
architectuur van RNNs die potentieel e�ciënter is dan een klassiek RNN. Ik
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train dit model op een veeleisend tekstvoorspelling-probleem en toon aan
dat gelaagde modellen niet enkel sneller kunnen getraind worden, maar ook
beter presteren.
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Summary

Reservoir Computing
In the last decade, with the advent of su�cient computing power, a new field
of study has become more and more prominent: that of Machine Learning
(ML). Its goal is to tackle information processing problems which are di�cult
or not possible to solve using explicit programming, but are often consid-
ered easy or even trivial for human beings. Examples are for instance speech
recognition, face recognition, complex movements such as bipedal locomo-
tion etc. Instead of an explicit program, the approach of ML is to attempt
to model the data using a parametrizable mathematical function that can
be optimized to solve a task as well as possible.
One of the main classes of ML models uses neural networks (NN). These
are a highly conceptualized rendition of how brain cells function, and they
rely on a large number of neurons (elementary processing units) that are
interconnected. NNs have been around for several decades and have proven
to be powerful ML solutions for many tasks.
One variant of NNs is the Recurrent Neural Network (RNN). This is an NN
that has internal feedback loops, which makes it a dynamical system that
can be applied on temporal data. Typically, training RNNs is hampered
by several problems, making them not trivial to apply to real-world appli-
cations. For this reason, a recent development has greatly simplified the
training algorithm by keeping the RNN essentially random, safe for global
parameters, and only training a readout layer, which is much easier.
Once it became clear that this strategy can be remarkably successful, people
have found that the RNN can be replaced by any random dynamical system,
as long as it conforms to a limited set of conditions. The term Reservoir
Computing (RC) was born, in which the reservoir is the random dynamical
system that performs computations. The reservoir concept has been applied
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to classic RNNs (known as Echo State Networks), spiking neurons (Liquid
State Machines), and a broad variety of physical and abstract implementa-
tion platforms.

This Dissertation
The fact that a random dynamical system can be a powerful computational
entity is quite intriguing, and it formed the basis of an extensive line of the-
oretical research. My thesis adds to this body of knowledge by expanding
the framework of RC into a broader family of situations. Most prominently,
I study reservoirs in continuous time and infinitely large reservoirs.
My work can be split into three main parts. The first one is concerned
with studying how reservoirs retain information of their input signal in their
transient states. The second part elaborates on how reservoirs can be con-
ceptualized into infinitely large objects, and still be put to use for real-world
applications. The final part looks beyond the common reservoir comput-
ing setup. It is concerned with how, using the lessons we have drawn from
RC, we can improve classic training algorithms for RNNs and design novel
architectures to solve di�cult tasks.

Memory Properties
A reservoir is a dynamical system. This means that its current state de-
pends on the history of its input signal. This property is desirable, as solving
temporal ML tasks, such as, e.g., speech recognition, requires to integrate
information over time. Exactly how much of its input history a reservoir
remembers has been studied in the past. In this research people have always
assumed one-dimensional noise to be the input signal.
I have extended this research to two important situations: that where the
input consists of more than one dimension, and that where the input signal
and reservoir dynamics exist in continuous time rather than discrete time.
I show that in both cases we can find extensions of the original framework
in which memory was defined. I also provide an in-depth study to what
the determining factors are for having good memory in both situations. For
continuous time reservoirs I show that we can use well established mathe-
matical concepts to transform discrete time network dynamics with known
properties to the continuous time domain.
Finally, I end this part with explaining what the limitations are of the cur-
rent setup, and I discuss more general and non-linear ways in which memory
needs to be defined. I propose a way in which we can visualize reservoir
memory directly at each time, which provides an alternative way of looking
at the memory of reservoirs.
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Infinite Reservoirs
An infinitely large reservoir can be proven to be computationally universal:
it can perform any computation on the input time series. In reality we can
not make reservoirs infinitely large, but I show that we can do the next
best thing: we can define a kernel function, operating on time series, which
is the equivalent of such infinitely large systems. It allows to compute the
inner product of two infinite-dimensional hidden states, which allows us to
actually employ infinite networks. It has the added downside that we are
restricted in the quantity of training data we can employ. The associated
kernel functions I have called recurrent kernels.
I provide kernel functions for a broad set of RNN types, and I show how we
can use the kernel functions to study dynamical stability of the underlying
dynamical systems. Not only can recurrent kernels be used to solve di�cult
ML tasks, they can also potentially serve as abstract models for large-scale
dynamical systems, both real world and conceptual.

Training Algorithms and Architectures
Finally, I consider the limitations of RC, and present preliminary work into
classical training algorithms. I first show that, using a strong simplification
of typical training algorithms of RNNs, we can already strongly boost task
performance. Even when we only train the input weights of the reservoir the
performance increases drastically. Such a strategy has benefits in the form
of simplicity and stability, as there is no danger of sudden chaotic behavior,
an event that can occur when employing a training algorithm on the full
network.
In the next part, I discuss what the common problems are when training
an RNN on di�cult ML tasks, and I use these problems to come up with
a layered RNN (LRNN) architecture that is potentially more powerful than
the classic one. I train this model on a challenging text prediction task,
and I show that using the layered approach is both faster to train and gives
better performance.
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Notations
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U Output weights of an RNN
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� Output weights for a kernel machine
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1
Introduction

The work performed in my research encompasses a broad variety of topics, all
within the domain of Machine Learning (ML), more particularly Recurrent
Neural Networks (RNNs), and even more specifically Reservoir Computing
(RC). In this chapter I will sketch out the concepts that underlie the field of
ML and introduce the techniques that are studied in this dissertation. Next
I elaborate on the specific type of task that this thesis is about: process-
ing time series and sequential data. The end of this chapter explains the
structure of the rest of the thesis, will provide a list of my main research
contributions and a list of publications.
I have deliberately kept this chapter easy to read, and kept most of the math
and technical jargon for later chapters where they are more appropriate. Af-
ter all, the concepts I explain in this chapter are well known, and a quick
search can provide all the details a reader would want. The function of the
introduction is to set the scene and provide the context in which this thesis
was written.

1.1 Outsourcing intelligence

Many of us start our day by quickly browsing through our mail, at a glance
separating pamphlets and advertising from bills and important documents.
Next we step into our cars, drive to work and navigate through busy urban
tra�c without conscious e�ort. We open our e-mail clients in the o�ce and
filter out an average of 90% of spam to get to relevant information. Some
of us write down what our bosses dictate, type a witness account in a court
case, or simply scribble an address read to us over the phone. When we
search Google for images using only vague search terms, we scan the picture
collage it o�ers and within seconds select the ones we need. Similarly, when
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we are looking for the TV remote, we only require a few saccades to cover
the couch, the table and a few other parts of the room, crunching through
an onslaught of visual information. Yet somehow we instantly home in on
the target, regardless of its perceived orientation or background.
All of these feats are highly trivial by human standards; a tiny sample from
a wide set of skills that we barely think worthy of that name. Yet, despite
the rapid rise of computational power in the last few decades, and the un-
deniably paramount role computing devices are playing in our present day
lives, not a single one of the above day-to-day actions can be executed with
the same success rate or ease by a machine.
Nevertheless, technology slowly starts to catch up, and revealing examples
of this fact are starting to pop up here and there in our daily lives.
Everyone with a modern digital camera will have noticed how it can auto-
matically find and focus on human faces in the picture. Recently I have seen
an example of a camera that could be set to snap a pic when the subject
smiles.
Many word processors in smartphones and on PCs will, while you are typ-
ing, provide suggestions to complete the word of phrase. Especially Google
seems to have an eerie capability of predicting your search terms.
Our mailboxes will automatically tag suspected spam messages. Though not
foolproof (the one my email client uses seems to work by randomly sampling
one in every ten mails), it can give a good indicator for someone coming
back from holidays to six hundred unread mails.
Another application domain that is becoming more prominent are the so-
called recommendation systems. You have rented a number of movies from
Netflix, listened and rated a number of songs on Pandora, bought a number
of items from Amazon, and you will start noticing that the respective web-
sites start to recommend products to you. Admittedly, such systems do not
work very well but the problem at hand is a very di�cult one, as the goal
is to model your artistic tastes and preferences on a very small number of
examples.
In one of the most impressive achievements up to date, the Google driver-
less car is a project that, as its name suggests, aims to have cars that drive
around fully autonomously. Using a combination of video cameras, laser
distance sensors, radar and position sensors, the cars have been able to cross
a total of 1,609 kilometers fully autonomously, and an additional 225,308
kilometers with occasional human intervention. Of the only two accidents
to occur involving these vehicles, the first was caused by someone crashing
into the rear of the car at a red light, and another one when the car was
driven by a human.
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All these examples are either expert systems or clever combinations of expert
systems. Systems that are designed and optimized to perform very well at a
single task. All of them have one thing in common: they are not explicitly
programmed. And for good reason. Try to imagine you would program an
algorithm that transcribes handwritten text. You would need to give an
explicit set of instructions to take an image of handwriting: a large matrix
of grey scale pixels, and transform this into a string of characters. As we all
would agree, the number of ways a single character can be written is truly
vast. It can be shifted, skewed, deformed in all possible ways imaginable,
and often simply be ambiguous even for human readers, where we would
resolve to use the surrounding context to decide what is the most likely op-
tion. The set of instructions to solve this task would have to be so vast, it
is no longer humanly possible to write down the necessary computer code1.
Instead, modern day algorithms usually have an underlying mechanism that
can be split in two parts.
On one hand there is the model, which could be considered the end product;
the actual machine. The model can usually be described as a mathematical
function of the data the model receives. This function is characterized by a
large set of parameters which will determine the nature of the mapping it
performs.
The other part is the training algorithm. Its role is to find parameters that
yield a model which performs satisfactorily on whatever task you wish to
solve. Usually, a single model can be trained with several training algo-
rithms, and vice versa, a single training algorithm can be used on di�erent
models. What unifies all training algorithms is that they work by considering
examples of the data the model needs to process. For our earlier example of
handwriting transcription, a training algorithm would typically need a large
set of written text, together with the associated character strings.
When the model and training algorithm are suited for the task at hand,
they will generalize from the training data. This means that the model will
also perform well on data which is similar but not identical to the training
data. Special care needs to be taken that the model does not simply learn
the training examples by heart, a phenomenon known as overfitting, which
I will elaborate on later.

1The first attempts to create artificial intelligence were of this nature. Mainly
performed between the sixties and the eighties, this approach never rose above the
level of demonstrating success in very small toy tasks.
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1.2 Machine learning taxonomy

It would be a bad idea to call the above account a definition of the field of
Machine Learning. Still, to me, it bears a rather well-framed description of
ML while still giving a clear picture of what is going on under the hood of
the great majority of things classified as such. In my opinion, there is no
such thing as a complete definition of ML. Just like there are no adequate
definitions for life or intelligence. Most people consider ML to be a subdo-
main of the equally hazy field of Artificial Intelligence (AI). The di�erence
between AI and ML, as I feel it, is that the end goal of AI is to create an in-
telligent system (or more popularly: ‘agent’), which is capable of displaying
intelligent behaviour. Machine learning on the other hand, emerged from
the attempt to solve smaller, more well-defined subproblems, which need to
be tackled if we ever wish to actually build such an agent. As ML flourished
in the last two decades, it became a whole research domain by itself. This
fact, combined with a marketable application domain, caused the initial pur-
pose to get pushed to the background, and these days when we think about
speech recognition, face detection, medical signal processing etc., the term
Artificial Intelligence springs to mind far less easy than Machine Learning.
Despite the di�culties of corralling ML, I will present an overview of learning
paradigms and tasks that are included into its realm.

1.2.1 Learning paradigms
• Supervised Learning This is the most straightforward learning setup:

there exists a dataset containing input examples that are annotated
with their desired output values, and the learning is geared towards
finding a function that optimally performs this mapping.

• Unsupervised Learning In this case, there is only input data, and
the algorithm will try to find an underlying structure that explains
it. A typical example of unsupervised learning would be clustering,
where one assumes that the data is a superposition of several di�erent
datasets, each with their respective distribution. Unsupervised learn-
ing can also be used to find a lower dimensional representation of the
input data which doesn’t lose relevant information.

• Semisupervised Learning A more common scenario is where only
a small part of the data is annotated (as this is rather expensive and
slow). It is still possible to put the rest of the data to use to improve
performance on the mapping from input to output.
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• Reinforcement Learning Another well studied case is that when
there is no direct target for the model to learn, but only an indirect
clue as to whether the model performs poorly or not. Examples can
typically be found in the world of robotics, where explicit movements
needed to solve a task are not known, but it is usually possible to judge
the relative performances of di�erent instances of the action. If the
robot improves on the action it is given a ‘reward’, which typically
reinforces its behaviors, and vice versa it can be ‘punished’ for bad
behavior.

1.2.2 Tasks
It is useful to provide an overview of the types of tasks that are commonly
considered, as each has their own unique di�culties and challenges.

• Regression When the desired output data of the model is continu-
ous, the learning algorithm will perform regression. Typically this is
performed by minimizing the squared error between the actual and
desired output of the system. An example of this would be to predict
the price of a house from a large set of describing features, such as
location, lot size, number of rooms, etc.

• Classification When the output of the model are labels, e.g. ‘apple’,
‘pear’, or ‘banana’, we speak of classification. A broad set of methods
to obtain classifiers is available.

• Sequence prediction A whole field of study is devoted to time series
prediction. The task consists of predicting the next instance in a se-
quence given the history of the previous ones. The underlying principle
can be both regression (for instance for predicting stock prices), and
classification (predicting the next character in a sequence of text). Es-
pecially when one considers recurrent prediction, i.e. predicting many
steps into the future, typical challenges appear which are unique for
this field.

• Controllers The final type of task I mention are control tasks. Closely
related to reinforcement learning, here the task is defined as: provide
an input to a system which then gives a desired output. For instance:
rotate the handlebar of a bicycle in such a way that it stays upright.

In this dissertation I will only focus on regression, classification and sequence
prediction.



“Book” — 2012/11/27 — 13:10 — page 6 — #34

6 1 Introduction
















 

Figure 1.1: Schematic renderings of a biological and artificial
neuron.

1.3 Models

There is a plethora of models in the field of ML, many geared towards rather
specific tasks, and an exhaustive overview of all of these would be beyond
the scope of this work and my expertise. Therefore I will limit myself to
describing only the two techniques which are relevant to the rest of this
book: namely neural networks and kernel machines. I will already begin to
describe some of the concepts relevant for this thesis, leaving the details for
later chapters.

1.3.1 Artificial Neural Networks

1.3.1.1 Neurons

A neuron can be considered an elementary computational unit. Its operation
is based upon the function of biological neurons, which are the elementary
processing units in our nervous system. The human brain packs an estimated
1011 of these in an extremely dense and strongly interconnected network
(Herculano-Houzel, 2009). The number of connections between them is a
staggering 1014 (Drachman, 2005). As far as we know, all of our thoughts
and feelings, both conscious and unconscious, are patterns of activity within
this compact, soft and pink organ. No wonder then, that the biological
neuron was the inspiration of one of the largest fields of ML.
In this paragraph I will briefly explain the elementary behavior of biological
neurons, and then proceed to explain their artificial counterparts in some
detail.
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• Biological neurons A biological neuron is a somatic cell. It is capa-
ble of producing a rapidly rising and falling spike of electric potential
over its cell-membrane. These spikes are called action potentials, and
they are usually very constant in shape and size. It is widely assumed
that the information contained in a single spike is only the moment
in which it occurs, and not its size or duration. Neurons produce
irregular sequences of spikes (called spike trains) and are able to com-
municate these to the surrounding neurons.
The general morphology of a brain cell is depicted on the left side of fig-
ure 1.1, and can be described as follows. First there are the dendrites,
large, branching structures of filaments that permeate the surround-
ing tissue. On these, a large number of synapses are placed, through
which action potentials from neighboring neurons arrive. When this
happens, a synapse will, depending on its type, either stimulate or
suppress the activity of its cell. The amount of influence a synapse
has (its relative strength, or as we will later call it, weight) di�ers
widely and is adaptable. Currently it is believed that what we as hu-
mans call learning is nothing more than changes in synaptic strength
throughout the brain.
The dendrite collects the incoming spikes and channels them towards
the cell body (the soma). Here, the processing happens. If the cell
is stimulated su�ciently, such that its internal membrane potential
rises above a certain threshold level, it will produce a spike, which
will travel down the axon that connects to other neurons.
The internal dynamics of biological neurons is rather complicated, and
described by the so-called Hodgkin-Huxley model (Hodgkin and Hux-
ley, 1952). In fact, a precise model would need to take into account
the exact three-dimensional morphology of the cell, which is the focus
of the so-called Blue Brain project (Markram, 2006), where extremely
realistic biological networks are built and simulated in intricate de-
tail. Although these models are of great interest to brain research and
eventually understanding cognitive functions, their computational de-
mands are exceptionally high, and for real-world applications rather
impractical. For this reason, the biological neuron model will be sim-
plified a great deal, as I will discuss next

• Artificial spiking neurons The first simplifying measure is to still
use spikes, but to simplify the underlying dynamics. This lead to
a broad range of models, such as the Izhikevich model (Izhikevich,
2004), the Fitzhugh-Nagamo model (FitzHugh, 1955), the Spike Re-
sponse Model (Gerstner, 2001), the Leaky Integrate and Fire model
(Gerstner and Kistler, 2002), and many others. All of these still con-
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sider spike trains to be the basic representation of information. Most
of these models still serve to research models of biological neural net-
works, and even though some applications for artificial spiking neural
networks exist, in reality there is no single agreed-upon way in which
information can be encoded in spike trains (Masuda and Aihara, 2003;
Theunissen and Miller, 1995), hence the next simplification goes one
step further.

• Analog neurons The simplest way in which information can be en-
coded into spike trains is to only consider the average spike rate, which
is also one of the oldest interpretations (Adrian, 1928). We can define a
certain quantity a, which is the average spiking frequency of a cell over
a su�ciently long time period. We call the quantity a the activation
of the neuron. Similarly, we can then approximate the total stimulus
entering the cell as being the sum of the respective activations of the
neurons it receives input from, weighted with the synaptic strengths:
given input signals s

i

and synaptic weights w
i

, with i = {1 · · · N}, N
being the total number of incoming connections, the artificial neuron’s
state a is then given by

a = f

A
Nÿ

i=1
w

i

s
i

B
.

Here, f will be a response function that represents how fast the neuron
will spike for a given amount of stimulus. Biological neurons will
start to produce spikes as soon as the stimulus is higher than the
previously mentioned threshold value. As the stimulus increases, so
will the firing frequency. For physiological reasons, a neuron has a
certain fixed period after a spike in which a new spike is impossible,
such that there is a maximum firing frequency. This means that for
the stimulus going to infinity, the activation function will saturate. I
have sketched the biological response function in the upper left panel
of Figure 1.2.
In artificial neural networks, the response function is often chosen to
be of a shape roughly similar to the biological function, but with an
easy mathematical expression, such as the fermi-function:

f(x) = 1
1 + exp(≠x) , (1.1)

A broad range of other functions, which divert even further from the
biologically realistic model, have been applied, such as the hyperbolic
tangent, the linear rectifier function, the linear function, the threshold
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Figure 1.2: Examples of commonly used activation functions.
The horizontal axis is x, the total amount of stimulus a neuron
receives, where the vertical axis is f(x), the responding activa-
tion of the neuron.

function, etc. I have presented a graphical overview of these so-called
activation functions in Figure 1.2. Notice that the link with the ac-
tivations of such neurons and biological neurons is rather strongly
abstracted. For one there is no such thing as a negative spiking fre-
quency. All of these activation functions have special purposes, how-
ever. Mostly they make theoretical predictions on network behavior
easier.

1.3.1.2 Building networks

To put neurons to use they are built into structures known as neural networks
(NN). A broad variety of network architectures exist, and I will provide an
overview of the most common ones here.

• Single hidden layer The most basic form a neural network can take
is that with one layer of so-called ‘hidden neurons’, as depicted in
Figure 1.3. The input data is projected into a large set of neurons, the
combined activations of which form the hidden state, which is in turn
projected onto one or multiple output nodes (which are usually linear).
The network is now characterized by the set of weights from the hidden
layer, which we can gather in a matrix V, and the set of weights going
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Figure 1.3: A single-layered and multi-layered feed-forward
neural network. The grey circles are the non-linear nodes and
the black lines the connections. The white circles are the (usu-
ally linear) in- and output nodes. The white arrows depict the
direction in which information flows.

to the output layer U, and the output vector o can be compactly
written as o = g (Uf (Vs)), where s is the input vector and g a (usually
linear) output function. The system now needs to be optimized by
finding weights U and V which give the desired output. It can be
mathematically proven that any bounded function on the input data
can be approximated arbitrarily well as the number of hidden nodes
increases (Cybenko, 1989). In this sense a neural network is a universal
approximator. Important to realize is that the system requires to be
non-linear, i.e. the activation function of the hidden nodes should
not be simply the linear function, as a linear combination of linear
function is always linear itself.

• Deep architectures It is also possible to stack layers of hidden neu-
rons on top of each other, as illustrated in Figure 1.3. Such net-
works can model more complicated functions with more e�ciently
than single-layered networks (i.e., with a smaller number of neurons),
but are usually harder to train. A lot of recent research focuses on
ways of pre-training such networks layer by layer in an unsupervised
manner, before training the whole architecture for the task they wish
to solve. Among others, this research has led to stacked denoising
autoencoders (Vincent et al., 2008) and Deep Boltzmann Machines
(Hinton, 2006).

• Recurrent networks The network variant I have studied throughout
my research is the recurrent neural network (RNN). Essentially, when
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one considers data that is sequential, such as time series or text, it is
desirable to keep a certain level of context into account. For instance,
if one wishes to predict the next character in text, it is vital to have
information on the preceding sentence and not just the current input
character. The RNN is essentially a single-layered network that in-
cludes the hidden state of the previous data entry as additional input.
Later in this chapter I will go into more detail as to the particular
behaviors such networks can exhibit.

1.3.1.3 Training strategies

After defining the network architecture, one needs to try and find weights
which work well for the task at hand. Again, a broad set of algorithms exist
that tackle this problem, often for particular types of nodes and networks.
In the past, people have applied evolutionary algorithms, expectation max-
imization, simulated annealing, and many others. However, the most com-
mon form of optimization in nodes that have a well-defined derivative of the
activation function is gradient descent. Without going into the details, gra-
dient descent will typically minimize a cost function (for instance the mean
square error between the desired and actual output value), and calculate the
derivative of the cost function with respect to the parameters. This deriva-
tive is then the gradient, i.e. the direction in which the parameters have
to change in order to lower the cost. The algorithm will then change the
weights a small step in this direction and repeat the process.
Gradient descent is a relatively reliable method for single-layered networks,
but can run into trouble when applied to deep networks, and especially
RNNs. First, as the learning algorithm essentially takes the path of steepest
descent in the cost function landscape, it can get stuck in a local optimum.
Secondly, for RNNs, changing the parameters continuously can lead to very
sudden and discontinuous changes in the network’s behavior, which almost
always leads to an increase in the cost from which it may never recover.
These so-called bifurcations are the bane of people trying to optimize RNNs,
their frustration something I’ve had a few tastes of myself.
A conceptually easier training strategy is to focus only on the weights that
lead from the hidden state to the output, and leaving all other parame-
ters untrained. This simple, but surprisingly e�ective idea has been applied
to single-layer networks (called extreme learning machines (ELM) (Huang
et al., 2006)) and RNNs (called Reservoir Computing (RC), see Chapter 2),
and solves both mentioned problems associated with gradient descent. As
the hidden-to-output mapping is a linear projection, for many cost functions
there exists a single, easy-to-find optimum. In the case of mean-squared-
error, these optimal values can be found in a single pass via linear regression.
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For RNNs, bifurcations only occur when the recurrent weights change, and
the dynamics of the network are una�ected by altering the output weights2.
The downside of RC compared to fully trained RNNs is that the network
will be less e�ciently tuned to the task, such that in order to have similar
performance, the networks will generally have to be larger.
Reservoir Computing is one of the main themes this thesis will deal with.

1.3.2 Kernel Machines
The second class of ML algorithms I will discuss here are Kernel Machines.
Their operational principles are radically di�erent from NNs. It is possible
to explain kernel machines from a strictly mathematical point of view, which
I will do in Chapter 4. As this is an introduction, I will restrict myself here
to a more intuitive explanation.
Suppose you have only a limited amount of data, for instance you have a
labelled example set of fifty pictures of apples, and fifty pictures of pears.
What you wish to do is to classify new pictures of fruit to any of these two
classes. Obviously it is possible to try and train a complicated model that
performs such a mapping, however, as the dataset is small, it is also possible
to simply take the new picture and try and see how similar it is to the ex-
amples. One could for instance assign a score to how similar the new picture
is to each of the training pictures, and for each class add the scores. The
new picture will then be assigned to whichever class has the highest score in
total.
This method can be further refined. Instead of simply taking the total sum,
one can weigh each of the scores according to how representative each partic-
ular example apple or pear is. Also, instead of comparing with all the data
in the set, one can select a smaller subset which is particularly representative
for its class. Obviously, the way in which the scores are determined is very
important, and may yet require the optimization of some parameters.
Any ML strategy that uses the above working principle can be considered
a Kernel Machine. A ‘kernel’ is nothing more than the function that de-
termines the previously mentioned score, a similarity measure. The kernel
function has to fulfill the so-called Mercer condition3 (Mercer, 1909), which
a.o. implies that it needs to be symmetrical, i.e., the score of comparing
data point A with B has to be equal to the score of comparing B with A.
Typically, the choice of kernel function will depend on the sort of data one

2With the exception of the case where there is output feedback, i.e., where
the current output of the network serves as input to the next hidden state as is
common practice in recursive time series prediction.

3Suppose k(x, y) is a kernel function. It fulfills the Mercer condition if there
exists a map „(·), such that k(x, y) = „(x) · „(y)
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tries to process. I will briefly mention some examples of typical kernels.

1.3.2.1 Kernel functions

• Linear The simplest similarity measure between two data points x
and y is their inner product. If we write k(x, y) as the kernel function,
this becomes k(x, y) = x · y. Linear kernels can work very well for
classification problems where the data is linearly separable4.

• Polynomial kernels The linear kernel is obviously unable to solve
problems which require a nonlinear model. For this reason the linear
kernel can be easily extended to nonlinear versions: k(x, y) = (x · y)n

and k(x, y) = (x · y + 1)n, respectively known as the homogenous and
inhomogenous polynomial kernel of the n-th degree.
All kernels of the form k(x, y) = f(x ·y) have an important limitation
in their representational power. Indeed, from a geometrical viewpoint
it is quickly obvious that such a kernel will assign an equal value to
all y that have the same projection onto x, even though the part of y
orthogonal to x can take on any size or direction possible. Nevertheless
they can work very well for data that is contained within a certain
range (such as grayscale values for pixels, which lie between zero and
one)

• Radial Basis Functions A more intuitive measure is one that is
based on the distance between the two data points: k(x, y) = f (||x ≠ y||).
The most popular kernel of this form is the Gaussian Radial Basis
Function (RBF) kernel:

k(x, y) = exp
3

≠ 1
2‡2 ||x ≠ y||2

4
,

which immediately introduces the parameter ‡, known as the kernel
width.

• Advanced kernels Using geometrical concepts such as inner prod-
ucts or distances will not work for certain kinds of data. Let us con-
sider strings of text as the data points. Take for instance two sentences:
Mary played with the ball.

Tim played with the ball.

which I have placed in monospace font for an easy character-wise com-
parison. If we do a letter-by-letter comparison of the two sentences, i.e.

4This means that there exists a hyperplane which will have all data from the
first class on one side, and all data from the second class on the other.
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consider each vertical couple of characters as you would do with the co-
ordinates of two data entries, these two almost identical strings of text
have very little in common. The fact that the bottom string is shifted
one character to the left makes concepts as Euclidean distance mean-
ingless as a similarity metric. Therefore, specialized kernels (called
string kernels) have been developed that operate on strings. They are
based on comparing all possible sets of substrings. As such the strings
supercomputer and computational will have a non-zero degree of
similarity, but spoonful and migrated are completely dissimilar.
Another, similar metric used to build kernels that operate on struc-
tured data is based on the so-called edit-distance, which is the minimal
number of operations required to change one structure in another. For
strings, these operations are insertion, deletion and replacement of a
character. A typical example of data processing that benefit from edit-
distance is DNA-matching. Edit-distance kernels can also be used for
comparing graphs, which have wide application domains, a.o. in bioin-
formatics (Leslie et al., 2004) and chemoinformatics (Micheli et al.,
2007).

1.3.2.2 Practical setups

Many types of models and training algorithms apply kernels. Here I will
discuss the three most important types and briefly explain their underlying
principles.

• Support Vector Machines Originally designed for classification
problems, Support Vector Machines (SVM) use the so called maximal-
margin principle, where the classifier tries to find the hyperplane that
separates the two classes with the widest possible margin (Cortes and
Vapnik, 1995). Without going into the details I will add here that
SVMs have one important advantage: namely that they automati-
cally select a smaller subset of the training data to serve in the final
classifier. This subset consists of the support vectors, as they ‘support’
the separating hyperplane. The SVM algorithm has a single global op-
timum which can be found using quadratic programming techniques.

• Gaussian Processes A whole di�erent approach one encounters with
Gaussian Processes (GP) (Rasmussen and Williams, 2006), which are
primarily used in regression tasks. Here, first of one assumes that a
given set of data can be fitted by a broad variety of models, each cor-
responding to a di�erent set of parameters. A GP then assumes that
the set of possible parameters is distributed according to a Gaussian
distribution, and it is possible to take the integral over all possible
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parameter sets. Kernels are then an integral part of the end solution.
In its most basic form, GPs lead to the same end solution as linear
regression. However, if one assumes you use some sort of feature map
„(x) instead of the data itself, the end solution leads to expressions of
the form „(x) ·„(y), which is exactly a kernel function. The downside
of GPs is that typically they use all the available data in the train set
in the end solution.

• Least-Squares Support Vector Machines The last kernel ma-
chine I explain is the Least-Square Support Vector Machine (LS-SVM)
(Suykens and Vandewalle, 1999; Suykens et al., 2002). The underly-
ing principle of LS-SVMs is to minimize the mean square error of a
linear combination of the kernel functions applied on the data. The
end solution it o�ers is similar to that of GPs. Due to their underlying
theoretical principles, LS-SVMs are able to be readily extended for a
wide range of applications.

1.4 Machine Learning Challenges

Each ML strategy has its pros and cons. For instance, when training an NN
with gradient descent, one needs to set a number of metaparameters, such
as learning speed, the initial weight distribution, the size of the data chunks
the algorithm sees before updating the weights, etc. All of these parameters
are important, and they need to be chosen well. Unfortunately there is no
real guideline as to which parameters will work and which won’t. The only
way to find out is to try out di�erent combinations and let it run, which in
itself may take considerable time.
Kernel machines, on the other hand, have fewer parameters to set which may
be optimized faster, but as mentioned earlier they incorporate the training
data in the end solution. This means that, for very large datasets, with
millions of data points (which is certainly not unusual), kernel methods are
particularly impractical. If we extend our scope to other strategies, we find
that these kinds of setbacks are common, and choosing a model and training
algorithm for a particular problem is a matter of experience and luck. No
single technique will work well on all tasks5. However, two particular issues
arise in all ML domains and are worth mentioning.
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Target
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Figure 1.4: Illustration of the required representational power
of simple single-layer neural networks. The top row are results
for the functions learned by networks operating on x and y
coordinates, the bottom row is for networks that operate on
r and ◊. On top of each box the number of neurons of the
underlying network is written.

1.4.1 Combating complexity
One of the most challenging and interesting applications for ML is Machine
Translation. There exist several thousands of languages on the planet, and
even though we might think English gets us a long way, we would be un-
pleasantly surprised if we travel to China, South America, the Middle East,
or large parts of Africa. Even South-European countries such as Italy and
Spain score particularly low on the English-speaking scale.
It is almost certainly impossible to design that ever so useful science fiction
plot device that is a Universal Translator: a machine that picks up the lan-
guage of a newly discovered alien race and instantly transmogrifies it into
American English. Less ambitious and far more feasible would be a system
that specializes in translating between two specific languages. Here, at least
we can generate unlimited amounts of training data, and can incorporate
expert knowledge from people who happen to be fluent in both languages.
Let us take a look at the largest freely available machine interpreter: Google
Translate. Consider a Dutch sentence, selected from a Belgian news website:
(www.destandaard.be) which we are interested in and wish to see translated
in English. Google Translate o�ers us:

There are more and more pilots in Belgium on the ground with
a blinding laser irradiated.

5Known within the ML community as the ‘No free lunch’-hypotheses.

www.destandaard.be
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After working through the initial confusion this sentence causes, it might
for instance signify pilots are being shined upon with a laser when they are
not flying (on the ground). Or maybe the pilots hold blinding lasers as they
are being irradiated. In fact the article in question deals with pilots that
are being blinded by lasers from the ground (by pranksters) as they take
o� or land, and this content, though rather clear in the Dutch version, is
completely lost in translation. On top of that the sentence has a highly un-
natural feel (though grammatically sound), and no matter how we interpret
it, we can easily think of a dozen ways of stating a more plausible equivalent.
Google Translate and similar systems operate at their basic level by applying
a combination of both rules and statistics on the given sentence. The model
that underlies Google Translate is already tremendously complicated and
intricate, and a vast number of exceptions, expressions, strange grammati-
cal quirks specific to a single language, and even slang and swearwords have
been seamlessly incorporated within its structure. And still the model is far
too simple to capture the full complexity of human language. Is it possible
to ever reach human level machine translation? Maybe, maybe not, but it
is undoubtedly possible to improve current models.
Machine translation is one example of a task for which we can generate as
much data as we want, but simply lack su�ciently powerful models. Other
examples that come to mind are weather forecasting, climate modeling, the
prediction of the stock-market, and many others. Given more accurate and
complex models, we might be able to get better results in all of these. We
simply lack the computational power and the ways to deal with such high-
dimensional, complicated data.
This phenomenon is known in Machine Learning as underfitting. A model
needs to have su�cient expressive power to capture the complexity of the
data it is processing. Importantly, this is not just a question of giving your
model enough parameters (e.g., giving an NN a hidden layer of many thou-
sands of neurons). It is also a matter of choosing the right model and
representing your data in the most useful manner. If you assume your data
can be expressed as a mixture of Gaussian distributions, while its actual dis-
tribution is a combination of croissant-shaped blobs, it would be far better
to take a model that assumes just this, and the data would be explained
with far fewer parameters.
I have produced an example using single-layered neural networks to illus-
trate this fact. The task they have to solve is to fit the function f(◊, r) =
sin(◊ + 3r), an Archimedean spiral where ◊ and r are respectively the an-
gle relative to the x-axis and the distance to the origin, which I chose for
ease of visualization. I try to solve this task by respectively taking Carte-
sian and polar coordinates as input for the network. Consider Figure 1.4.
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Depicted are the resulting functions learned by the networks in both cases.
If the network operates on Cartesian coordinates, each neuron will add a
sigmoid shape that is drawn out in straight lines across the plane. In fact,
the individual contributions of neurons are more or less evident in the top
left panel. Fitting a shape like the spiral using such linear shapes is quite
unnatural and obviously even for large numbers of nodes (80) the fit to the
target function is only mildly convincing. If we work on polar coordinates
however, the sigmoids that come out of a linear combination of radius and
angle will already be essentially shaped as Archimedean spirals, hence with
as few as 8 nodes we already have a nearly perfect fit.
Real life applications often involve high-dimensional data in which a useful
representation such as in the example (mapping input to angle and radius)
may be incredibly hard to find. There might exist very e�cient ways to
represent the underlying structure of your data, however, if we lack any ad-
ditional inside information on the data, the only strategy we have is to try
out di�erent models and see how they perform, which is quickly expensive
in terms of computing time. In this sense, underfitting is a problem inherent
to ML.

1.4.2 Overfitting
A completely di�erent situation arises when we have only limited data to
work with, yet have no limitations in model power. We as humans are vir-
tually limitless in our capability of storing examples of what we have seen
or heard in our lifetimes, but are not always able to generalize beyond what
we know, or completely overgeneralize. Not recognizing a penguin as a bird
because it doesn’t fly would be an example of the first, while claiming that
bats and butterflies are birds because they can fly would be the latter. More
typically, people learn data by heart, without understanding the underlying
principle. This would for instance be the case if you have taught someone
to count to forty five, and then isn’t able to predict the next number as he
never heard it before.
Something similar happens in ML when a model is inherently quite power-
ful, but is only given a small amount of training data. The cost function
on the training data can be brought down almost limitlessly if the model
is powerful enough, but the output for unseen data can take on spurious
values. In the same vein as the previous paragraph, I will illustrate this fact
with an example. I define a one-dimensional mapping y = f(x) (in this case
a piecewise cubic Hermite interpolation between 7 randomly drawn couples
of x and y values) and draw 20 training examples from this function. Next
I train two neural networks on these 20 points, one with 20 nodes, one with
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Figure 1.5: Illustration of overfitting training data. The num-
ber N is the number of nodes in the underlying models. The
grey line connects the training data (plus signs) virtually per-
fectly.

1000. Results are drawn in Figure 1.5. As is apparent, the function learned
by the network with 1000 nodes fluctuates wildly in between the training
points. Nevertheless, the fit to the training data is almost perfect. As such,
when we observe the error on the training data, we will get the impression
that the network performs very well. The network with 20 nodes does not
connect the training data perfectly, yet the solution it o�ers is far closer to
the underlying target function, with some minor deviations at the sharpest
rises and falls.
Overfitting is a very general problem, and in fact can occur with datasets
that might seem relatively large. For example: the TIMIT dataset (Garo-
folo et al., 1993) is a collection of human speech, consisting of 5040 spoken
sentences, spoken by 630 di�erent people. The resulting training dataset
consists of over 1 million data points, each a 39-dimensional feature vector
representing preprocessed sound. The speech is labelled with phonemes, and
the goal is to retrieve the sequence of phonemes from the sound.
Although the training set for TIMIT might seem large, it is in fact quite
easy to overfit; getting training errors that become arbitrarily low, but test
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errors that are quite high. The reason for this is that the data is very
high-dimensional and diverse. Essentially, the model needs to map the dis-
tributions of 61 phonemes, so the number of examples for each of them will
already be quite small. Next, this distribution exists in a 39 dimensional
space. Getting an idea of what this shape looks like requires a number of
examples that rises exponentially with the dimensionality, simply because
the volume of this space is so massive. If we want an idea of what a function
operating on a one dimensional line looks like, we can take, e.g., ten equally
spaced points to get an idea (similar to the training data in Figure 1.5). For
a function operating on two dimensions we would need to make a grid of
one hundred points, on three dimensions one thousand, and so on. For 39
dimension this number would be 1039, i.e., astronomical. The reason we are
able to extract any information at all from the TIMIT dataset, is that most
of the 39 dimensions are unimportant, and the relevant information can be
found in a much lower-dimensional subspace.
Various schemes to counter overfitting exist, and I will explain some of these
in detail in the later chapters. One of the most common methods is to di-
vide the data into two subsets: a true training set and a validation set. One
trains the model on the training set and judges the performance on the val-
idation set, which will give a far more informative error value than the error
on the training set. Next, if the model allows it, several techniques exist
that can avoid overfitting. For example, with neural networks, one can add
an additional term to the cost function that penalizes large weight values,
(the smaller these are, the smoother the underlying function will be). Using
the validation set it is then possible to optimize the influence of the penalty
term, which can be used to train on all the available data.

1.5 Sequential data and time series

The type of data I am mostly concerned with in my research is sequential
and temporal data. Temporal data is any type of information where the
content is spread out in time. We can think of several examples coming
from our senses: audio, video and tactile information is highly temporal.
Consider audio: most of the information we extract from the sound that we
hear is very strictly temporal in nature. Be it interpreting speech, detecting
the swelling rev of an approaching car or a suspicious sound in the middle of
the night, gauging the depth of a well by dropping in a pebble and waiting
for the plunge, timing is an integral part of all these skills.
The same line of reasoning obviously applies to vision. Cycling through a
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crowded street, playing basketball, or reading a book, our brains receive
streams of moving images that are processed on the fly into meaningful con-
cepts. Less obvious, but also relevant are our tactile sensations. When we
touch an object in the dark to find out what it is, we move across it in order
to sense the changes in pressure and feel of texture. Similarly, blind people
can read Braille by quickly gliding over the dots with their fingertips. The
human brain is so strongly geared towards temporal data that some of our
species’ most widespread forms of art are fully temporal in nature: music
and dance.
A similar type of data is sequential information. Though not temporal in
the strict sense, it shares the property that there is a dimension in which the
data is ordered, and relevant information is spread out over this dimension.
The first example that comes to mind is obviously text. You, as reader, are
absorbing this sequence of words and your brain seamlessly transforms this
into meaning. Precise timing is not important here, only the order of the
sequence. Another example is DNA. The order of base pair triplets in a gene
will determine a corresponding order of amino-acids that ultimately decides
the structure of a functional protein.
For ease of notation I will introduce some useful concepts. When we assume
that a sequence exists in discrete instances arranged in a specific order, we
will call the input data at a specific instance a frame. The sequences we
work with are thus sequences of frames with a fixed dimensionality, which
we denote as the input dimension. Temporal data normally exists in contin-
uous time, like for instance the world we perceive. However, we will usually
assume that we can discretize time in such small partitions that changes
between two adjacent frames are negligible, and we can still use the above
terms. We will look at actual continuous time systems later in this disserta-
tion.
For what comes next we will use ‘time’ in the broad sense, as being the
direction in which our sequence progresses, even if there is no direct connec-
tion to physical time. Similarly I shall no longer discern between ‘temporal’
and ‘sequential’ as the di�erence is always clear from context. The tasks we
shall consider in this dissertation are temporal tasks that have a well defined
output at each time step. Examples are the aforementioned phoneme recog-
nition task, industrial control tasks where for instance a controller needs to
keep the temperature in a tank at a constant value, and for instance predict-
ing the values of stocks one week ahead. Tasks which would consider a full
sequence of data and require a single output (such as for instance detecting
whether e-mail is spam or not) are of a somewhat di�erent nature and I
won’t go into these.
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1.5.1 Variable context
When trying to process sequential or temporal data, one runs into a unique
problem. Consider the previous sentence. If we would read all words save
the last two, we would be capable of predicting that the next words are
quite likely to be ‘specific problem’, or ‘particular issue’, or any of a very
limited set of similar phrases. We would be quite surprised to find the
words ‘chestnut tree’ next. However, if we change the sentence to read ‘In
complete darkness, lost in the forest, Billy runs into a ...’ this option would
become much more acceptable. Obviously the phrase ‘to run into a’ can have
several meanings, according to context. As we read, our brain somehow drags
along the relevant context which greatly aids us to interpret and predict. It
is capable of doing so almost indefinitely long. Often, sentences will only
convey meaningful information within this context, which on its own contains
information from a potentially very long stretch of foregoing text.
At the moment we lack the means to drag along such a context within ML.
As such, applications that try to extract meaning from texts are extremely
limited. One technique quite commonly used to determine the nature of
a text (document classification, spam filtering, sentiment analysis6) is the
so-called bag of words-model (Sivic and Zisserman, 2003), which only counts
the relative frequencies of words and uses this as a feature vector as input
into a model. For more advanced tasks, which operate more locally in a text,
this technique is insu�cient. We need to take into account some information
of the past text, but there is no specific guideline on which information this
would need to be, and where we can retrieve it. If we wish to predict the
next word in a text, we might need to use context that was given many pages
earlier, and often it is highly impractical to operate on the full text, as this
can be of considerable length.
Nevertheless, we can make certain assumptions and try and see how far we
get. The next two paragraphs will deal with the two main strategies applied
on temporal and sequential information.

1.5.2 Time window
The first technique to process sequential data is to use time windows. Let’s
assume all the information that is relevant at this moment in time is con-
tained in a stretch of data with a history no longer than a certain maximal
value W . This finite sequence, starting from W frames ago up to the present
moment we can call a window of data. As time progresses, this window slides

6For instance to determine whether a movie review is good or bad.
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over the sequence, and at each time step we process the chunk of data it sees7.
The advantage of this strategy is that the size of the data we consider is con-
stant. That way, we can apply any technique we would normally apply to
static data, such as multi-layered NNs and kernel machines, without having
to worry about what context we need to take into account.
For many tasks the underlying assumption that all relevant information is
contained within a short part of the sequence works very well. For speech
for instance, when transcribing spoken sounds to labels, the relevant infor-
mation doesn’t need to be longer than about the length of a word. Looking
further ahead or back in time may help, but isn’t absolutely necessary. Other
tasks, like the previous hypothetical example of predicting the next words
in a sentence may quickly reach an upper bound in performance that can
never reach human level due to the lack of context. And even if the task can
be solved with a time window, the window length W still needs to be opti-
mized by hand as it is rarely obvious what the required context length will be.

1.5.3 Recurrent techniques

1.5.3.1 The downside of time windows

A time window does not actually take time into account. If we take a window
of a sequence and randomly redistribute its frames over time according to a
fixed permutation, this will make no di�erence to the model that processes
the data, as we made no specific assumptions to the role of time (other than
that all relevant information is within the window). Obviously, sequential
data will normally have a strong causal structure, and is often correlated
locally in time.
Time windows do not take advantage of this fact. One of the results is that
the dimensionality of the input data presented to the model can become very
high. Indeed, if we have a time window of length W and a signal of dimen-
sionality N

in

, the number of input dimensions is N
in

◊ W . Let us again
consider the text prediction task. Working at the level of words quickly
becomes problematic: there are hundreds of thousands of words in English,
and a lot of texts will include names of places and persons, so let us operate
on the level of characters. If we assign an input dimension to each of a set of
characters that includes small and capital letters, numbers, spaces, punctu-
ation, apostrophes, brackets and quotation marks, we easily get somewhere
around 70 dimensions. Say that we consider a context slightly longer than

7The input would be formed by concatenating the individual frames: if we have
data s(t) for t = 1...W , we can construct the vector sW = [s(1); s(2); · · · ; s(N)].
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an average English sentence: about 100 characters, we already have 7000
input dimensions, for many models an impractically large number. There
must exist a more compact representation of the context, that explicitly
takes time into account

1.5.3.2 Dynamical systems

The information contained within a sequence can be considered to be causal
to some degree. The next frame in a sequence is often quite predictable, and
can be said to be at least partly “caused” by the previous one. This is espe-
cially apparent in tasks that model the dynamics of complicated entities such
as car engines, weather systems, chemical plants, etc, which are governed by
physical equations that are inherently causal. To a lesser degree, the same
holds for human languages: when we tell a story, we tell it from beginning
to end and not vice versa, the next sentence being the logical follow-up from
the previous one. It is only natural to assume that a model that operates
on such data would benefit from being inherently causal itself.
A set of causal systems which are also parametrizable mathematical enti-
ties, and therefore are potential candidates for models in ML, are dynamical
systems (DS). A DS is defined by an internal state, which evolves according
to either a di�erential equation (in continuous time) or an update equation
(in discrete time). A real-life example of a DS is for instance a swinging
pendulum which has as its internal state angle and angular velocity. A DS
like this can be excited by external input, in the case of the pendulum for
example by setting it into motion. Let us formalize the DS by stating it
has an internal state a(t), and receives an external input signal s(t). The
evolution of the DS is then given by

a(t + 1) = f(a(t), s(t + 1)) (Discrete time) (1.2)
da(t)

dt
= f(a(t), s(t)) (Continuous time). (1.3)

The function f will define the dynamical behavior of the system and con-
tain all parameters. Remember I mentioned RNNs in the section on neural
networks. RNNs count as discrete time DSs, as their current hidden state
depends on the current input and the previous hidden state.
The idea of Reservoir Computing, which I have briefly described earlier,
generalizes the use of DSs for ML to an unlimited range of possible im-
plementation platforms. Computing can be performed by buckets of water
(Fernando and Sojakka, 2003), mass-spring-damper networks, the gene reg-
ulation network of bacteria (Jones et al., 2007), photonic chips (Vandoorne
et al., 2008), chemical reactions, animal morphology, etc.
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Figure 1.6: Illustration of a way to measure the Lyapunov
exponent of a DS.

1.5.3.3 Fading memory

The internal state of a DS depends on the current input and the previous
internal state, which depends on the previous input and the internal state
before that, and so forth. This recursion causes the internal state to de-
pend on the entire history of the input up to the current time. For most
tasks we expect that the relevant data will be in the recent history of the
signal, and we do not want the internal state to depend on the whole se-
quence. The quality we seek for in the dynamics of our model is called fading
memory (Boyd and Chua, 1985): we wish that the internal state depends the
strongest on the most recent history of the input sequence, and progressively
less on older data. There exists a very intuitive mathematical entity that
provides a useful frame in which to describe this fading memory property
quantitatively, called the Lyapunov exponent (Lyapunov, 1992). Later in
this dissertation I will give the formal mathematical description, but here I
will only give a illustrative explanation.
In order to check for how long the internal state depends on the former
history, we can take two identical copies of a DS, fed with the same input
sequence, but at a single point in time we slightly change the input frame of
one of the two copies, such that their internal states are no longer identical.
If the DS displays fading memory, we expect that the distance between the
two internal states will gradually fade as the model “forgets” the influence
of the perturbed frame. If it does not fade, but rather stays present or even
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starts to grow, we know that the internal state will depend on the whole
history of the sequence. I have illustrated this in Figure 1.6.
Classically, such an analysis is made for autonomous systems, i.e., systems
that do not receive external input, but rather operate under their own dy-
namics. Instead of a perturbation in the input signal, a perturbation in the
internal state is considered, and the corresponding evolution of the internal
state distance. The rate of growth of this distance is known as the Lyapunov
exponent. The type of dynamical system I study is driven by external input,
however, and I consider this input signal to be a part of the whole system,
and define the Lyapunov exponent as such.
Note that, if the disturbance grows with time, this means that the depen-
dence of the internal state on the history increases as it goes further into the
past; in some sense the memory of the beginning of the sequence is stronger
than that of the current input, the opposite of the fading memory property.
This type of dynamics is associated with what is known as chaos (though
it is not the only necessary condition). We almost never wish for a chaotic
system as a model for our data, hence we make some e�ort to keep it in
the fading memory regime. One of the problems with the previously men-
tioned gradient descent technique for RNNs is that a continuous change in
the parameters can lead to an abrupt change from a fading memory to a
chaotic regime (the bifurcations, which I mentioned before) which is one of
the reasons why gradient descent is quite non-trivial with RNNs.
In reality the picture is much more complicated. If a positive Lyapunov
exponent appears, it doesn’t inevitably mean the system will descend into
chaos. Quite often it will start to exhibit oscillatory behavior (which is not
the same as chaos), or settle into another part of its internal state space
where the local dynamics are stable. The situation also strongly depends on
the input. It is perfectly possible to have a DS that, when it doesn’t receive
input, behaves chaotically, but when driven with a su�ciently strong input
signal still has a fading memory. Conversely, it is possible that the dynamics
of the system are only locally stable, and given su�ciently strong input can
reach an unstable regime. Think for instance about a ball that rolls around
in a crater on top of a volcano. As long as the ball doesn’t get kicked hard
enough it will always roll back and settle in the center of the crater, but as
soon as it flies over the rim it will roll down the mountain, i.e. reach an
unstable regime.
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1.6 This dissertation

Now that I have covered the basics of the themes that will be of importance
in my thesis, I shall here provide an overview of the chapters to follow.

• Reservoir Computing
In the next chapter I will elaborate on the Reservoir Computing con-
cept in its many forms. I will explain in mathematical detail the
important parameters that have been identified in past research that
determine fading memory and non-linearity, and provide an overview
of common reservoir implementations.

• Memory Properties
Chapter 3 will provide an in-depth study of fading memory in reser-
voirs. Specifically, I provide a mathematical analysis for some impor-
tant cases which can identify the accuracy with which past information
is stored in the current internal state. In particular I study two cases.
First I will consider the case of multidimensional input, where the role
of spatial statistics within the input signal is scrutinized. Next I will
consider the case of continuous time dynamical systems and provide
ways to analyze their fading memory using mathematical tools that
are originally developed for discrete-time systems.

• Infinite Reservoirs: Recurrent Kernels
This chapter will explain how it is possible to unite the concept of
Reservoir Computing with Kernel Machines. I will formally derive
kernel functions that are associated with infinite neural networks, and
next show a generic way it is possible to make these networks recur-
rent. I will o�er an analysis on the properties of recurrent kernels
which shows that many of the properties known to be of importance
in Reservoir Computing have a direct counterpart in the dynamics of
recurrent kernels.
I will provide a broad overview of both network types that can be
made infinite by providing an equivalent kernel, and kernel functions
that can be made recurrent. In some cases we can even find network
types that are finite approximations of recurrent kernel functions.

• Training Recurrent Networks
Although gradient based strategies for recurrent networks can be dif-
ficult, I did some research in this domain and explored two strategies
to overcome or reduce the problem of bifurcations. In the first I tried
out a highly simplified version of a classic learning algorithm, which
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has benefits in terms of speed and stability. The second one considers
layered architectures of recurrent networks.

• Conclusions and Future Perspectives
Finally, in the last chapter I will recapitulate the results and conclu-
sions that can be drawn from the work I did in the last four years, and
speculate on possible paths for future research, and the current chal-
lenges facing Reservoir Computing, and Machine Learning in general.

1.7 Research contributions

Here I will list the main research contributions of this dissertation
The first part of my research is focused on finding generalizations of what
we consider to be memory in dynamical systems. First of all I explain the
concept of linear memory capacity: a measure of how well a DS can remem-
ber its past input. Classically, this measure is applied in a rather one-sided
setup: the signal that needs to be recovered is defined as one-dimensional,
discrete time noise sampled independently each time step. Yet, in realistic
applications, the data is neither. Typical examples such as speech or finan-
cial time series are usually high-dimensional, and they have strong temporal
correlations. Quite often the data is originally of a continuous-time nature
and is only discretized in order to allow it to be processed by a computer.
I introduce novel definitions for memory capacity for both these important
situations: high dimensional input and continuous time signals.
I found that many of the well-known conclusions from the classic research
on memory capacity remain valid in the high-dimensional case. First of all I
show empirically that the total memory capacity, i.e., the sum of the memory
capacities of the principal components of the input signal, never exceeds the
number of degrees of freedom of the DS (in the case of recurrent networks
this is the number of nodes). Secondly I find that random networks assign
a disproportionally large part of their memory capacity to principal com-
ponents with low power, a scenario that we usually wish to avoid. I show
that orthogonal networks, i.e., networks with orthogonal recurrent connec-
tion matrices, do not su�er from this problem. This reiterates the fact that
orthogonal networks exhibit superior properties in terms of linear memory
capacity.
In the case of continuous-time DSs I show that random networks are espe-
cially poor at storing recent input history. I propose two ways of construct-
ing networks, which are directly based on the inverse z-transform, a way to
transform continuous DSs to discrete time. The first is based on discrete-
time random networks and is much more robust against noise. The second
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one is based on orthogonal networks, and yields networks that have tunable
memory. Such networks can be readily analyzed mathematically and have
very good noise robustness.
The second line of research this thesis is concerned with, is the introduction
and analysis of recurrent kernels. I show that it is possible to find kernel
functions that operate on time series, and which are associated with infinite
sized recurrent networks. Essentially such kernels operate on two time series,
and allow to take the inner product of the hidden states these time series
would have produced in an infinite RNN.
I o�er a broad selection of examples of recurrent kernels. Not only can we
take several typical recurrent network models and devise their recurrent ker-
nel equivalent, we can also take existing kernels, typically used for static
data, and make them recurrent.
I show that a recurrent kernel can reveal how the underlying network pa-
rameters influence dynamical stability. I find a way to relate the concepts of
spectral radius and Lyapunov exponent with properties that can be derived
from the recurrent kernel functions.
Just like RNNs are in certain cases better suited to model time series, so are
recurrent kernels better candidates for ML solutions operating on temporal
data. I apply recurrent kernels on a di�cult speech recognition problem,
and show that they can attain results close to the state-of-the-art.
The final part of my research is concerned with the explicit training of ma-
chine learning models using gradient descent. First of all I show that it
is possible to significantly boost ESN performance by only training input
weights, which has the inherent safety that the network cannot suddenly be-
come chaotic. Finally, I present preliminary results that suggest that there
is some advantage of creating deep architectures with RNNs. Such struc-
tures may have the benefit of being able to o�er a more e�cient nonlinear
transformation of the input data, and being relatively fast to train. I show
that layered networks outperform common RNNs with the same number of
trainable parameters.
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In this chapter, the basic principles of Reservoir Computing (RC) will be
explained. Commonly, when people provide this explanation, they start
from a historical perspective, i.e. they cover the di�erent angles from which
the idea of RC emerged, and then build up to a more formal description. I
will violate this tradition by starting the story with one of the most common
implementations of RC, namely Echo State Networks, as they provide good
intuitive means to introduce the relevant concepts in Reservoir Computing.
From this, I will work my way up to more general and exotic implementations
of reservoirs. At the end of this chapter I will briefly describe some of RC’s
most notable successes, and conclude by speculating on the reason of their
impressive performance. For a more exhaustive overview of the world of
Reservoir Computing I refer to Verstraeten et al. (2007) and the excellent
review paper of Lukosevicius and Jäger (2009).

2.1 Echo State Networks

2.1.1 Basic network setup
An Echo State Network (ESN) is a recurrent neural network. If we consider
a network with N neurons1, the i-th neuron is characterized by an internal
state a

i

(t), and collectively, we denote the internal state of the network by
the column vector a(t). In these equations, t can be considered as discrete
and two-way infinite, i.e. t œ Z, but in practical situations time will be
bounded by the time span of the input data. Whether t is associated with
time, or more general: progression through a sequence, depends completely

1Know that the term ‘neuron’ can be freely interchanged by ‘node’ or ‘unit’.
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on the context of the data.
Next, we consider the input signal s(t) of dimensionality N

in

. We assume
that s(t) is defined for t = 1, · · · , T , i.e., we only have a finite sequence
of data. This will generally be the case for real-life data, such as speech
corpora or financial time series. If we use artificial data, we can in principle
generate limitless amounts, but if we wish to train the neural network in a
finite amount of time we will have to work with a finite sequence of data.
We further assume that there exists an input bias, which can be simply
considered to be an additional input dimension with a signal that is constant
and equal to one. This signal can be used to break the inherent symmetry
present in the internal state of an ESN, as I will explain later on.
The evolution of the internal state of the ESN is as follows:

a(t) = tanh (Wa(t ≠ 1) + Vs(t) + V
b

) . (2.1)

Here, W is an N ◊ N matrix, V is an N ◊ N
in

matrix, and V
b

is an N ◊ 1
matrix, i.e. a column vector. These matrices contain the recurrent weights,
input weights, and bias weights of the network respectively. Notice that
the last can be considered as being an additional input matrix, where the
corresponding input is always equal to one, hence the previous explanation of
input bias. The non-linearity, a hyperbolic tangent, operates element-wise,
i.e. tanh(x) = [tanh(x1), tanh(x2), · · · , tanh(x

N

)].

2.1.2 Choosing the weights
The feature of ESNs that is quite unique is that generally all the weights
in the network are chosen randomly from a certain distribution. The only
parameters that are optimized are global scaling parameters for each of the
weight matrices, as they will determine the dynamical behavior of the in-
ternal state. In what follows I will describe some of the heuristics used to
predetermine these global scaling factors.

2.1.2.1 Recurrent weights

• Initializing the weights We generally assume that the recurrent
weights are drawn i.i.d. from a Gaussian distribution. Usually it will
not matter much whether they are drawn from another distribution,
be it uniform, Laplacian, or even randomly drawn from {≠1, 1}. The
so-called connection fraction deserves some attention. It determines
the average number of neurons each neuron in the ESN connects to,
and later in this paragraph I will discuss its influence.
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Figure 2.1: Three examples of autonomous ESN dynamics for
di�erent spectral radii. The network is initialized with hidden
states uniformly distributed between ≠1 and 1 and then left to
evolve without external input.

• Spectral radius: linear approximation The recurrent weights will
primarily determine in which dynamical regime the network will oper-
ate. In reality, the network dynamics are rather di�cult to study due
to the non-linearity incorporated by the hyperbolic tangent. There-
fore we can simplify the equations as follows: we assume that the bias
weights are zero, and the signal and state are close to zero. This al-
lows us to make a linear approximation of the hyperbolic tangent in
equation 2.1:

a(t) ¥ Wa(t ≠ 1) + Vs(t),

as tanh(x) ¥ x for x close to zero. If we are only interested in the
inherent dynamics of the system we can further simplify this by as-
suming the input signal is zero, leading to

a(t) ¥ Wa(t ≠ 1). (2.2)

The above equation has been well-studied in linear dynamical system
theory and the evolution of the internal state a(t) can be solved ex-
actly. What matters for us is that the internal state will only be stable
if all the eigenvalues of W have a norm smaller than or equal to one.
If there exists one with a norm larger than one, the magnitude of the
internal state will start to grow exponentially.
The eigenvalue with the largest norm is known as the spectral radius,
which I shall denote as fl. The rule of thumb in ESNs is to rescale the
initial recurrent weight matrix such that its spectral radius is fixed to
a certain value equal to or slightly less than one. In linear dynamics,
fl will also determine the time scale of the network dynamics in the
sense that it puts a lower bound to the rate at which the internal state
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will converge to zero at the absence of input:

||a(t + 1)|| Æ fl||a(t)||.

• E�ects of the non-linearity For truly linear ESNs, the spectral ra-
dius would place a strict bound on the regime in which the network
will have fading memory. Due to the saturation of the hyperbolic tan-
gent, however, this is not necessarily the case for non-linear networks.
First of all, the neuron states are bounded between ≠1 and 1 due to
the hyperbolic tangent (see Figure 1.2), such that unbounded growth
of a is impossible. Furthermore, if the network states are not close to
zero (as would be the case in normal operation), we no longer can use
the approximation for small a, and the linear approximation breaks
down. Generally, what happens when fl is slightly larger than one,
is that the hidden state will spontaneously begin to oscillate or move
to another stable fixed point. If it becomes significantly larger, the
network may become chaotic.
A thorough analysis of the conditions for fading memory in ESNs has
been attempted in several occasions (Ozturk et al., 2006; Verstraeten
and Schrauwen, 2009). We can state at least two important findings
from these studies:

– If we still wish to use a linear approximation, we need to do so
not around the origin, but around the actual operating point of
the internal state. If we take a0 as the point around which we
want to linearise the dynamics, equation 2.2 changes into:

a(t) ¥ DWa(t ≠ 1),

where
D = diag(1 ≠ a0

2),

i.e. a diagonal matrix with elements equal to the local derivative
of the activation function. Generally, as all the diagonal elements
of D are smaller than or equal to one, the spectral radius of the
matrix DW will be smaller than that of W. This means that the
more the ESN is driven into the nonlinear regime, the smaller
the local derivatives are, and the smaller the e�ective spectral
radius of the system becomes.

– For realistic problems, the previous analysis is not possible as
the internal state does not stay in the vicinity of an operation
point a0, but can have a large variance, making any locally linear
approximation useless. Nevertheless we can still calculate the



“Book” — 2012/11/27 — 13:10 — page 35 — #63

2.1 Echo State Networks 35

average of the previously determined local spectral radius, which
will give a fairly good indication of the global fading memory of
the system (Verstraeten and Schrauwen, 2009).
As a heuristic rule, we can state that it is generally possible
to still have fading memory (and hence potentially good task
performance) for networks with spectral radius larger than one,
if the input weights are su�ciently high, i.e. if the input forces
the network into the non-linear regime which will subsequently
dampen the activity. Alternatively, one can scale up the input
bias of the network such that the states are statically pushed
into the saturating part of their non-linearity.

As a rule of thumb, we find that for many tasks the good performance
can be found when fl is close to one2. For researchers that wish to
gauge ESNs’ performance on their task, this is usually a good initial
choice.
In Figure 2.1 I have drawn examples of the autonomous dynamics of
small reservoirs for di�erent values of fl. When it is smaller than one
the states will fade to the origin rapidly. When it is equal to one the
hidden state will only be dampened by the hyperbolic tangent, and
the fading is very slow. A spectral radius larger than one leads to
autonomous activity that never stops.

• Connection fraction Finally, concerning the recurrent weight matrix
I shall briefly discuss connection fraction. We define the connection
fraction c as the fraction of other neurons each neuron connects to.
Equivalently: c is the fraction of non-zero elements in W. Connection
fraction has been studied for networks with binary nodes, i.e., nodes
that have a threshold function as activation function (see Figure 1.2).
It has been shown that for such networks, c is a determining factor in
the global dynamical stability (Kau�man, 1969; Drossel, 2008): the
higher c, the less stable the network becomes.
A threshold function is an extremely non-linear function, however,
and if our network still operates in a quasi linear regime, the connec-
tion fraction itself has very little influence. Indeed, it has been shown

2Here I should include an important remark. There exists a strict mathematical
definition of what can be considered a guarantee for fading memory in ESNs, known
as the Echo State Property (Jaeger, 2001a; Buehner and Young, 2006). From this it
follows that a spectral radius smaller than one is not always a su�cient condition
for the Echo State Property, and more correctly, it is required that the largest
singular value of W is smaller than one. In reality however, this assumption is
far too restrictive, and spectral radius is still a very good indicator for global
dynamical behavior
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quite often that for most tasks, c has no measurable influence on task
performance. In principle, if we would drive a network into an ex-
tremely non-linear regime, such that all the states are essentially ≠1
or 1, the activation function starts to resemble a threshold function
and the connection fraction will become an important parameter. Re-
alistically however, tasks that require such an extreme non-linearity
are rare, and as a rule of thumb, optimizing c is a step that can be
omitted. The influence of connection fraction on non-linear networks
has been studied thoroughly in Büsing et al. (2010).
Nevertheless, there is an obvious advantage of choosing a low connec-
tion fraction: when running an ESN, the computational bottleneck
consists of the matrix-vector multiplication Wa. A sparse weight
matrix can significantly speed up this calculation and reduce mem-
ory requirements of your computer. Sparse matrices have allowed
researchers to use ESNs of up to 20,000 nodes (Triefenbach et al.,
2010).

2.1.2.2 Input and bias weights

The initial input weights are generally chosen from a Gaussian distribution.
Other variants are possible, such as sparse connections, weights chosen from
{≠1, 1}, etc. Again, all this matters little. If they are sparse the simulation
can be sped up, but sparsity normally has little e�ect on task performance,
and again, the only truly important parameter here is global scaling. The
stronger the input weights are, the stronger the network states will be pushed
into the saturating parts of the network and the more non-linear its dynam-
ics will be.
Quantifying the degree of non-linearity for an ESN is quite challenging, as
it will depend on several factors, including the spectral radius of the net-
work, the spatial and temporal structure of the input signal, its variance,
and obviously the input weight scaling. However, to have at least a rough
indicator, I here define the input scaling factor ’. Unless stated otherwise,
input weights are drawn from a Gaussian distribution with mean zero and
standard deviation ’. Later, in Chapter 3 I shall refine this definition and
as the degree of non-linearity I estimate the standard deviation of the ESN.
Bias weights can be separately scaled, but it introduces an additional param-
eter to be optimized, and often it will change little to final performance. For
some tasks, however, bias is essential, in particular if a non-antisymmetric
non-linearity is required. Consider a network without bias, driven by input
s(t) and ≠s(t). Due to the antisymmetric nature of the hyperbolic tangent,
the only di�erence this makes to the network states is their respective signs.
Suppose that somewhere within the underlying function of the task, lies a



“Book” — 2012/11/27 — 13:10 — page 37 — #65

2.1 Echo State Networks 37

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

t

s
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

t

a
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

t

a
(t

)

Figure 2.2: Illustration of the hidden state for a slowly varying
signal. The top panel shows the input signal, the middle one
shows the hidden state for an ESN without leaky integration
and the bottom one the hidden state of an ESN with leaky
integration.

non-antisymmetric function, then we will not be able to solve it without
input bias. However, if we use a bias term, we essentially push the net-
work away from the origin, and the activation functions will no longer be
antisymmetric.

2.1.3 Continuous time problems: leaky integra-
tion

In this section I explain an important extension to the previously defined
model. Real world time series exist in continuous time. Ideally, we would
like to use a continuous-time dynamical system to model it. We are not able
to, as computer inherently operate on discrete time, but nevertheless, we
can still mathematically define such a system. A continuous time dynamical
system is defined by a di�erential equation. Not wanting to change too much
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to the discrete time version of an ESN, we write the following definition:

ȧ(t) = 1
·

R

(≠a(t) + tanh (Wa(t) + Vs(t))) , (2.3)

where ·
R

will define the typical time scale of the dynamics of this network.
The additional term ≠a(t) will ensure that the hidden state remains bounded
in the domain {≠1 · · · 1}. We assume that our time series s(t) exists in
continuous time, but we are able to discretize it by sampling it at a fixed
interval �t. We can then approximate the di�erential equation using Euler
integration:

a(t + �t) = (1 ≠ “) a(t) + “ tanh (Wa(t) + Vs(t + �t)) , (2.4)

where “ = �t

·R
, known as the leak rate, which should be a number between

0 and 1. The above equation was first introduced in Jaeger et al. (2007)
and is now considered one of the most important variations of the classic
ESN paradigm. In engineering terms, equation 2.4 describes the situation
where each neuron has an internal first order low-pass filter. This concept
has hence been extended to band-pass filters (wy�els et al., 2008b)
Adding leak rate to an ESN essentially slows down the dynamics of the net-
work with a factor roughly equal to “≠1. Notice that for “ = 1 we end up
with the original ESN. If “ = 0.1, the new internal state will di�er only little
from the old one. In the extreme case that “ = 0, the network is infinitely
slow, and the internal state does not change at all.
As it slows down the dynamics, leak rate extends the fading memory of the
ESN. In Figure 2.2 I show how a network responds to a slowly changing sig-
nal, with and without leaky integration. Without, the hidden state basically
follows the input signal and shows little inherent dynamics. The memory of
the network is shorter than the relevant changes in the input signal, and as
such the network will operate in a quasi-static regime; as if the input signal
is constant. The network with leaky integration is able to respond to a slow
input signal with transient dynamics, such that the hidden state is diverse,
and not only a function of the immediate input. As such, leak rate is an
ideal means to match the time scale of the ESN to that of the input signal.
In chapter 3 I will perform an extensive analysis of the memory properties
of continuous time systems, and I will provide insights in what the precise
link is between the time scale of the input signal versus the leak rate of the
network.



“Book” — 2012/11/27 — 13:10 — page 39 — #67

2.2 Output weights 39

2.2 Output weights

The only weights that are explicitly trained in the ESN framework, are the
output weights. Here I explain the strategies of obtaining them for two types
of problem: regression and classification.

2.2.1 Collecting the data
After having chosen a set of parameters and generated all the weights, we now
have to run the ESN. We take all the data we wish to train on, and simulate
the reservoir according to equation 2.1. We collect the internal states of the
network and assemble them in the so-called design-matrix, which we denote
with X. The size of the design matrix is N ◊ Tend, with Tend the length of
your training data. The most basic form the design matrix can take is that
where its elements are the concatenated internal states: X

it

= a
i

(t).
The next commonly performed step is to expand the design matrix with a
constant bias equal to one. This is necessary to compensate for any constant
o�set your desired output may have. If we denote the t-th column of the
design matrix as X:,t, we can write

X:,t =
C

a(t)
1

D
.

Often, the the design matrix is further extended by concatenating the current
input signal with the column entries:

X:,t =

S

WU
s(t)
a(t)

1

T

XV .

In principle you can extend it further with whatever additional feature you
desire: e.g. the squares of the internal states, the derivatives of the input, the
third power of the sine of the products of the input signal with the internal
states... anything that you suspect might carry supplemental information
can be added to the design matrix. One should be conservative though, as
extending it comes with rapidly increasing computational costs, and often
does not lead to a noticeable increase in performance.
The vertical entries in the design matrix are the prototypes of data that
are fed into the final output weight matrix. If, after training you run your
network on new data and you have used the last given definition of X to
obtain your output weights, then, each time step you must form a vector
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consisting of the current input frame, the current internal state, and a one
in the end. If you use supplementary features to construct your design
matrix, these should also be included in the vector that is multiplied with
the output weights.
Throughout the rest of this section, I will no longer be concerned with the
precise definition of the design matrix. The space spanned by the columns
of X we will refer to as feature space, and correspondingly the columns
themselves are feature vectors, which we shall denote with X:,t = x(t). The
other matrix we need is the design matrix of the desired outputs. Assuming
that each time step we have a desired output y(t), we construct the matrix
Y such that Y

it

= y
i

(t).

2.2.2 Linear regression
As mentioned before, we now need to find output weights U that optimally
project the design matrix onto the desired output, i.e. if Ỹ = UTX, or
ỹ(t) = UTx(t). We wish that Ỹ resembles the desired output Y as closely
as possible. One way to do this is to minimize the Mean Square Error (MSE):

MSE = 1
T

Tÿ

t=1
||ỹ(t) ≠ y(t)||2,

or in terms of the design matrices:

MSE = 1
T

||UTX ≠ Y||
F

,

where ||.||
F

is the Frobenius norm, i.e. the sum of the squares of all elements
in the matrix. Minimizing this equation is performed by calculating its
derivative w.r.t U, and equating this to zero. The resulting equation for the
output weights is then obtained via linear regression, i.e., we need to solve

(XXT)U = (XYT) (2.5)

for U, which can be performed quickly and e�ciently with any linear algebra
solver (e.g. in Matlab c• this would be the backslash operator).
Most literature on ESNs prescribes that in order to find output weights one
needs to calculate the inverse of the matrix (XXT). The output weights
are given by the following entity: U = (XXT)≠1(XYT). Though this is
indeed the algebraic solution to equation 2.5 and is quite useful for theoretical
research, it does in fact not give the best solution in numerical terms or
performance. When inverting a matrix A, a computer will typically try to
find a matrix B such that AB is as close to the unity matrix as possible.
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This step is computationally demanding, as it requires the optimization of a
set of N systems of linear equations, N ◊N being the size of A. Furthermore,
it does not try to optimally fulfill the equality of equation 2.5, which a linear
equation solver actually will do, and this in a fraction of the time required to
invert a matrix. Let it be known henceforth that we never need to calculate
explicit inverse matrices for calculating output weights of ESNs!
I will define the estimated covariance matrices C = 1

T

(XX)T and CY =
1
T

(XY)T, such that equation 2.5 becomes CU = CY. The division by T is
to ensure that the linear system does not depend on the size of the dataset,
which is useful for the interpretation of the ridge regression parameter I
introduce in the following section.

2.2.3 Avoiding overfitting: ridge regression and
cross validation

Often the amount of available training data is small, and solving equation
2.5 will o�er weights that score very well on the training data, but will poorly
generalize to new data, i.e., overfitting occurs.
How can we fight this e�ect? One solution which is fairly intuitive, is to make
multiple copies of the design matrix X, and to each we add a little bit of
numerical noise. We can then treat this as a single, large dataset and make
output weights accordingly. Adding noise forces the solver to be tolerant
to small variations in the internal state, and will not lead to solutions that
fluctuate wildly in between actual training points, which in turn leads to
better generalization.
We do not actually need to add noise to the design matrix explicitly, rather
we can calculate what happens if we average out over all possible noise
instantiations. Suppose we define a noise matrix N of the same size as the
design matrix X, and where each element is drawn i.i.d from a distribution
with variance ⁄ and zero mean. If we construct the covariance matrix with
noise CN we get

CN = 1
T

(X + N)(X + N)T

= 1
T

XXT + 1
T

NXT + 1
T

XNT + 1
T

NNT

If we assume truly i.i.d noise, we can easily average out this equation over
N. We find that

e
NXT

f
=

e
XNT

f
= 0, due to the zero mean, and

1
T

e
NNT

f
= ⁄I, with I the unity matrix. For CY we have to consider the

average covariance matrix
e

NYT
f

which is equal to zero so that CY doesn’t
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change. This means that we can rewrite equation 2.5 as:

(C + ⁄I)U = CY. (2.6)

This strategy is known as ridge regression (or more correctly Thikonov reg-
ularization (Tikhonov and Arsenin, 1977)), and is the time-honored method
to train reservoirs. Interestingly, it is possible to derive the exact same con-
dition from an entirely di�erent approach: adding a penalty term in the cost
function meant to keep the output weights small. Explicitly we write for the
cost function:

cost = ||UTX ≠ Y||
F

+ ⁄||U||
F

.

Yet another approach arrives at this solution from the perspective of putting
a prior assumption on the probability distribution the weights U (Rasmussen
and Williams, 2006). Explicitly, if we assume that U is drawn from a normal
distribution with variance ⁄, we obtain equation 2.6 as the set of weights
with the maximum a posteriori likelihood, i.e., the set of weights that is most
likely to explain the data given the weight prior.
Ridge regression is one of multiple possible forms of regularization. Roughly
stated, in machine learning, regularization is any method to keep the com-
plexity of your model within certain bounds. Keeping the output weights
small is one of the ways to do this, but a variety of other criteria exist, lead-
ing to other forms of regularization. Before ridge regression was widely used,
the only easy method available was to keep the ESN small, which required
you to search for the number of neurons from where the model would start
overfitting. Thanks to ridge regression we can now simply apply the rule
that ‘bigger is better’.
One variant of the above equation deserves some mention. Essentially, the
Frobenius norm is the squared Euclidean 2-norm: the sum of squares. The
1-norm, also known as the Manhattan metric, is the sum of the absolute val-
ues of the elements of a matrix. Minimizing this cost (as, e.g., implemented
in the LASSO algorithm (Tibshirani, 1994))has the interesting side e�ect
that many of the weights will tend to go to zero. In the end this will lead
to a sparse solution, which can be in a sense quite informative, especially
in the case where you add many additional features to the design matrix,
since it will give you an idea of which features are of importance, and which
are not. The 1-norm is also related to the loss function used in SVMs for
regression (Smola and Vapnik, 1997) While this cost function is interesting
in terms of end product computational cost and perhaps better performance,
it also su�ers from an important drawback: the 1-norm is not continuously
di�erentiable, and minimizing the cost becomes computationally demanding.
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Obviously, ridge regression leads us to a new problem: which value should
we choose for ⁄. If it is too small the model might still overfit, if we choose it
too large we are basically trying to extract our desired outputs from random
noise, which will not lead to usable readout weights. The solution is to use
cross-validation: split up the training dataset into L chunks, then pick out
one of the chunks to serve as a validation set, train on the remaining L ≠ 1
chunks, and compute the cost function with respect to ⁄ on the validation
set. Repeat the process until all chunks of data have been used and then
pick the value for ⁄ associated with the lowest average cost and use it to
train on the complete data set.
This is the method of choice for finding ⁄. If you train on very large datasets,
or are able to generate as much data as you want, it might be faster and al-
most as good to simply choose (or generate) a single training and validation
set beforehand. When dealing with a large dataset, one should keep in mind
though that the size of the training dataset should be more or less similar
to the total set, and at the same time the validation set needs to be large
enough to be representative for the whole set.

2.2.4 Classification
In the previous two sections I described the optimal strategy for solving
regression problems. Minimizing MSE is indeed quite intuitive if you wish
for two sets of numerical values to be as close to each other as possible. A
wholly di�erent problem is the one where you want to classify data. You do
not wish to map an output to a continuous value but rather to a discrete
variable which indicates a certain class. A good example of such a task is
phoneme recognition, which is an integral part of speech recognition, where
each frame in the speech signal is classified as belonging to one of a discrete
set of phonemes (or silence).
Formally, we wish to find weights U such that for all data points x belonging
to the first class UTx > 0, and UTx < 0 if x belongs to the second class. In
this case, U is a vector that defines a hyperplane within feature space that
acts as the separator between the two classes.

2.2.4.1 MSE is poor for classification

If we consider the simple case of two classes, how do we go about to train
a readout layer that outputs a class instead of a variable? Several solutions
to this problem exist. Let us first consider a solution that simply applies
the previously explained linear regression scheme. As target values for our
output we simply take 1 for time frames belonging to the first class, and
≠1 for those belonging to the second. We can then perform classification by
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Figure 2.3: Illustration of classification by linear regression.
Two classes of one-dimensional data are shown, together with
their respective distributions. I also show the data fit of linear
regression and its corresponding classification boundary, and the
optimal classification boundary.

simply looking at the sign of the output: if it is positive it belongs to the first
class, and if it is negative to the second. This is in fact the most commonly
used scheme when training ESNs for classification problems. It has the
advantage that it often works quite well, and it is conceptually simple.
There is, however, a considerable downside to this method. Let us explore a
very simple example. For the moment we no longer consider temporal data,
but simply one-dimensional data points that belong to one of two classes.
Each class has an underlying probability distribution with a respective mean
and variance, as I have depicted in Figure 2.3. For each class we have 20 data
points in this example. As it happens, the variance of the first distribution is
larger than the other. Figure 2.3 shows us the solution that linear regression
o�ers us. The border for the resulting classifier is shown as a black vertical
line. We instantly notice that this is not a very good solution. It is too far
in the direction of the left distribution, and some points are misclassified.
Yet, it is easy to draw a boundary that separates the data perfectly (as, e.g.,
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the grey vertical line).
The reason why this happens, is that linear regression tries to map to the
target values, and is not truly concerned with the classification boundary. In
the example, it tries to place the line such that it passes as well as possible
through the data points. If a point from the first dataset would lie very far
to the left in the picture, it would be classified correctly, but its MSE would
be very large. Herein lies the problem with using MSE for classification
problems. We are not interested in MSE, we are interested in the number of
points that is classified correctly: the classification error.
The same issue arises when the number of data points in the two classes is
very di�erent. The classification boundary will inevitably be pushed away
from the class with the most data, leading to poor classification on the whole
(in the worst case it will learn to always classify as being from the class with
the most data).

2.2.4.2 Solutions

A number of solutions for this predicament exist, and I will discuss them
here. First of all, there is a range of training strategies that are specifically
geared towards classification problems, and these can be readily applied for
training output weights. For completeness I will mention them here before
moving on to Support Vector machines, which are of more importance for
this thesis.
First of all, the problem of unbalanced datasets can be countered by reweigh-
ing the misclassification error for each class. This is known as Fisher rela-
beling (Duda et al., 2001), and is a very straightforward extension of simple
ridge regression. Next, Linear Discriminant Analysis (LDA) (McLachlan
and Wiley, 1992) works by assuming that data from both classes has a Gaus-
sian probability distribution with the same variance but a di�erent mean. It
works by drawing the line that optimally separates these two distributions
(the discriminator). This solution is also highly similar to ridge regression.
Other techniques that start from a more probabilistic approach are Naive
Bayes (Domingos and Pazzani, 1997; Hand and Yu, 2001) and Logistic re-
gression (Hosmer and Lemeshow, 2000). Naive Bayes essentially maps a
probability distribution on each class and builds a classifier by simply look-
ing at the probabilities for a new data point belonging to each class. The
advantage of this technique is that there are no prior assumptions on the
probability distributions. The ‘naive’ part of naive Bayes is that it is as-
sumed that each dimension of the data points is statistically independent
of the others. Logistic regression tackles the classification problem by using
output nodes with a fermi-nonlinearity (equation 1.1), also known as the
logistic function. When the labels of the classifier are then 0 and 1 (instead
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of ≠1 and 1), the output can be interpreted as a probability. The downside
here is that single-shot learning is no longer possible and we will need a
gradient approach (which can be solved very e�ciently with second order
methods (Fletcher, 1987)).
The classification technique most important to us is that of Support Vector
Machines (SVMs) (Boser et al., 1992; Vapnik, 1995). We start out from a
specific cost function. Consider the output value of the i-th feature vector ỹ

i

.
The target value y

i

is either 1 or ≠1. We define the following cost function.
If ỹ

i

y
i

> 1, the data point in question is definitely classified correctly, and
we give it a cost of zero. If ỹ

i

y
i

< 1, the cost is given by cost = 1 ≠ ỹ
i

y
i

.
This cost function is known as the hinge loss and it is particularly well suited
for classification. What will happen is that the cost of most data points will
be brought to zero, and only a small number of points that lie close to the
separator will still count in the cost function. These data points are known
as the so-called support vectors, in the sense that they ‘support’ the sepa-
rating hyperplane. SVMs will define this hyperplane such that it separates
the support vectors of each class with the widest possible margin.
SVMs have several important advantages over other classification techniques.
Primarily, they are not influenced by the precise shape of the distributions
of the classes: rather they only look at the data in the region where the two
classes are closest to each other, i.e. the data that is the easiest to misclas-
sify. The optimization problem is convex, such that it is not possible to get
stuck in a local optimum, and the global optimum can be found e�ciently
using quadratic programming.
In Chapter 4, we will use a loss function similar to the hinge loss, but with
a quadratic instead of a linear part, which allows us to do support vector
selection using linear regression.

2.2.4.3 Multiple classes

So far I have only considered the case with two classes. Some interesting
tasks have multiple output labels (e.g. predicting the next letter of a text).
A number of strategies exist to solve this problem, and I will provide a very
short list here.

• The most straightforward technique is to train a separate classifier for
each class which treats the data of the other classes as one single class.
This technique is known as the one-versus-all strategy

• Another technique, which is a little more involved, trains a large set
of classifiers that each are trained into discriminating only two of the
classes of the whole set. If there are C classes, the number of classifiers
that need to be trained is C(C ≠1)/2. Finally, classification is usually
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performed by a voting mechanism over all one-versus-one classifiers.
Though more convoluted, this strategy seems to work better than
one-vs.-all strategies for some problems (Hsu and Lin, 2002).

• Special mention I will give to the so-called softmax output function.
Suppose there are C classes and each output node has weights U

i

associated with them. For feature vector x the output of the i-th
node is then given by

y
i

= exp(U
i

· x)
q

C

j=1 exp(U
j

· x)
. (2.7)

This function provides a probability for the datapoint to belong to
each class, as it is normalized and nonnegative. The softmax func-
tion is the multi-class version of the logistic function. Training it can
be performed quite e�ciently using gradient ascend on the log likeli-
hood of the output. In Chapter 5 I will apply this strategy on a text
prediction task.

2.3 Reservoir Computing

2.3.1 Generalizing beyond ESNs
When considering 2.1 and 2.2 we can notice a clear distinction. We attain the
output weights by applying some well known, preferably simple, algorithm on
the feature set provided by the ESN. Nowhere do we rely on the connection
matrix of the network, on the fact that the nodes have a hyperbolic tangent
nonlinearity, or any other specific quality of the network. This opens the
door to an interesting possibility: if ESNs are essentially random dynamical
systems that provide useful features, why couldn’t we just use any dynamical
system for computing, provided that its global dynamical properties are
within the right regime.
Indeed, here we finally arrive at the paradigm that provides the title of
this chapter: Reservoir Computing. A reservoir in this context is a high-
dimensional non-linear dynamical system of a random nature. The name
derives from the fact that it acts as a ‘reservoir’ of non-linear dynamics that
provides an interesting set of features of the history of an input signal, which
can - under the right circumstances - be highly useful for solving ML tasks.
What exactly are the properties that would define a ‘good’ reservoir? This
question is the subject of some debate still (Legenstein and Maass, 2005),
but there is strong agreement on the following points:
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• The reservoir is essentially random, safe for some global parameters.
We do in no way train the detailed parameter set that describes the
system. Normally, the larger the reservoir becomes, the less the per-
formance on a task will depend on the precise instantiation of the
system, and the more it will depend only on the global parameters.

• The reservoir should have fading memory during operation, i.e., when
driven with the input it is meant to process. Ideally there is some
global, tunable parameter that serves to set the ‘forgetting speed’,
conform the spectral radius in quasi linear ESNs, or more generally
conform the Lyapunov exponent as explained in the introduction.

• The reservoir’s internal state should be high dimensional (in ESNs
this is the number of nodes), as a rule it should have significantly
more dimensions than the input signal. Furthermore, the internal
states should be uncorrelated, in the sense that each dimension of the
feature vector carries some information that is not present in the rest
of the internal state. Formally, we wish that the covariance matrix of
the internal state is of full rank.

• The internal dynamics should be non-linear to some degree. If this
is not the case, the reservoir essentially only acts as a linear filter on
the input data, and we would be able to compute a FIR-filter that
fully replaces the reservoir and output weights. Ideally, the ‘amount’
of non-linearity of the reservoir is tunable, conform the input scaling
factor in ESNs.

2.3.2 Originators of RC
The idea of RC arose more or less concurrently from various di�erent fields
of study. Here I will list what could be called the architects of Reservoir
Computing: the researchers that independently launched the idea of apply-
ing large, random dynamical system to perform computations on time series.
Next I will list some interesting and more exotic variations of RC.

2.3.2.1 Liquid State Machines

The concept of RC in the context of neuroscience was first coined in Maass
et al. (2002), under the name Liquid State Machines (LSM), wherein the
liquid is a large set of randomly connected spiking neurons. In this paper,
the idea is coined that the microcircuits in the neocortex of the brain (small
groups of particularly densely connected neurons (Mountcastle, 1997)) re-
main essentially random and all learning happens in the outgoing connections
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of these circuits. The circuits themselves then only serve as spatio-temporal
filter banks from which other neurons can select useful features.

2.3.2.2 Backpropagation Decorrelation

A wholly di�erent approach is found in the framework of Backpropagation-
Decorrelation (Steil, 2004). Starting from a combination of a special error
gradient method (Atiya and Parlos, 2000) and information theoretical view-
points, Steil arrives at a learning algorithm that is remarkably similar to the
normal RC setup, especially in that it uses a large, random and unchanging
recurrent network at its core.

2.3.2.3 Cognitive function modeling

Years before all other approaches, cognitive scientists used large random
networks to model large scale structures in the brain to model cognitive
functions, using reinforcement learning rather than linear regression to find
output weights. Their findings have been published in Dominey (1995)

2.3.3 Exotic forms
Often cited as the real-life example of Reservoir Computing, in Fernando
and Sojakka (2003), the concept of ‘liquid’ computing has been taken quite
literally, as the researchers have used a basin of liquid water to serve as a
reservoir. The researchers used a transparent reservoir filled with water, and
eight prodding devices to excite the surface. The ripples on the surface were
then projected onto a screen, recorded with a webcam, and the resulting
video stream was used as feature vector in the RC network. The researchers
showed that they were able to solve the temporal XOR task and a basic
speech recognition task.
Other physical implementation platforms that have been studied in past
research are based on photonic chips (Vandoorne et al., 2008), on optoelec-
tronics (Paquot et al., 2012).
Expanding into the realm of biology, several researchers have found links
between computation in organisms and the RC concept. It has been sug-
gested that the bacterium Escherichia Coli uses an LSM to react to changing
environmental conditions (Jones et al., 2007). In the field of robotics, the
concept of morphological computation (Pfeifer et al., 2007), essentially the
study on how the anatomy of an animal can perform useful computations,
has been linked to RC. Among others people have studied abstract models
of biological anatomy (mass-spring-damper systems), as reservoir manifes-
tations (Caluwaerts and Schrauwen, 2011; Hauser et al., 2012).
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Surely the range of potential reservoir systems is still much broader, and
finding good potential candidates is an exciting field of study.

2.4 Achievements

As the scope of this work is largely theoretical, I will not linger long on how
well RC performs compared to other techniques. Nevertheless I reserve this
short section for an non-exhaustive list of noticeable achievements for RC.

• The very often quoted seminal paper on reservoir computing is Jaeger
and Haas (2004), which deals with time series prediction and signal
correction. In this paper, reservoir computing beats the state-of-the-
art performance on chaotic system prediction, the Mackey-Glass at-
tractor (Mackey and Glass, 1977) and the Lorenz attractor (Lorenz,
1963) by two orders of magnitude in precision. Other works on time se-
ries prediction include wy�els et al. (2008a) and wy�els and Schrauwen
(2010).

• One of the most prominent engineering applications of machine learn-
ing is speech recognition, which has seen some notable successes (Skowron-
ski and Harris, 2007; Verstraeten et al., 2006). The first serious at-
tempts to build large-scale speech recognition systems based on RC
have been performed by the Speech Lab in Ghent university, with per-
formance that rivals state of the art. Their work has been published
in Triefenbach et al. (2010) and Jalalvand et al. (2011).

• Important work in the field of autonomous robots has also bene-
fited from the reservoir computing approach. A strategy for robot
localization has been worked out in Antonelo and Schrauwen (2012),
which combines the concept of RC with Slow Feature Analysis (SFA)
(Wiskott and Sejnowski, 2002).

• In medical signal processing, RC rivals state of the art in epileptic
seizure detection (Buteneers et al., 2011, 2012).

2.5 Why they work

Finally, we reach the most important question of this chapter: what makes
reservoirs actually work? In other words, how comes that a random dy-
namical system is able to perform useful computations of an input signal?
Let us first imagine what exactly a single neuron in a reservoir computes:



“Book” — 2012/11/27 — 13:10 — page 51 — #79

2.5 Why they work 51

a function of the recent history of the input signal. Each neuron activation
will depend on the history of the input signal. Due to fading memory, the
dependency of the activation on the input signal history will drop o� as it
is more distant in the past. The exact shape of this function is essentially
random, which reflects the random nature of the reservoir. However, there
are still global characteristics that are tunable, and which depend on the
reservoir parameters: most importantly the rate at which the fading mem-
ory drops o�, and the degree of non-linearity.
Essentially, reservoir computing thus combines a large number of non-linear
filters operating on the input signal to perform useful computations of the
input signal. It can be proven mathematically that, if the number of non-
linear filters tends to infinity, and they are su�ciently diverse (such that
the covariance matrix has full rank) , a linear combination of these filters
can approximate any other filter arbitrarily well (Maass et al., 2002, 2007;
Schäfer and Zimmerman, 2006). From this point of view, reservoirs are
nothing more than random non-linear filter banks. Optimizing the meta-
parameters only ensures that the underlying filter that is defined by the
task can be e�ciently approximated, i.e., with a small number of neurons.
This fact is demonstrated in a rather interesting manner when studying very
large reservoirs. For small reservoirs, meta-parameters need to be optimized
rather precisely to get good performance on a task, but this dependency
becomes weaker for larger neuron numbers.
What is interesting about the relative success of RC within machine learning
is the fact that apparently, random dynamical systems are good models for
time series processing. Many sequence processing tasks seem to benefit from
the assumption that the underlying function that needs to be approximated
has some the dynamical properties of a reservoir. This fact undoubtedly
reflects the causal nature of time series as opposed to static data.
In my research I have come to adopt a somewhat comparable view. From
the perspective that is introduced in Chapter 4, we can interpret reservoirs
as being approximations of infinite-sized DSs. A reservoir is then nothing
more than a finite sample from this infinite-dimensional construct. I show
that these infinite DSs can be applied explicitly on tasks via the kernel-trick.
This allows a researcher to truly work with an infinite-dimensional DS as a
model for his or her data.
Considering reservoirs as finite samples from an infinite DS firmly establishes
the notion that the nature of a reservoir forms a prior assumption on the
dynamical process that generated the data. A reservoir is essentially ran-
dom, save for the nature of the distributions of parameters, which are the
scaling parameters, and activation function and potentially assumptions on
connectivity. This limited set of parameters will form the prior. If we then
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define a reservoir with an infinite number of nodes using this prior, we will
incorporate all possible reservoirs that can be drawn from this distribution.
In this sense, we can consider an infinite reservoir as a distribution over finite
reservoirs.
The infinite reservoir will de facto contain the process that generated the
data of the task in some subspace of its hidden state (if this process actu-
ally exists). How well the prior matches the nature of the task will then be
reflected by how e�ciently we can approximate this subspace by randomly
sampling reservoirs from it.
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Dynamical systems absorb information of their recent input history. As time
progresses, old information dissipates and gets overwritten. The degree to
which information of past input is present in the current state of the DS is
determined by its memory. In this chapter, I will explicitly analyse memory
for Reservoir Computing.
Memory in reservoirs has been the subject of research for some time, and
originally the focus of this research was on linear memory capacity, which
describes how much information of the input signal can be linearly extracted
from the current hidden state. In my work I investigated two important
cases, first for multiple input dimensions, and finally, how we can describe
and study memory in continuous time systems.
More recently, the focus has shifted from linear memory capacity to non-
linear extensions. After all, in practical applications we do not wish to
linearly retrieve the input signal, instead, we wish to produce a rich set of
non-linear features of the input history and we wish to understand how much
of the history of the input is included in this feature set. In the last section of
this chapter I will discuss broader definitions of what memory in reservoirs
entails. I briefly present the work from Dambre et al. (2012) and review
some potential paths for further research, including a method to present an
instant visualization of reservoir memory.

3.1 Linear memory capacity

3.1.1 Definitions
One way to quantify memory is to assign a score to how well past input can
linearly be recovered from the current hidden state of the network. In Jaeger
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(2001b), a method that measures this score is proposed. Suppose U
·

are
readout weights that are trained to optimally reproduce a one-dimensional
input signal with delay · : s(t ≠ ·). If we denote the recovered signal as
s̃

·

(t) = UT
·

a(t), we can define the memory function (MF) as

m(·) = cov(s(t ≠ ·), s̃
·

(t))2

var(s(t))var(s̃
·

(t)) . (3.1)

The MF is a number between zero and one, and is the squared correlation co-
e�cient between the reproduced and the actual delayed input signal. Perfect
reproduction corresponds to m(·) = 1, and complete inability of reproduc-
tion corresponds to m(·) = 0.
We wish to consider the memory function not so much as a machine learning
task, but rather as something that is inherent to the reservoir we consider.
Therefore, we shall not make use of a train and test set, or apply techniques
such as ridge regression to obtain the output weights U

·

. Rather, we assume
that we have access to an infinite amount of data, such that the statistics in
equation 3.1 are exact. Furthermore, we can find the algebraic solution of
U

·

as
U

·

=
+
a(t)aT(t)

,≠1
t

Èa(t)s(t ≠ ·)Í
t

, (3.2)

where È · Í
t

denotes mean over time.
Note that I reach back to equation 2.5, but here we use the algebraic solution,
and as feature vectors we only use the hidden state. We also omit the bias
term for the output. This is justified if the input signal has zero mean, such
that we don’t need to compensate for an o�set. Using the above definition,
we can transform equation 3.1 by inserting s̃(t ≠ ·) = UT

·

a(t), and we find:

m(·) =
+
aT(t)s(t ≠ ·)

,
t

+
a(t)aT(t)

,≠1
t

Èa(t)s(t ≠ ·)Í
t

var(s(t)) , (3.3)

which leaves a function that solely depends on the statistics of the hidden
state and the input signal.
The above definition of the MF depends heavily on the temporal distribution
of s(t). Suppose for instance that the input signal is periodic with period T .
In this case, the output weights for all · + nT , n œ N will be identical, and
the MF will as a consequence, also be periodical. This would give the false
impression that our network has an infinitely long memory.
In order to get an honest view of the memory of a reservoir, we want our
input to be as hard to remember as possible, i.e., as random as possible.
For this reason, we shall assume that the frames of s(t) will be i.i.d. from a
normal distribution.



“Book” — 2012/11/27 — 13:10 — page 55 — #83

3.1 Linear memory capacity 55

I now define the linear memory capacity1 (LMC), which we denote by M , as

M =
Œÿ

·=0
m(·). (3.4)

It can be said to quantify the total ‘amount’ of memory present in a reservoir.

3.1.2 Facts and examples
Linear memory capacity and the memory function have been studied ex-
tensively in past research (Jaeger, 2001a; White et al., 2004; Ganguli et al.,
2008). Here I will give a short list of important facts and findings.

• The single most important property of LMC in ESNs is that it is at
most equal to the number of nodes, and generally smaller. This can
be proven mathematically (Jaeger, 2001a), and intuitively it reflects
the fact that, if you have N numbers to encode something in, the
maximum amount of data that can be exactly encoded in this is N
other numbers. If you wish to encode more data, you will necessarily
lose precision.

• Non-linearity deteriorates the LMC. A soon as a non-linear transfor-
mation is applied to the input history, a linear projection will not be
able to perform a perfectly reconstructing mapping. Therefore, the
more non-linear the reservoir, the lower the LMC becomes.

• Generally, we are not only interested in LMC, but also in how well it
will hold up against noisy conditions. Imagine that the readout layer
reads the hidden state plus a certain amount of observation noise, how
badly will this degrade the LMC? This question has been studied in
White et al. (2004), and they reached the conclusion that optimal noise
robustness is obtained when using random orthogonal weight matri-
ces2 for the recurrent weights, scaled with a spectral radius slightly
less than one. For linear dynamical systems, this means that all the
eigenmodes of the system have the same exponential decay rate but
di�erent oscillatory frequencies.
Noise robustness – importantly – also addresses numerical noise, caused
by the finite precision of computer processors. Even with double pre-
cision numbers, and working in the linear regime, for random networks

1Often simply known as memory capacity. Here I wish to distinguish it from
the more general non-linear memory capacity I will describe later on.

2An orthogonal matrix A has the property that AAT = ATA = mathbfI
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Figure 3.1: Examples of MFs for di�erent ESNs with 50 nodes.
The left panel depicts the influence of spectral radius on a mildly
non-linear ESN (’ = .1). The right panel depicts the influence
of non-linearity for ESNs with spectral radius fl = 0.95. All
experiments used 50,000 input frames, drawn from a normal
distribution.

(non-orthogonal) it is very di�cult to reach M ¥ N , whereas for or-
thogonal networks this is relatively easy. The reason as to why will
become apparent in the next subsection.

• For the LMC to come close to its theoretical maximum requires a spec-
tral radius close to one. If it is significantly smaller, the memory will
decay too quickly and reconstructing input with a long delay becomes
numerically infeasible. For linear orthogonal networks, the spectral
radius very strongly determines the shape of the MF, in particular, as
it approaches 1, it will become lower and reach out further into the
past.

In Figure 3.1, I show examples of MFs for 50-node ESNs under di�erent
conditions. As is quite clear, both non-linearity and spectral radius heavily
influence memory depth of the ESNs. Interestingly, even non-stable ESNs,
(the line shown for fl = 1.5) seem to be able to retain some information
on past input. Notice that, in the right panel, the line corresponding to
’ = 10≠5 corresponds to a very linear ESN, as the elements of the hidden
state will be very small and hence remain in the linear part of the hyperbolic
tangent.
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3.1.3 Memory encoded in eigenmodes
It is a quite interesting observation that orthogonal networks have superior
noise robustness (and in practical setups, simply a higher LMC). Let us
simplify the problem, and for now consider only the linear dynamics of the
ESNs. A linear dynamical system given by

a(t + 1) = Wa(t) + Vs(t + 1)

can be solved analytically. I will not go into the details here, but it su�ces
to say that the network’s hidden state consists of a linear combination of
filters, convolved with the input signal. Each of these filters will be char-
acterized by one of the eigenvalues of W. The shape of the filter impulse
response is an exponential function, multiplied with a sine wave. The growth
rate of the exponential is determined by the modulus of the corresponding
eigenvalue, and the frequency of the sine wave by its complex phase. Each
of these filters drags along some content of the input signal’s history. From
this perspective, creating output weights that optimally reconstruct s(t ≠ ·)
is nothing else but an attempt to construct a linear combination of these
filters, which is zero for all delays and equal to one for · .
For a typical randomly created network, what does this set of filters look

like? In the top row of Figure 3.2, I have provided an example. On the
left I have shown the shapes of all the filters present in the network. On
the right we can see the eigenspectrum of the connection matrix. What is
immediately apparent is the fact that only a few filter responses actually
extend far into the past. When looking at the eigenspectrum, it becomes
clear that, even though the largest absolute value of the eigenvalues is set
to the desired spectral radius, most eigenvalues are more or less uniformly
spread over the unit circle, and as such most of them have a much higher
rate of decay (as they are closer to the centre).
Still, if we wish to reconstruct s(t ≠ ·), we will need to combine the impulse
responses of the existing filters to approximate a Kronecker delta-peak at
· , and in order to do this, we need very high numerical precision, simply
because the output value of most filters will change extremely little for in-
put at large · . In reality, this kind of numerical precision is infeasible, and
as a consequence we will measure an LMC much lower than the predicted
maximum.
The bottom row of Figure 3.2 also depicts an eigenspectrum and its corre-
sponding set of filter impulse responses, but here the connection matrix W
is a random orthogonal matrix3. For orthogonal matrices, all eigenvalues

3There are several ways in which to generate random orthogonal matrices. One
would be to generate a symmetrical matrix from a random matrix A by S = AAT,
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Figure 3.2: Examples of linear filters and eigenspectra of linear
ESNs. Shown for ESNs with N = 100 and fl = 0.95. The top
row is for a randomly generated network, the bottom row is for
a random orthogonal network. The left panels show the shape
of the filters, the right panels the eigenspectra. The grey circles
in the right panels are the unit circle.

have the same modulus, hence, all associated filters have the same decay
rate. This means that all filters have an equally broad view over the past,
and reconstructing s(t ≠ ·) becomes significantly easier in numerical terms.
As we will see in the next section, orthogonal networks also have interesting
properties for storing high-dimensional data. Furthermore, it is possible to
find a continuous-time equivalent for orthogonal networks that will provide
excellent noise-robustness in continuous-time linear dynamical systems.

and next use any computer algebra pack to do an eigenvalue decomposition S =
ODOT. The eigenvectors O now form an orthogonal matrix. In matlab there
exists an easier way. It has a built-in function that transforms any matrix to the
nearest orthogonal matrix. This function is called orth.
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3.2 High-dimensional input

True ML applications often have high-dimensional input. In this section
I will extend the notion of LMC and the MF to multiple input signals.
The results of this research have been presented in Hermans and Schrauwen
(2010b). First I will describe the kind of signal I use, next I will write down
new definitions for the MF and memory capacity. I then investigate the role
of non-linearity, spectral radius, and the number of input dimensions and
the statistical structure of the input.

3.2.1 Input signal and memory function for mul-
tiple signals

I will consider input signals s(t) of N
in

dimensions. For simplicity we shall
always assume that there are no temporal correlations. Furthermore, we
shall denote the covariance matrix of the input as Cs, i.e.:

Ès(t)s(t ≠ tÕ)Í
t

= ”
t,t

ÕCs.

Obviously, if cross-correlations between the di�erent input dimensions ex-
ist, there would be little point defining their individual memory capacities.
Indeed, if two input channels are highly correlated, we would violate our
previous convention that the input signal should be as hard as possible to
remember; if you can reconstruct one input signal you can partially recon-
struct the other.
The same is true for temporal correlations. Suppose two input signals are
uncorrelated, but one is identical to the other, shifted a few frames in time.
In this case most of the information of one signal is already present in the
other, and if we would measure the memory capacity of both signals, the
total memory capacity would be deceptively high.
For this reason I will make sure that there exist no temporal correlations
in the input signal, and I will only consider the principal components4 of
s(t). In order to do this we perform an eigendecomposition of the signal
covariance matrix:

Cs = Q�QT.

Here, � is a diagonal matrix with, entries Â
i

on the diagonal correspond-
ing to the variances of the principal components of s(t), which we will also
denote as being the power of the principal component. The principal com-

4Principal Component Analysis (PCA) (Pearson, 1901; Jolli�e, 2002)
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ponents themselves can be found by ŝ(t) = QTs(t). Each element of ŝ(t) is
uncorrelated with the others, and now it makes sense to define a memory
function and memory capacity for each of them. Suppose ŝ

i

(t) is the i-th
principal component of the input signal, we define its corresponding MF as

m
i

(·) = gT
i

(·)C≠1g
i

(·)
Â

i

, (3.5)

where g
i

(·) = Èa(t)ŝ
i

(t ≠ ·)Í
t

and C =
+
a(t)aT(t)

,
t

. This definition is
completely analogous to equation 3.3. In the same vein we define the LMC
of the i-th component as

M
i

=
Œÿ

·=0
m

i

(·), (3.6)

and the total LMC is simply

M =
Ninÿ

i=1
M

i

. (3.7)

Measuring the LMC has one small but important di�culty. Due to the
finite number of samples and the fact that the MF is strictly positive, there
will exist a positive bias in the measurement. This bias will generally be small
but it is nevertheless important when one measures M for multiple input
signals, since this error is multiplied with the number of input channels. In
appendix A.1.1 we derive that per input channel, this bias is approximately
equal to N

T

, with T the number of samples. We shall subtract this bias when
calculating the memory capacities of the individual channels and the total
MC.
The second problem appears when trying to investigate the influence of non-
linearity. Ideally, we would wish to keep the degree of non-linearity constant
as we play with parameters like spectral radius and the number of input
dimensions. For this reason I will scale the input such that for all experiments
that I perform, the variance of the hidden states is approximately equal
for equal input scaling, and hence how far the states are pushed into the
non-linear part of the hyperbolic tangent. Exactly how I go about this is
described in appendix A.1.2. The result is an input scaling factor „, which
is a crude estimate of the standard deviation of the reservoir states. This
means that „ = 1 is very non-linear, and „ ¥ 0 is a close-to-linear regime.
In this section, I always use 105 input frames for measuring the MF. Results
shown are always averaged over 10 reservoir instantiations, but generally,
individual di�erences are quite small. For all our experiments I use ESNs of
100 nodes.
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Figure 3.3: Total LMC M for di�erent input scaling factors.
On the left the reservoir is in the quasilinear regime, in the
middle moderately nonlinear and on the right highly nonlinear.

3.2.2 Uncorrelated input

3.2.2.1 Total memory capacity

The first situation I consider is when all the principal components of the in-
put channels have equal power. I look at the total memory capacity M as a
function of the spectral radius and the number of input channels. Figure 3.3
shows the results for three di�erent input scaling factors. In the quasilinear
regime (left window), M is mostly equal to the number of reservoir nodes,
virtually independent of the spectral radius or number of input channels.
Only when both N

in

and the spectral radius are small does M drop signifi-
cantly below N . This is again due to the fact that the spectral radius of a
reservoir determines the speed at which its transient dynamics fade. If the
number of input channels is low, the MFs of the principal components can
each extend far into the past. However, if the transients are quenched too
quickly by a low spectral radius, recovering the past input from the current
states becomes more di�cult, resulting in lower M . When the number of
input channels increases, this e�ect becomes less severe since the memory
of each principal component will extend less far in the past (see next para-
graph).
Increasing the input scaling factor aggravates the memory deterioration de-
scribed above. This is due to the fact that the reservoir states are pushed
into the saturating parts of their activation function, which decreases the
‘e�ective’ spectral radius (the spectral radius of the Jacobian (Ozturk et al.,
2006; Verstraeten and Schrauwen, 2009)), and obviously because the signal
undergoes a non-linear transformation which cannot be compensated by the
linear readout function.
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Figure 3.4: Average MFs for di�erent N
in

. The spectral radius
varies from 0.1 (black) to 1 (light gray line). Horizontal axes
have the same scale in each window. The input scaling „ is
equal to 0.1.

3.2.2.2 Shape of the memory function

To get a good idea of exactly what the reservoir remembers of the input,
it is useful to take a look at the memory functions themselves. Figure 3.4
shows the average MF m(·) = N≠1

in

q
Nin

i=1 m
i

(·) in di�erent situations. One
obvious fact is that, as N

in

increases, the amount of memory capacity avail-
able for each individual input channel decreases. The next interesting fact
is that the spectral radius will greatly determine the shape of the MF. If fl
is small, the reservoir will have a good memory of only a few steps back in
the past, and if it is close to one, the reservoir memory extends further but
is less precise. This means that tasks with high input dimensionality that
need short but precise memory may in fact benefit from choosing a small
spectral radius.

3.2.3 Generalized signals
Typically, high dimensional input data consists of principal components with
widely varying powers. Usually, only a few principal components contain the
bulk of the variance and a large fraction of principal components have low
powers and contain less meaningful features or noise. In this section we
will consider the impact of the power contained in each component on its
memory capacity. We use N

in

= 50 and „ = 0.1. The input signal consists
of 50 white noise channels with variance Â

i

= 0.8i. This allows us to mea-
sure memory capacity as a function of signal power for about 5 orders of
magnitude. Figure 3.5 shows the results measured for three reservoirs with
di�erent spectral radii.
Ideally, we would wish that a good ESN allocates memory capacity propor-
tional to the signal power. That way, the hidden state will have a ‘fair’
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Figure 3.5: Individual memory capacities per channel versus
the corresponding power (shown on logarithmic scale). Left
panel depicts results for random networks, the right panel for
random orthogonal networks.

representation of the recent input history. If we look at the left panel of Fig-
ure 3.5, we can see that first of all, in the case of a very low spectral radius,
the network allocates very roughly the same amount of capacity to each
input signal, regardless of signal power. Indeed, in the extreme case that
fl = 0, the hidden state would merely be a (slightly non-linear) projection of
the current input signal, and as long as N

in

< N , all of these can be perfectly
reproduced by the inverse projection. As the spectral radius increases, so
will the proportionality between signal power and memory capacity. Still,
when we consider the case where fl = 1, we find that, crudely, M

i

≥ Ô
Â

i

.
It’s important to know that the total LMC in this experiment is still equal
to the number of nodes; the theoretical maximum. Yet, it seems that signals
with low power hog a disproportionally large part of the available LMC.
Remember that random orthogonal networks are particularly robust against
noise. In the case of a broad spectrum of input signal powers, we can state
that, as far as the reproduction of each individual principal component is
concerned, all the other input channels act as noise. Therefore we repeat
the previous experiment, but this time we use random orthogonal connec-
tion matrices. Results are depicted in the right panel of Figure 3.5. It is
immediately clear that orthogonal networks in fact do have the desired pro-
portionality between Â

i

and M
i

. From this we can conclude that orthogonal
networks have superior linear memory properties also in the case of multiple
input channels.
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3.3 Continuous-time linear dynamical
systems

As I have stated in section 2.1.3, a lot of interesting problems play out in
continuous time. Speech, control problems, robotics, etc., all have a contin-
uous time character. In order to let a computer handle these tasks, time
needs to be discretized. If we need high precision for input and output sig-
nals (which is usually the case), the sample period �t will have to be small,
much smaller than the relevant time scales of the problem.
At this point we normally employ leaky integrators in our ESNs. We essen-
tially simulate a continuous-time dynamical system, simply because discrete
time dynamics does not readily lend itself to process slowly varying signals.
This section deals with memory for continuous-time dynamical systems. I
will redefine MFs and LMC and investigate continuous-time equivalents for
orthogonal networks.
Here I limit myself to linear dynamical systems. As it turns out, in this
case the quantities of LMC and the MF can be reduced to analytical forms,
which greatly aids in the understanding of how memory works. The im-
pact of non-linearity in continuous time is more or less analogous to that
in discrete time: non-linearity will eat away LMC, therefore, I do not study
it here. Also, I will limit the analysis to the case of one-dimensional input
signals. What I do study, however, is the impact of noise on the readout
of the hidden state. All results of this paragraph have been published in
Hermans and Schrauwen (2010a).

3.3.1 Evolution of the hidden state
The hidden state of the linear DS evolves according to

ȧ(t) = Wa(t) + Vs(t). (3.8)

The general solution to equation 3.8 in steady state regime (i.e., when the
influence of initial conditions has faded) is given by5

a(t) =
#H(t)eWtV

$ ú s(t), (3.9)

5The exponential function of a matrix is defined by its Taylor expansion:

e

Wt =
Œÿ

i=0

1
i!W

i

t

i
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where H(t) is the Heaviside-step function, and ú denotes convolution. If we
now assume that W is diagonalizable, hence that W = QDQ≠1 with D a
diagonal matrix with eigenvalues ⁄

i

, then we can rewrite the above equation
element-wise as

a
i

(t) =

S

WUH(t)QeDt Q≠1V¸ ˚˙ ˝
p

T

XV

i

ú s(t)

= H(t)
Nÿ

j=1
Q

ij

p
j

exp(⁄
j

t) ú s(t)

= [Tz(t)]
i

,

where T
ij

= C
ij

p
j

and z
i

(t) = H(t) exp(⁄
i

t) ú s(t). This means that any
linear combination of reservoir states can be written as a linear combination
of the output of filters with impulse response exp(⁄

i

t) operating on the input
signal. These are all well known basic results from linear dynamical system
theory as found in for instance Sontag (1998).
When considering z

i

(t), we can immediately see the stability condition for
linear continuous time DSs: the real parts of all ⁄

i

need to be negative.
Otherwise, the filters would grow exponentially in time.

3.3.2 Modeling noise
Noise can appear in many di�erent forms: one can inject noise into the
neurons as extra input, noise can be superposed on the input signal, or
the neurons can be inherently noisy, superposing noise on their output etc.
In this work, I restrict myself to the last option, which means I superpose
a term ‡(aÕ)

Ô
‘h(t) on the reservoir states, where ‡(aÕ) is the mean over

all neurons of the standard deviation of the hidden states when no noise
is present, ‘ is the signal-to-noise ratio (SNR), and h(t) is the noise signal
with unit standard deviation and zero mean. Scaling the noise to the mean
standard deviation of the reservoir states has the advantage that one does
not need to account for internal amplification of the input signal.
If we further assume that this noise has a bandwidth which is far greater
than the pass-bands of the neurons, it is easy to see that noise will propagate
through the network only to a limited degree. Low-pass filtering of a signal
comes down to taking its average value over an exponential window. If the
noise fluctuates very fast compared to the time scale of the low-pass filtering
operation, the output of this filtering will be very small in amplitude. Each
neuron acts as a low pass filter or an integrator of some sort and hence the
states of the neurons are assumed to filter out the noise on their input. We
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will therefore assume that no noise propagation exists in the network, which
leads to the following reservoir states

a(t) = Tz(t) + ‡(aÕ)
Ô

‘h(t). (3.10)

Note that in any realistic scenario, noise superposed on the reservoir states
will propagate through the network to some degree, which means this model
is only applicable in some situations. However, this approximation allows
us to form a direct link between eigenvalues of the covariance matrix of the
reservoir states, and noise sensitivity (see paragraph 3.3.7).
Extending the analytical model to fully account for noise propagation is in
fact not very di�cult, but since this introduces extra parameters (partic-
ularly noise spectral range) I choose this simpler model. There is another
advantage to this model: if the reservoir is a physical system, reading out
the reservoir state will have to be done by some sort of measurement, which
is usually inherently noisy. Assuming non-propagating noise obviously also
serves to model limitations on readout precision. When noise on the read-
out mechanism is much more intense than the noise propagating through
the network, the above approximation will be valid a fortiori.

3.3.3 Definitions

3.3.3.1 Memory function for continuous time

We can readily take the discrete-time memory function and use it for con-
tinuous time. After all, all operators are well-defined in both, (mean over
time, variance and covariance). Importantly, we define the operator È Í

t

as

Èf(t)Í
t

= lim
T æŒ

1
2T

⁄
T

≠T

f(t)dt,

For simplicity I will assume that s(t) has zero mean and unit variance. Com-
pletely analogous to equation 3.5 we get

m(·) = gT(·)C≠1g(·), (3.11)

with g(·) = Èa(t)s(t ≠ ·)Í and C the covariance matrix of a(t). We can
now reduce g(·) and C by rewriting them in terms of z(t) and keeping into
account the noise I superposed on the hidden state. Starting with g(·), we
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get:

g(·) =
#ÈTz(t)s(t ≠ ·)Í

t

+ ‡(aÕ)
Ô

‘ Èh(t)s(t ≠ ·)Í
t

$
i

=
Nÿ

j=0
T

ij

=⁄ Œ

0
dtÕs(t ≠ tÕ)e⁄jt

Õ
s(t ≠ ·)

>

t

=
Nÿ

j=0
T

ij

⁄ Œ

0
dtÕ exp(⁄

j

tÕ) Ès(t ≠ tÕ)s(t ≠ ·)Í
t¸ ˚˙ ˝

R(t

Õ≠·)

=
Nÿ

j=0
T

ij

⁄ Œ

0
dtÕ exp(⁄

j

tÕ)R(tÕ ≠ ·)
¸ ˚˙ ˝

bj(·)

,

where R(t) is the autocovariance function of the input signal. Writing this
in matrix notation gives

g(·) = Tb(·).

Using the same reasoning, we can calculate the covariance matrix C. Notice
that, since a(t) = Tz(t) +

Ô
‘h(t), with a(t) real, and T and z(t) generally

complex, we can write aT(t) = a†(t) = z†(t)T† + ‡(aÕ)
Ô

‘h†(t), where †
stands for the Hermitian transpose. This allows us to calculate a Hermitian
form for C:

C = T
+
z(t)z†(t)

,
¸ ˚˙ ˝

Cz

T† + ‘‡2(aÕ)
+
h(t)h†(t)

,

= TCzT† + ‘‡2(aÕ)I.

Here, Cz is the covariance matrix for the responses of the filters exp(⁄
i

t),
which can now be calculated the same way as the elements of b(·):

[Cz]
ij

=
⁄ Œ

0
dt

⁄ Œ

0
dtÕR(t ≠ tÕ) exp(⁄

i

t) exp(⁄ú
j

tÕ).

The variances of the states of the individual neurons without noise are given
by the diagonal elements of the covariance matrix, which yields ‡2(aÕ) =
N≠1tr(TCzT†). This number is also equal to the mean eigenvalue of the
noiseless covariance matrix. When we denote these as ›

i

, we can write
N≠1tr(TCzT†) as ›̄ for short. Combining these equations finally leads to a
useful expression for the memory function:

m(·) = b†(·)T† !
TCzT† + ›̄‘I

"≠1 Tb(·). (3.12)
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This expression allows for a quick numerical evaluation of the memory func-
tion for linear dynamical systems. When ‘ = 0, the memory function reduces
to

m(·) = b†(·)Cz
≠1b(·), (3.13)

which means that without noise, m(·) depends solely on the eigenvalues of
W and not on the input vector or connection topology, and it remains in-
variant under a similarity transformation of W. We can for instance replace
W with its diagonal form D which reduces the network to a set of decoupled
complex filters. If real elements are required, each complex pair of eigen-
values can be replaced by a 2◊2 block on the diagonal of W, resulting in a
damped oscillator. Real eigenvalues simply represent disconnected low-pass
filters.

3.3.3.2 Memory capacity and memory quality

Here I introduce the continuous time equivalent of LMC and introduce a new
variable, which I shall call memory quality. LMC is quite easily generalized
to continuous time

M =
⁄ Œ

0
m(·)d· . (3.14)

Note that here, M has dimension time, as the MF itself is dimensionless.
As we will discover soon, LMC for continuous time systems has one odd
feature: it becomes maximal when the MF approaches zero, but stretches
out to infinity. In other words, the LMC is greatest when memory extends
very far into the past, but is very bad everywhere. For this reason LMC is
not the best indicator of good memory, and we introduce memory quality
M

q

(x):

M
q

(x) = 1
x

⁄
x

0
m(·)d· . (3.15)

This measure is always smaller than or equal to 1 and is a number which
denotes the average MF up to a time x in the past which can be chosen at
a value relevant for a certain task or type of reservoir. I will mostly take
x = M . In this case, the memory quality expresses the relative amount of
memory which is actually present in a range equal to the memory capacity.
If M

q

(M) = 1, the MF will be equal to one up to · = M , and then abruptly
fall to zero.
M as well as M

q

(x) can be straightforwardly calculated from equation 3.12.
To do this, one needs to calculate the integrals over the crossproducts of the
elements b

i

(·). Resulting formulas become quite complex, particularly for
M

q

(x) and hence I omit them here.



“Book” — 2012/11/27 — 13:10 — page 69 — #97

3.3 Continuous-time linear dynamical systems 69

3.3.3.3 Reservoir timescale

The last parameter I introduce describes the intrinsic time scale of a reser-
voir, which I will name the reservoir timescale ·

R

and define as

·
R

= ≠
3

tr(W)
N

4≠1
= ≠

A
1
N

Nÿ

i=1
⁄

i

B≠1

. (3.16)

This definition is based on a reservoir in which all neurons act as low-pass
filters with the same timescale ·

R

, where all diagonal elements of W are
equal to ≠·≠1

R

. Note that this does not imply that, for a network with a
certain ·

R

, all neurons have to act as low pass filters with the same timescale,
which would imply all diagonal elements of W would have to be equal.

3.3.4 Input signal model
We previously saw that in the expressions for b(·) and Cz we automatically
encounter a very important statistical feature of the input signal: the au-
tocovariance function R(t). To perform empirical studies of the MF, I will
assume an input autocovariance function of the form

R(t) = exp(≠–|t|),

which describes a signal which is limited in bandwidth by the finite auto-
covariance length –, and where I define the signal timescale as –≠1. This
serves as an analogy to the signal used in discrete networks and is quite
common for many natural stochastic processes. Using this function, we can
calculate the elements of Cz and b(·):

[Cz]
ij

= 1
(– ≠ ⁄

i

)(– ≠ ⁄ú
j

)

A
1 ≠ 2–

⁄
i

+ ⁄ú
j

B
(3.17)

b
i

(·) = (⁄
i

≠ –)e≠–· + 2–e·⁄i

(–2 ≠ ⁄2
i

) . (3.18)

3.3.5 Empirical validation
Armed with the analytical expressions in equations 3.17 and 3.18, we can
now finally validate equation 3.12 empirically. I simulated a 10-neuron toy
network (the shifted random network). To approximate a continuous-time
neural network, I used discrete time steps of 1 ms in a reservoir with a
time scale ·

R

= 1 s. Generating a signal which has R(t) = exp(≠–|t|)
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Figure 3.6: Comparison of the empirically determined MF ver-
sus the result obtained in equation (3.13). The grey dashed
line is the analytical prediction, the black solid line the empiri-
cal measurement. Setup of the experiment is described in the
text.

was performed by creating a signal which was sampled from a Gaussian
distribution each time step, and then low-pass filter this with time scale
–≠1. The resulting signal can easily be proved to approximately have the
desired autocovariance function. As parameters I chose, – = 1 Hz, fl = 0.9
(where fl is the spectral radius of the matrix used to construct W, as fully
explained in section 3.3.8.1), and the MF was numerically evaluated using
equation (3.13). Simulation was performed for a duration of 2◊104 s (2◊107

time steps). No noise was imposed on the signal; the only limitations on
accuracy were the finite simulation time step and numerical precision. The
result is depicted in Figure 3.6, which shows a very good correspondence
between theory and experiment.

3.3.6 Asymptotic memory capacity
Before I start to investigate di�erent ways of constructing networks, I will
discuss the limiting case for the memory capacity for when ·

R

goes to infinity
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and no noise is present. First of all, we look more closely at the definition
of the memory capacity:

M =
⁄ Œ

0
m(·)d·

=
Nÿ

i=1

Nÿ

j=1

⁄ Œ

0
bú

i

(·)b
j

(·)
#
Cz

≠1$
ij

d·

= tr
3

Cz
≠1

⁄ Œ

0
b(·)b†(·)d·

4
.

With this definition and equations (3.17) and (3.18) we can calculate the
asymptotic limit. To do this, I again define normalized eigenvalues ⁄̂

i

=
·

R

⁄
i

, and normalize time on the reservoir timescale: ◊ = ·/·
R

. Transforming
the integration variable from · to ◊ gives

⁄ Œ

0
b

i

(·)bú
j

(·)d· = ·
R

⁄ Œ

0
b

i

(◊)bú
j

(◊)d◊.

Expanding b
i

(◊) and taking the limit ·
R

æ Œ gives

lim
·RæŒ

b
i

(◊) = lim
·RæŒ

1
( ⁄̂i

·R
≠ –)e≠–·R◊ + 2–e◊⁄̂i

2

(–2 ≠
1

⁄̂i
·R

22
)

= 2e◊⁄̂i

–
.

This yields

lim
·RæŒ

·
R

⁄ Œ

0
b

i

(◊)bú
j

(◊)d◊ = lim
·RæŒ

≠4·
R

–2(⁄̂
i

+ ⁄̂ú
j

)
.

We can similarly apply the limit to the elements of Cz, where we find

lim
·RæŒ

[Cz]
ij

= lim
·RæŒ

≠2·
R

–2(⁄̂
i

+ ⁄̂ú
j

)
.

Finally, we can write the the memory capacity as

lim
·RæŒ

M = 2
–

tr (I) = 2
–

N. (3.19)

When ·
R

æ Œ, the memory function will stretch on to infinity and conse-
quently, it will be infinitesimally close to zero, so at first sight the above cal-
culation might not seem very useful. However, there are strong suggestions
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that this limit might in fact be an upper bound for the memory capacity of
linear first order networks. It seems the memory capacity always rises mono-
tonically with ·

R

(see following sections), and reaches an asymptotic upper
limit for very large ·

R

. Furthermore, in Section 3.3.9.3, when researching a
special kind of reservoirs where we can find approximate solutions for the
memory capacity, we can also confirm that this number is the maximal value
for memory capacity. So far, I have not been able to find mathematical proof
that this in fact a true upper bound, and for now I will leave this as a conjec-
ture to be proven or disproven in future research. Notice that this expression
is, just like in discrete time networks, proportional to N and links memory
capacity to signal statistics, suggesting that each neuron is capable to store
a maximal amount of “information” equal to 2/–, just like in discrete time
each single neuron is capable to store one time step of the input signal.
If we recall that the typical timescale of the signal is –≠1, it follows that the
slower the input signal varies, the easier it is to store its history. In the next
sections, I shall investigate a few important reservoir types, using results
which have been acquired for discrete time networks which I translate to the
continuous time domain.

3.3.7 Memory and noise sensitivity

Before moving to empirical testing of di�erent reservoir types, I derive a
general expression which connects the noise sensitivity of the MF to a basis
of orthogonal reservoir states and the eigenvalues of the covariance matrix
C. The operations performed in this section are highly similar to those in
Principal Component Analysis, where I apply it on continuous time functions
instead of the more common discrete data points.
The covariance matrix C = TCzT† is a real symmetric positive-definite
matrix6 and has an eigendecomposition such that TCzT† = O�O†, where
O is orthogonal, and � a diagonal matrix with only positive real eigenvalues
›

i

. Notice that, since OO† = I, we can write

(TCzT† + ›̄‘I)≠1 = (O�O† + ›̄‘OO†)≠1

= O†(� + ›̄‘I)≠1O
= O(� + ›̄‘I)≠1O†.

6For shifted random matrices, discussed in the next paragraph, some negative
eigenvalues can be found, but these are quite probably due to errors originating
from limited numerical precision.
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This allows us to write the MF as follows

m(·) = b†(·)T†O¸ ˚˙ ˝
—Õ†(·)

(� + ›̄‘I)≠1 O†Tb(·)¸ ˚˙ ˝
—Õ(·)

=
Nÿ

i=1

—Õ2
i

(·)
›

i

+ ›̄‘
.

Notice that —Õ(·) is strictly real. Defining —
i

(·) = —Õ2
i

(·)›≠1
i

, we can write
this as

m(·) =
Nÿ

i=1

—
i

(·)
1 + ›̄›≠1

i

‘
. (3.20)

This means that we can decompose the MF as a set of functions which are
all real, positive and between zero and one. The terms in this equation
are ordered according to decreasing size of the eigenvalues ›

i

, with i = 1
corresponding to the largest of ›

i

and as such in a declining order.
There is a clear interpretation of the functions —

i

(·). Suppose we wish to
linearly transform the reservoir states a(t) in the absence of noise, so as to
define a basis of states â(t) which have the property that

+
â(t)âT(t)

,
= I,

i.e., a set of orthogonal (uncorrelated) states with unit standard deviation.
The above procedure does in fact perform this transformation. When we
implicitly define â(t) as

a(t) = O�1/2â(t), (3.21)

it can be checked that this yields the desired expression for
+
a(t)aT(t)

,
. We

can define the orthogonal base states from this expression:

â(t) = �≠1/2O†a(t), (3.22)

which yields the desired covariance matrix. Looking at the original definition
of the MF, we can now rewrite it in terms of the base states â(t), and in the
absence of noise:

m(·) =
Nÿ

i=1
Ès(t ≠ ·)â

i

(t)Í2, (3.23)

so that —
i

(·) = Ès(t ≠ ·)â
i

(t)Í2.
Each of the terms in (3.20) has a clear dependence on its corresponding
eigenvalue ›

i

and its noise sensitivity. We can make a very rough estimate
of the MF for a certain noise intensity by approximating ‘›̄/›

i

as zero when
‘ < ›

i

/›̄, and ‘›̄/›
i

= Œ when ‘ > ›
i

/›̄. This means that we only add up
terms in (3.20) up to i = k where ‘ < ›

k

/›̄ and ‘ > ›
k+1/›̄. This estimate is

inaccurate but gives a graphical interpretation of the —-functions in (3.20).
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Figure 3.7: (a) Example of the MF for di�erent values of ‘ of
a 20-neuron network constructed as described in section 3.3.8.1
with timescale ·

R

= 2, and fl = 0.9. The thick black line is for
‘ = 1, the dark grey line for ‘ = 10≠3 and the light grey line
for ‘ = 10≠6. Notice the strong sensitivity for noise: even for a
signal-to-noise ratio of the order 10≠6, the memory function is
still not close to its asymptotic convergence to its ideal for ‘ = 0
(highest line). (b) Cumulative sum of —-functions. The k-th
line from the bottom up is the sum of the —-functions up to k.
The last 4 —-functions were not added due to the fact that the
smallest of the eigenvalues ›

i

cannot be calculated accurately,
resulting in irregular behavior

Figure 3.7 shows a graphical representation of the MF for di�erent noise
values on the right, and a cumulative sum of —-functions on the left. Notice
the increasing number of oscillations on the —-functions, which gives rise to
the final shape of the MF when no noise is present.
There is a very clear interpretation for this type of noise sensitivity. When
writing equation 3.21 element-wise, one can see that the base states â

j

are
each encoded in the reservoir state a with a magnitude


›

j

:

a
i

(t) =
Nÿ

j=1
U

ij


›

j

â
j

(t).

The smaller ›
j

gets, the smaller the actual contribution of â
j

is to the reser-
voir states, and the more it will “drown” into the surrounding noise.
This result reflects facts which have been suggested by others as well. For
instance, in Jaeger (2001b) it is mentioned that the memory capacity of neu-
ral networks is limited by the conditioning of the covariance matrix, where
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Figure 3.8: Example eigenspectra for the three di�erent types
of connection matrices. On the left is the shifted random matrix,
in the middle the inverse z-transformed matrix, and on the right
is the spectrum of a resonator reservoir.

it was found that for discrete time reservoirs, the measured memory capac-
ity always is slightly smaller than its theoretical value. Since the condition
number of the covariance matrix is equal to the ratio between its highest
and lowest singular values, which are equal to the eigenvalues because C is
a positive semi-definite matrix, this e�ect is directly linked to our result.
In Ozturk et al. (2006) a di�erent approach is used where the goal is to max-
imize the entropy of the reservoir states in order to span the widest possible
range of nonlinear mappings of the input signal. It was found that - in order
to do this - the reservoir states should be as little correlated as possible.
When the reservoir states are all uncorrelated, we essentially get the orthog-
onal base states â

i

(t), where the eigenvalues of the covariance matrix are
equal to the individual variances of the reservoir states, which means that
they will not become excessively low.

3.3.8 Constructing weight matrices

Notice the di�erence between equation 3.8, and the mathematical notation
I used in paragraph 2.1.3. Here, I do not explicitly add the leak term to the
equation, but I rather assume that it is included in the matrix W.
As mentioned, we require that the real parts of the eigenvalues of W are
negative. For random matrices, this is definitely not the case. In my research
I have explored three strategies to construct stable connection matrices for
continuous time.
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3.3.8.1 Shifted random matrices

The easiest and most intuitive way to construct stable weight matrices is
to reach back to the previous chapter and use a linear approximation of
equation 2.3. This gives us

ȧ(t) = 1
·

R

(WÕa(t) ≠ a(t) + Vs(t))

= 1
·

R

(WÕ ≠ I)a(t) + 1
·

R

Vs(t),

where I have used WÕ to discern it from the W I use in this section. If we
compare this with equation 3.8, we see that

W = 1
·

R

(WÕ ≠ I).

Suppose WÕ is a random matrix with fl Æ 1. What can we say about the
eigenvalues of W? When we use the eigenvalue decomposition of WÕ we can
write that

W = 1
·

R

(QÕDÕQÕ≠1 ≠ I)

= QÕ DÕ ≠ I
·R

QÕ≠1.

This means that W has the same eigenvalues as WÕ, minus one, and divided
by · . As all eigenvalues of WÕ are in the unit circle, the shift to the left on
the complex plane will guarantee that their real parts are smaller than zero.
Hence, we can very easily construct applicable continuous time connection
matrices. Note that ·

R

falls back to its previous definition: The average of
the eigenvalues of WÕ will have an expectation value of zero7. The average
eigenvalue of I is obviously equal to one, and this means that the average
eigenvalue of W is equal to ·≠1

R

.

3.3.8.2 Transformed matrices

In Ozturk et al. (2006), it is suggested that good ESNs should have an eigen-
value spectrum that evenly and uniformly distributes the eigenvalues over
the unit disk. For random matrices, this is already approximately the case.
The approach with shifted random matrices doesn’t take into account the

7A useful result from linear algebra is that the sum of all the eigenvalues of a
matrix is equal to the trace of that matrix. As such, the average of the eigenvalues
is also the average of the trace, which for random matrices has an expectation
value of zero.
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meaning of growth rate and frequency. Let us consider the case for dis-
crete time, where eigenvalues are uniformly and evenly distributed over the
unit disk. The associated eigenmodes of the system have frequencies which
are uniformly distributed between the minimum frequency (zero) and the
maximum (fi). The growth rates of the eigenmodes are similarly broadly
distributed: from the eigenvalues in the centre, (decaying instantly to zero),
to the edge of the unit disk (decaying infinitely slow). In continuous time,
however, the meaning of growth rate and frequency has changed. A shifted
random matrix in continuous time will have eigenmodes with frequencies
and growth rates that are distributed very di�erently than in the discrete
time case.
We wish to transform the distribution of discrete-time frequencies and growth
rates to continuous time. I will do this via the inverse z-transform. I explain
the details in appendix A.2.1.1. The resulting matrices have eigenvalue dis-
tributions are exponential for the real part and uniform for the imaginary
part (See Figure 3.8, central panel) .

3.3.8.3 Transformed orthogonal matrices: resonator reser-
voirs

The third type of connection matrices I consider are those that are based
on orthogonal matrices in discrete time. In appendix A.2.3 I describe their
construction. The resulting distribution of eigenvalues is a vertical line in
the complex plane, crossing the real axis ≠·≠1

R

. I choose the imaginary
parts of the eigenvalues equidistantly, with a di�erence in angular frequency
Ê between two successive eigenvalues. We now redefine the index i for the
eigenvalues going from ≠(N ≠ 1)/2 to (N ≠ 1)/2 rather than from 1 to N .
This gives:

⁄
i

= äÊi ≠ 1
·

R

, (3.24)

where I use ä as the symbol for the imaginary unit to avoid confusion with
indices i or j.
When no noise is present, we can replace the reservoir by a set of discon-
nected filters characterized by the eigenvalues. In this scenario the reservoir
states are given by

a
i

(t) =
⁄ Œ

0
exp(äÊitÕ) exp(≠tÕ/·

R

)s(t ≠ tÕ)¸ ˚˙ ˝
sW (t,t

Õ)

, (3.25)

where s
W

(t, tÕ) is what we will call the “windowed signal”, the signal at a
time t ≠ tÕ, multiplied by an exponential window function exp(≠tÕ/·

R

). The
reservoir states in the above equation are very similar to the first N Fourier
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coe�cients of a discrete Fourier transform of s
W

. Signal reconstruction
can then be performed by constructing the Fourier series. This kind of
reservoir is basically made of a set of damped resonators with equal decay
rate and di�erent frequencies. Therefore, we shall simply call them resonator
reservoirs.
An example spectrum for a resonator reservoir is shown in the right panel
of Figure 3.8.

3.3.9 Properties of the networks
We can use our analytical model to study the memory for the three di�erent
connection matrices. First, I shall define a criterion to optimize the MF of
a given reservoir. For practical purposes, this will obviously depend on the
task which needs to be performed, but as a general criterion, we wish to
find a balance between memory capacity and memory quality. As an overall
objective function for optimum memory, we multiply the memory quality by
the memory capacity. This number is equal to

s
M

0 m(·)d· , and signifies how
much memory is in fact present within the range {0 · · · M}.

3.3.9.1 Shifted random matrices

First I consider shifted random matrices. I investigate the three measures M ,
M

q

(M) and MM
q

(M) as functions of the reservoir time scale and number of
neurons N . Results are depicted in the top three panels of Figure 3.9. The
highest memory quality is found at low ·

R

(between 0.01 and 0.1), and mem-
ory capacity rises monotonically with ·

R

. Optimal values for MM
q

(M) are
found for ·

R

¥ 2 and this seems independent of the number of neurons. The
shape of the MFs corresponding to high, low, and optimal ·

R

are depicted
in the bottom left panel of Figure 3.9. As one can expect, fast reservoirs will
have very good memory, but only for a very short history. Slow reservoirs
generally have very low MFs which extend very far. The optimal value for
·

R

as found by our criterion tries to balance these two e�ects by producing
a MF with a reasonable range and quality. Still, it is fairly low in a large
part of its range, until it drops to about zero at · = 100.
The bottom right panel of Figure 3.9 shows the average memory capacity
as a function of N for di�erent noise levels and ·

R

= 2. Two things can be
derived from this graph. First, it seems that M does not grow linearly with
N at all, not even when ‘ = 0. Secondly, as we have already seen in Fig-
ure 3.7, random reservoirs are very sensitive to noise. Both these e�ects are
caused by the fact that the covariance matrices for these types of networks,
are very ill-conditioned, with condition numbers which reach the order of
1018 for N = 50, and higher still for higher N . Most of the normalized
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Figure 3.9: Top three panels: M , M
q

(M) and MM
q

(M) as
a function of N and ·

R

for shifted random networks (·
R

shown
on a logarithmic scale and ‘ = 0). Bottom left panel: memory
function with respect to di�erent values of ·

r

. The argument
· is shown on a logarithmic scale, N = 100. Bottom right
panel: memory capacity as a function of N with respect to
di�erent noise levels. For this experiment, ·

R

= 2. All results
in this figure have been found by averaging over 50 reservoir
initializations.

eigenvalues ›
i

›̄≠1 are extremely small and cause the high noise sensitivity.
In fact, most numerical values of ›

i

are so small compared to the highest
eigenvalue, that for N > 20 it becomes virtually impossible to accurately
calculate their values, resulting in negative ›

i

(which is definitely incorrect,
since C has to be positive semi-definite).
The relative number of numerically incalculable eigenvalues increases rapidly
with N . This means that - theoretically - memory capacity may in fact grow
linearly with N , but confirming this with our analytical model would require
much higher numerical precision for inverting C. Another illustration of this
fact can be found when numerically trying to validate equation 3.19. For this,
I took ·

R

= 105 (much higher than –≠1) and calculated the according mem-
ory capacity with our analytical model for networks of 100 neurons. Over
50 trials, the average M was equal to 48, approximately 4 times lower than
the expected 200. Obviously, such high numerical precision requirements
are undesirable and these results lead me to conclude that shifted random
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Figure 3.10: Top three panels: M , M
q

(M) and MM
q

(M) as
a function of N and ·

R

for exponentially distributed eigenvalue
networks (·

R

shown on a logarithmic scale and ‘ = 0). Bottom
left panel: MF with respect to di�erent values of ·

R

. The
argument · is shown on a logarithmic scale, N = 100. Bottom
right panel: memory capacity as a function of N with respect to
di�erent noise levels. All results in this figure have been found
by averaging over 50 reservoir initializations.

reservoirs in continuous time are unsuitable for good memory storage.

3.3.9.2 Transformed matrices

We now perform the same tests for inverse z-transform connection matrices,
where again, – = 1. Results are depicted in Figure 3.10. This time, the
optimal reservoir time scale was found for ·

R

= 6 again virtually indepen-
dent of N . Memory capacity rises monotonically with ·

R

as in the previous
paragraph. Also, the MF for optimal ·

R

is of a higher overall quality than
that found for random reservoirs, with a relatively high value over most of
its range until a drop-o� at · = 100. The bottom right panel shows memory
capacity at the optimal reservoir time scale. The LMC rises slower than
linear with N , however, we find significantly better values than for random
reservoirs. We can test equation (3.19) using 100 neurons and ·

R

= 105,
averaged over 50 reservoir initializations. This gives an average memory ca-
pacity of about 154, which is still below the theoretical value of 200, but the
di�erence is not as dramatic as for random reservoirs.
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Figure 3.11: Properties of resonator reservoirs. (a) Memory
function with respect to di�erent values of T

R

. · shown on
logarithmic scale, N = 100, and ·

R

= 0.3T
R

. (b) LMC as a
function of N for di�erent values of noise. For this experiment,
T

R

= N , and again ·
R

= 0.3T
R

. (c) Black lines: memory
functions at di�erent values of noise. N = 50, T

R

= 50,
·

R

= 0.3T
R

. All results in this figure have been found by
averaging over 50 reservoir initializations.

Clearly, choosing exponentially distributed eigenvalues will give acceptable
memory capacity and quality for most tasks. However, looking at the mem-
ory capacities at di�erent noise levels, we can again see that they are quite
sensitive to noise. Relative to the memory capacity when no noise is present,
noise sensitivity is in fact similar to that of random reservoirs, however an
absolute comparison shows that even when ‘ = 1, memory capacity is com-
parable to that of noiseless random reservoirs. The eigenvalue spectrum of
C is indeed generally better conditioned than that of random reservoirs:
most eigenvalues can still be calculated accurately and remain in a reason-
able range. However, with increasing N , most normalized eigenvalues slowly
drop, and eventually, more and more become incalculable, explaining the
slower-than-linear increase of M as a function of N .

3.3.9.3 Resonator reservoirs

Finally I take a look at how well resonator reservoirs perform in terms of
LMC. Figure 3.11a provides examples of the shape of the MF, and Figures
3.11 b and 3.11 c display LMC w.r.t N for di�erent levels of noise and the
e�ect of noise on the shape of the MF respectively. It is clear that resonator
reservoirs both have excellent noise robustness and their memory capacity
scales perfectly with N . This reflects the fact that a Fourier decomposition
is a very e�cient way to decompose a signal. The condition number of the
covariance matrix C is not necessarily low, and is for instance on average
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Figure 3.12: (a) Depiction of the MF of a reservoir with
50 neurons at di�erent noise levels (the thick grey line is
at ‘ = 1). T

R

= 20 and ·
R

¥ 13.4: chosen such that
exp(≠2T

R

/·
R

) = 1/20. The y-axis is on a logarithmic scale
to visualize its exponential decay. Notice the sudden drop-o�
at each multiple of T

R

. (b) Depiction of M
q

(T
R

) as a func-
tion of T

R

for di�erent reservoir sizes. The grey dashed lines
are the predictions made by equation (A.12), whereas the black
lines are from the full analytical model. ·

R

is chosen to be 0.3
times the reservoir period T

R

, which is an optimal value found
with equation (A.12). (c) The influence of signal interference:
M

q

(T
R

) as a function of ·
R

for di�erent T
R

, N is chosen at
50. Grey dashed lines are the theoretical prediction found by
equation (A.12), black lines are the values found for the full
analytical model.

of the order 108 for N = 100. However, most of the normalized eigenvalues
›

i

›̄≠1 are not small at all, and usually only few of the normalized eigenvalues
are truly small, most are around the order 10≠2

The nature of resonator reservoirs allows us to find excellent analytical ap-
proximations of their properties in the absence of noise. In appendix A.2.4 I
make the necessary derivations, and here I restrict myself to only providing
a list of the most important results.

• Remember that I mentioned that resonator reservoirs essentially per-
form a truncated discrete Fourier analysis on an exponentially decay-
ing window of the input signal. Obviously, a discrete Fourier transform
is only defined on a closed interval, the length of which is equal to the
period of the lowest frequency present. This time scale I will call the
reservoir period T

R

, which in our case is equal to T
R

= 2fi

Ê

. As is clear
from equation 3.25, we can state that the hidden state of the network
is the (transformed) set of Fourier coe�cients of the windowed signal.
However, the exponential window obviously extends beyond the reser-
voir period T

R

. If we wish to have good reconstruction for a history
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· = {0 · · · T
R

}, we will need to make sure that the exponential window
has faded enough to avoid interference from the signal beyond · = T

R

.
On the other hand, if the exponential window fades too quickly, signal
reconstruction within · = {0 · · · T

R

} will become compromised.
This leads to the conclusion that resonator reservoirs essentially have
two important parameters to play with: the reservoir time scale and
the reservoir period. In appendix A.2.4.1 I derive that the MF can be
written as the product of two factors: one that drops exponentially
with · , with a decay rate ·R

2 , and a periodic factor with period T
R

. In
figure 3.12a I have drawn an example of the MF of resonator reservoirs
at di�erent noise levels, where the described shape of m(·) is indeed
quite apparent.

• For now, we will consider the memory quality of the reservoir period
M

q

(T
R

) as the parameter we wish to optimize, i.e, we wish to have
very good signal reconstruction in the reservoir period and are not
interested in anything beyond. Appendix A.2.4.2 provides a (rather
lengthy) derivation for this quantity. We find that approximately

M
q

(T
R

) = 2
fi

5
1 ≠ e≠2 TR

·R

6
arctan

3
fiN

T
R

(– + ·≠1
R

)

4
, (3.26)

where N is the number of neurons and – again denotes the covariance
length. This expression allows us to find an optimal solution for ·

R

when no noise is present (either numerically or graphically, since this is
a transcendental equation for ·

R

), which is ·
R

¥ 0.3T
R

. It also clearly
expresses the relation between M

q

, N and T
R

, which is depicted in
Figure 3.12b and 3.12c. Basically, memory quality has to be sacrificed
to increase T

R

, as one would intuitively expect.

• Equation 3.26 also allows us to find a good approximation of M . We
find that

M = 2
fi

T
R

arctan
3

fiN

T
R

(– + ·≠1
R

)

4
.

This equation allows us to analytically check the situation where ·
R

æ
Œ. Appendix A.2.4.3 provides the analysis, and indeed this confirms
the finding that

lim
·RæŒ

M = 2N

–
.
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3.4 Shortcomings, non-linear extensions
and future work

From the results I have presented in this chapter so far, one might be lead
to conclude that the optimal choice for an ESN would be one with an or-
thogonal connection matrix. Only one study I am aware of has considered
using a highly specific kind of orthogonal network (a permutation matrix)
(Boedecker et al., 2009), and compared its performance to random networks.
I have never come across strong empirical proof that for real world tasks or-
thogonal networks score any better than random networks. Even though
the connection between orthogonality and LMC remains interesting from a
theoretical point of view, its applicability seems limited at the time.
The single greatest drawback in studying linear memory capacity is the fact
that it ignores non-linear transformations of the input signal. If the informa-
tion of n time frames ago is su�ciently distorted via a non-linearity, linear
memory capacity considers this information irretrievably lost. In reality, we
are not interested in reservoirs with good linear memory. If that’s all we
want, we will make a delay line or something similar. What we require from
the reservoir are non-linear transformations such that useful features of the
recent input history are produced. What we wish to understand from this
in terms of memory is how long the input history is that the hidden state
depends on, and how we would be able to control this memory depth.
A better understanding of memory in RNNs can greatly aid to understand
how we can build recurrent systems with the right properties for the task
we need to solve. One ML training algorithm that can possibly benefit from
such a framework is backpropagation through time, where recurrent weights
are trained explicitly. One of the great challenges in this domain is to find a
way to make sure a network retains relevant information long enough, while
simultaneously making sure that the network remains stable. A good un-
derstanding of memory can aid in the construction of network models which
are particularly good at this (for instance the framework of long short term
memory networks (Hochreiter and Schmidhuber, 1997)).
In this section I will briefly discuss two methods that try to o�er an alter-
native look on studying reservoir memory. The first one is a generalization
of linear memory capacity that essentially not only reconstructs the signal
itself, but also all possible non-linear transformations of it. The second one I
will suggest here is a fairly simple measure that only looks at the dependency
of the current state on past input. It bears no quantitative information such
as memory capacity, but does o�er an interesting qualitative view on memory
of a recurrent neural network.
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3.4.1 Non-linear memory capacity

A strong and straightforward way in which to include non-linearity in the
concept of memory capacity is to measure not just how well it reproduces
the input signal, but also non-linear functions of the input signal. This was
the theme of the research published in Dambre et al. (2012). The idea starts
o� similarly to that of LMC; we feed a dynamical system one-dimensional
i.i.d. noise (in this case uniformly distributed between ≠1 and 1). Next, we
attempt to reconstruct not only the input with delay · , but also a full set
of orthogonal functions of the input history. In the case of i.i.d uniformaly
distributed noise, this set of functions would be a set of Legendre polynomi-
als. If we denote the Legendre polynomial of order d as L

d

(x), each of this
set of orthogonal functions can be written as:

fd =
ŒŸ

i=0
L

di(s(t ≠ i)).

Here, d is an infinitely long vector with elements d
i

, the respective degrees
of the polynomials in the product. Note that the Legendre polynomial of
order zero is equal to 1, and that of order one is the identity function. This
means that if we linearly wish to retrieve the input of delay · , we will choose
a function with d

i

= ”
i·

.
Obviously, there are an infinite number of infinitely long sequences d, and
measuring scores for each of these seems impractical. However, it is possible
to make some assumptions which yield a natural way to select the sequences
which carry the bulk of the non-linear memory capacity. First of all, it is
reasonable to assume that we only need to consider a finite history. If the dy-
namical system has fading memory, functions which depend on input frames
that lie very far in the past will have very low scores, and can be considered
negligible. Therefore it is possible to truncate the search of the individual
scores. Next, we can for instance group the remaining sequences by total
degree D =

qŒ
i=0 d

i

, which allows us to measure the total memory capacity
for each degree. That of the first degree corresponds to the LMC, that of
the second order to all quadratic functions of the input, etc.
Finally we end up with a set of memory capacities for each degree. Note that
for each degree we need to compute an increasing set of scores to account for
all crossproducts of Legendre polynomials. Normally however, the memory
capacities tail o� when their degree increases, which means that it su�ces
to compute a limited number. The total memory capacity of the system is
then defined as the sum of all memory capacities for all degrees.
It can be proven that the total memory capacity is smaller than or equal
to N , the dimensionality of the internal state of the system, which places



“Book” — 2012/11/27 — 13:10 — page 86 — #114

86 3 Memory Properties

a fundamental bound on the computational power of any dynamical sys-
tem. Furthermore, measuring the memory capacities of the di�erent degrees
can give an indication of which kind of functions the DS actually computes.
For example, in Dambre et al. (2012) capacities were measured for standard
ESNs without input bias, and they found that only memory capacities of odd
degrees were non-zero. This instantly reflects the fact that an ESN without
input bias can only compute antisymmetric functions of its input.
The possible applications of non-linear memory capacity have not yet been
explored. One potential use (currently being investigated by Joni Dambre,
a member of my lab) would be to apply the framework directly on the input
and output of a task. If it is possible to define an orthogonal basis of func-
tions on the spatiotemporal distribution of the input signal, it is possible to
measure the score on how well the output of the task can reproduce these
functions. This would reveal the underlying functional connection between
input history and output, and show what kind of non-linear transformation
is required to solve the task. This problem is quite similar to non-linear
system modeling (Wiener, 1958)
Non-linear memory capacity still has certain downsides that may limit its use
in practical applications. First of all there is the problem that for high de-
grees of non-linearity, memory capacity becomes computationally demanding
to calculate accurately, limiting how well we can measure it for very non-
linear systems. Secondly, the set of non-linear transformations that the DS
computes does not only depend on the DS, but also on the input signal, as
temporal correlations within it will influence the dynamics of the system.
There is no easy way to generalize the framework to any kind of input sig-
nal. If we consider real-world data such as, e.g., speech, it can have a very
specific, and potentially very complicated, spatiotemporal distribution, and
defining an orthogonal basis of functions on such a signal may be far from
trivial.

3.4.2 The norm of the Jacobian: instant view
on memory.

Here I will pursue a completely di�erent view on ‘memory’, and instead of
looking at how well we are able to retrieve input, I shall attempt to gauge
sensitivity of the hidden state on past input frames. I shall do so by looking
at the Jacobian of the hidden state w.r.t. the input signal of · steps ago. We
can take its norm to describe in one single number how much the hidden state
would change for an infinitesimal change in input from · steps ago. This
approach has two important advantages. First, we can have an instantaneous
look at the memory window of the reservoir. After all, the Jacobian is defined
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at each moment in time, which means that at each moment in time we can
gauge the current hidden state’s sensitivity on changes in past input. The
second advantage is that the degree of non-linearity can be interpreted in a
wholly new manner. Linear ESNs will have a fixed Jacobian, i.e., it does not
depend on time. As the network starts to act more non-linearly, the Jacobian
will show temporal variations. The more non-linear the system, the stronger
these will be, which o�ers us a new measure for the non-linearity of an ESN.
The great disadvantage of this method is that the norm of the Jacobian has
no easy quantitative interpretation, whereas the memory function can be
interpreted as a correlation coe�cient.

3.4.2.1 Definitions

The Jacobian of the hidden state w.r.t. the input signal at · time steps ago
is defined as

Ja(t, ·) = ˆa(t)
ˆs(t ≠ ·) . (3.27)

This is a matrix of size N ◊ N
in

. For an ESN with leak rate (as defined by
equation 2.4), the Jacobian can be recursively calculated by

Ja(t, ·) = ((1 ≠ “)I + “D(t ≠ ·)W) J(t, · ≠ 1), (3.28)

where
Ja(t, 0) = D(t)V.

With the Jacobian we can e.g. select a single neuron in a network and see
at each instance in time how the current state depends on the present input
history. If we are interested in the global dependency of the hidden state on
the input history, we can look at the Frobenius norm of the Jacobian, i.e.
the global rate of change for the hidden state for any change in the input
signal:

Sa(t, ·) = ||Ja(t, ·)||
F

, (3.29)

where I use S for sensitivity. When interpreting equation 3.28, we see that
all dependency on t is present in the diagonal matrices D(t ≠ ·). When
the network is quasi-linear, these matrices are approximately equal to the
identity matrix, which means that they will not depend on time. Vice versa,
when the hidden states are pushed into their non-linearities, and are quite
variable, D(t ≠ ·) will subsequently be quite variable itself, and the depen-
dency on t will be rather strong. This o�ers us an intriguing perspective
on nonlinearity. Non-linear dynamical systems are able to have a variable
sensitivity to input signals, whereas for linear systems this sensitivity is fixed.
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3.4.2.2 Visualizing non-linearity

In Figure 3.13, I show the e�ect on non-linearity on Sa(t, ·). I used an ESN
with 100 nodes. The input was one-dimensional Gaussian noise and the leak
rate was equal to one. The exact parameters used for the experiment are de-
scribed in the captions of the figures. Our previous conclusion seems correct:
the more strongly non-linear, the more the sensitivity window fluctuates in
time. Furthermore it appears that in very non-linear networks (bottom panel
in Figure 3.13), the hidden state seems to undergo abrupt cut-o� moments,
where the sensitivity for past input suddenly drops significantly. This might
imply that such networks switch between temporarily ‘unstable’ regimes, in
which they retain memory on a growing length of history, but are abruptly
quenched in activity at irregular intervals.
It would be interesting to understand what causes these sudden cut-o� mo-
ments. I have found that they can be linked with the spectral radius of the
Jacobian of the hidden states w.r.t the previous hidden state, i.e., the Jaco-
bian of the linearized system. Indeed, it seems that this spectral radius is
slightly higher than one, most of the time, indicating temporarily divergent
behavior, and during the cut-o� moments it suddenly drops significantly be-
low one, contracting the dynamics of the system. If we could assert control
over these cut-o�s, e.g., via trained feedback connections, we can in principle
assert control over which historic information is present in the network.
In Figure 3.14 I show how a single neuron’s Jacobian evolves in time. Again,
we see that the e�ect of non-linearity is reflected in how much the shape
of the Jacobian changes in time. The cut-o� moments for very non-linear
ESNs are also apparent.
If we look at the Jacobian of a single neuron for a linear system, the shape of
this Jacobian is constant, and in fact it is the shape of the filter this neuron
applies on the input history. In the non-linear case this interpretation is
unfortunately not so straightforward. Indeed, the Jacobian is a filter cor-
responding to the local linearization of the function applied on the input,
but it does not take into account the (variable) o�set of the linearization of
the hyperbolic tangents. Still, this opens the way to an alternative inter-
pretation of reservoir functionality. Indeed, we can consider each neuron as
a filter with a variable shape and o�set, acting on the input history. If we
train an output, we optimally combine these filters into a new one, which
approximates the filter that underlies the task.
It is interesting to speculate on the possibilities this o�ers to visualize the
input-output mapping a reservoir computes. We can train a reservoir to
solve a task and next visualize the Jacobian of the output w.r.t. the input
signal. Perhaps this can reveal functional dependencies that are not obvious
to the experimenter, but essential to solving the task.
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Figure 3.13: Example of sensitivity as given in equation 3.29
as a function of t and · . Each vertical line in this plot shows the
current sensitivity of the neuron on the input history. The upper
panel is in the quasi-linear regime, with fl = 0.99 and ’ = 0.001.
The middle panel is for a mildly non-linear ESN(fl = 1.05 and
’ = 0.1), and the bottom panel is for a highly non-linear ESN
(fl = 1.5 and ’ = 0.5).



“Book” — 2012/11/27 — 13:10 — page 90 — #118

t

⌧

linear

50 100 150 200 250 300

20

40

60

80

100

t

⌧

mildly non-linear

50 100 150 200 250 300

20

40

60

80

100

t

⌧

strongly non-linear

 

 

50 100 150 200 250 300

20

40

60

80

100

Figure 3.14: Example of the Jacobian of a single neuron within
a network as a function of t and · . Each vertical line in this
plot shows the Jacobian of the neuron w.r.t. the input history.
The upper panel is in the quasi-linear regime, with fl = 0.99
and ’ = 0.001. The middle panel is for a mildly non-linear
ESN(fl = 1.05 and ’ = 0.1), and the bottom panel is for a
highly non-linear ESN (fl = 1.5 and ’ = 0.5).
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3.4.2.3 Alternative measures

We can think of other potential methods to measure ‘dependence’ in ESNs.
One promising direction would be to use the framework of information the-
ory. For instance, the dependency between two variables can be expressed
in terms of mutual information. In our case we would be interested in the
mutual information between the delayed input signal and the hidden state.
Mutual information does not change after a non-linear transformation, so
in principle it can be a powerful tool for memory visualization. Indeed, it
is often used in the field of data visualization (Furuya and Itoh, 2009; Xu
et al., 2010). Unfortunately, measuring mutual information requires very
large amounts of data, especially for high-dimensional variables such as a
hidden state. An accurate measure of this sort would be very di�cult. Fur-
thermore, as mutual information is a statistical property, it does not have
the same instantaneity as the Jacobian, and we can only measure averages
over large amounts of data.
Other information-theoretical concepts such as Fischer information have
been applied to model the memory of dynamical systems (Ganguli et al.,
2008). However, the authors primarily considered linear systems, which are
already well analyzed and understood.

3.5 Conclusions

This chapter was devoted to the study of linear memory capacity of Echo
State Networks. My two main contributions to this field are the general-
ization of LMC to the case of multidimensional input signals, and the case
of continuous time systems. Through empirical and theoretical research I
found that some of the well-known results of previous research can be read-
ily extended to these two scenarios, namely that the LMC is fundamentally
restricted by the number of hidden nodes of the network. Furthermore, in
the case of continuous time systems, LMC is linked to the autocovariance
function of the input signal and to the time scale of the network.
The conclusion that orthogonal networks are much more robust against noise
seems to hold. In the case of high-dimensional input signals, random net-
works allocate a disproportionally large fraction of their available memory
capacity to signal components with low power. This distribution is far bet-
ter in orthogonal networks, where memory capacity is proportional to the
power of each component.
In continuous time, an equivalent to orthogonal networks can be designed
that is particularly robust against noise. These networks are tunable in the
sense that they can concentrate all their memory capacity within a certain
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tunable range, called the reservoir period.
Finally I elaborate on non-linear generalizations of the linear memory frame-
work. I briefly discuss results that have been made recently in this field, and
i suggest a method for memory visualization, based of the Frobenius norm
of the Jacobian.
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4
Infinite Reservoirs:
Recurrent Kernels

This chapter will concern a di�erent line of research. Here I will unite the
concept of reservoir computing with that of kernel machines. I will show
that it is possible to define infinitely large reservoirs, characterized by a few
meta-parameters, and subsequently find a way to actually employ them on
tasks. In order to be able to deal with an infinitely large hidden state, I use
the so-called kernel trick, which means that we end up with a kernel function
that is the inner product of the hidden states of infinite networks. These
kernels can be readily analyzed in terms of dynamical stability.
I’ve structured the chapter as follows: first of all I will explain the basics of
kernel machines, starting from a simple linear regression example. Next, I
introduce recurrent kernels, which use a type of recursion which is inspired
on that of RNNs. I show that a broad subset of existing kernel functions
can be readily extended to recurrent equivalents.
Once I have formally defined recurrent kernels, I discuss a straightforward
framework in which feedforward neural networks can be made infinitely large,
leading to a kernel function expression. Next I apply the framework of recur-
rent kernels on these, and argue that such kernels are equivalent to infinitely
large reservoirs. I provide a set of examples of recurrent kernels, some based
on existing kernel functions, some on types of recurrent networks.
Section 4.5 addresses the stability of the dynamics of recurrent kernels. I
derive stability criteria for di�erent examples. I’ll also look into the meaning
of spectral radius for infinite sigmoid networks, and find a way to derive the
Lyapunov exponent from the recurrent kernel function.
Finally, I looked at task performance. I tested recurrent kernel machines on
both an academic task and a real-world speech recognition task, reaching
performances close to the state of the art.
A lot of inspiration for the work in this chapter comes from Cho and Saul
(2010), where it was found that it is possible to stack kernels, and that this



“Book” — 2012/11/27 — 13:10 — page 94 — #122

94 4 Infinite Reservoirs: Recurrent Kernels

is the equivalent of multi-layered infinite neural networks. As recurrent net-
works can be considered feed-forward networks with an indefinite number of
layers, building upon this work was straightforward.
Most of the results shown in this chapter are published in Hermans and
Schrauwen (2011), where I first explain the idea of recurrent kernels, and
Hermans and Schrauwen (2012), which deals with sparse threshold unit net-
works (a specific case of recurrent network).

4.1 Kernel machines

In the introduction chapter I already gave an intuitive explanation of what
kernel machines entail. Here I start from a theoretical point of view. First of
all we shall only consider static data. This means that instead of a signal that
changes in time s(t), we consider static data points, (for example images,
properties of a house, etc...) which we denote by s

i

, with i œ {1, · · · , N}, N
being the number of data points. Similar to our explanation in section 2.2,
we now associate a feature vector x

i

to each s
i

, which is a set of functions
of s

i

. The di�erence between this case and the case of reservoirs is solely
that here the feature vector only depends on the data entry itself, whereas in
the case of reservoir computing, it depends on a fading history of the input
signal.

4.1.1 Kernel function
Now we may encounter the following problem: suppose the feature vectors
x

i

are so high-dimensional that constructing them and performing linear
regression or classification on them becomes impractical or even impossible.
Take the following example: the feature vector consists of all possible pair-
wise products of the elements of the input vector. The dimensionality of x

i

in this case is N2
in

(For simplicity we ignore the fact that most elements of
x

i

will be occur twice). Now suppose we have greyscale pictures as input,
a quite common type of data in machine learning. Even for small pictures,
the number of pixels, i.e., the input dimension, can easily run into several
thousands. This means that the size of x

i

can grow to several millions,
far too large to be handled by any existing regression or classification tech-
nique. Nevertheless, there is something we can calculate quite easily: the
inner products of the feature vectors.
Suppose we denote the k-th element of s

i

as si

k

. The elements of the feature
vector x

i

will consists of elements si

k

si

l

, for k, l œ {1, · · · , N
in

}. When we
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write down the inner product of two feature vectors x
i

and x
j

, we find:

x
i

· x
j

=
Ninÿ

k=1

Ninÿ

l=1
si

k

si

l

sj

k

sj

l

,

which can easily be rewritten as

x
i

· x
j

=
A

Ninÿ

k=1
si

k

sj

k

B2

= (s
i

· s
j

)2 .

This expression can be evaluated much faster than it is possible to construct
the feature vector explicitly. What I have defined here is in fact the second
order homogeneous polynomial kernel function, one of many examples of
existing kernel functions.
In many cases the feature vector is even infinite dimensional, and the sum-
mation in the inner product changes to an integral. Later we shall see some
examples of this.

4.1.2 Applying kernels

Now we reach the second part of the derivation. I will show how to apply
kernel functions and I will demonstrate this with linear regression. Let’s
start by contemplating the analytical solution of equation 2.5.

U =
!
XXT"≠1 !

XYT"
.

If we now wish to compute an output value yÕ for a new data point sÕ with
associated feature vector xÕ, we need to compute UTxÕ. Writing this out
explicitly we get

yÕ =
1!

XXT"≠1 !
XYT"2T

xÕ

= YXT !
XXT"≠1 xÕ.

The inverse can be written as
!
XXT"≠1 = XT≠1X≠1, where the inverses

are Moore-Penrose pseudo-inverses, which can be applied to non-square ma-
trices. Furthermore we insert XT≠1XT = I, the unity matrix, directly left
of xÕ:

yÕ = YXTXT≠1X≠1XT≠1XTxÕ

= Y
!
XTX

"≠1 XTxÕ.
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Here, all elements of XTX are inner products of the feature vectors, and
the same holds for XTxÕ. This means that, if we have access to a kernel
function that provides us with the inner products of the feature vectors,
we can easily perform linear regression without ever needing to explicitly
calculate the features.
The matrix XTX is known as the Gram-matrix, which we denote with K. Its
elements are given by the kernel function operating on couples of the training
data points: K

ij

= k(s
i

, s
j

), where k is the kernel function. Whereas the
matrix XXT has the number of features as dimension, the Gram-matrix has
a size equal to the number of training data points.
If we define output weights � as being the solution to the system of equations

K� = YT, (4.1)

we can rewrite the solution for yÕ as

yÕ = �Tr, (4.2)

where the elements of column vector r are the kernel functions: r
i

= k(s
i

, sÕ).
Throughout this chapter, I will call the training data points s

i

the support
vectors. I should mention here that this nomenclature deviates somewhat
from the strict sense in which this term is more often used (the context of
SVMs), where the support vectors span the classification boundary in feature
space. I use it in a broader sense, namely the data points that are eventually
included in the trained model.

4.1.3 Least-squares support vector machines
What I have defined above is just one of the many ways to apply kernels.
I have taken standard linear regression, and transformed it to work with
kernels. In fact, many standard regression and classification techniques can
be ‘kernelized’, i.e. transformed such that they no longer operate on feature
vectors, but rather include training data in the end solution and as output
provide a linear combination of kernel functions. An exhaustive oversight
of the di�erent ways to obtain kernel machines is beyond the scope of this
thesis, and I refer to, e.g., Shawe-Taylor and Cristianini (2004). Here I
restrict myself to use the so-called Least-Squares Support Vector Machine
(LS-SVM) (Suykens et al., 2002). This is essentially the kernel machine
version of ridge regression as discussed in section 2.2.3, where the derivation
is solved starting from a feature space formulation of linear regression. This
has the advantage that, once we arrive at infinite reservoirs, we actually use
the same cost function as we did with standard ESNs.
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An LS-SVM for regression operates as follows. Given a training set of N
input features s

i

with corresponding output targets y
i

, the system outputs
a value y(s) for an input vector sÕ defined as

y(sÕ) = �Tr + —, (4.3)

with r
i

= k(s
i

, sÕ), and where the weights � and — are found by solving the
system C

0 1T
N

1
N

K + ⁄I

D C
—

�

D
=

C
0
Y

D
, (4.4)

with 1
N

= [1; · · · ; 1]. The parameter ⁄ serves the same purpose as the ridge
regression parameter as explained in chapter 2: keeping the weights of �
limited in magnitude. Also note that the output bias weights I discussed in
section 2.2 were explicitly included in the output weights, but here they are
given by —.

4.1.4 Selecting support vectors
The limitation of LS-SVMs, and kernel machines in general is that they are
di�cult to apply on large datasets. Suppose we would take an LS-SVM and
directly apply it on, lets say, a training sequence of a million data points,
which is relatively small for real-world tasks. We would need to construct a
Gram-matrix of a million by a million elements and next invert it. Far out of
reach for any conventional computer architecture. Even if we would succeed
in determining the output weights, evaluating the model on new data would
require the computation of one million kernel values for each data point.
For this reason, kernel machines generally employ various schemes to make
the end solution sparse, i.e., to select a small subset of support vectors from
the training dataset. The best-known version of kernel machines, an SVM,
will use the maximal margin criterion to find this subset. The downside is
that, even though this subset has a unique solution, finding it will require
the construction of the full Gram-matrix, which size is equal to the number
of training data points, still making it impractical for truly large datasets.
For truly large datasets, other selection algorithms are employed. One often
used variation of LS-SVM that tackles this problem is the fixed-size LS-SVM
(Espinoza et al., 2006). Here, support vectors are sampled using a criterion
based on Rényi-entropy (Rényi, 1961).
At the end of this chapter, when applying recurrent kernels on ML appli-
cations, I will use a large speech data corpus, consisting of well over one
million frames. To solve this, I use a technique based on Newton optimiza-
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tion (Chapelle, 2007). As explaining the algorithm in detail would go beyond
the scope of this dissertation, I will explain it only briefly and refer to Botton
et al. (2007) (chapter 2) for specific details.
This method uses a loss function of the form max(0, 1 ≠ y

i

ỹ
i

)2, with y
i

the target (≠1 or 1), and ỹ
i

the output of the SVM. Essentially this is a
quadratic hinge loss function. If we optimize this system using the Newton-
Raphson method, this comes down to solving the problem using a quadratic
loss-function, i.e., training an LS-SVM, and next selecting data points with
y

i

ỹ
i

< 1 as support vectors. This means that we sample the support vectors
that either lie in the margin of the classifier, or beyond the margin on the
wrong side. We can then iteratively solve the system with di�erent sets of
support vectors, until this set no longer changes. Next we can increase the
data set and use the previously found set of support vectors as an initial
solution to the search algorithm. As such, we can include more and more
training data, without ever needing to construct the full Gram-matrix.

4.2 Recurrent kernels

Here I will explain the framework in which I define recurrent kernels. We
begin by considering the previously defined feature vectors x more generally.
Suppose we have data points s1 and s2. For a given kernel function k(s1, s2),
there exists a feature map F such that

x1 = F(s1),

x2 = F(s2),

k(s1, s2) = x1 · x2.

The output dimension of F can be infinitely large in some cases. Importantly
we will assume that F is well-defined for any dimensionality of its input
argument. We now wish to introduce recursion into the feature map, and in
order to do this we will take a more detailed look at how exactly recursion
works in RNNs. Next we can extend this line of thought to kernel functions.
Each step in time, a recurrent neural network operates on the current input
frame and its hidden state to compute a new hidden state. Before I start
with the explanation, it is useful to look at the top of Figure 4.1. Here I have
rendered the progression of the hidden state of a recurrent neural network,
folded out in time. Indeed, it is possible to consider recurrent networks as
deep feed-forward networks with as many layers as there are frames in the
time series. Each layer gets input from the previous hidden state and the
current input frame. From this perspective it is clear that each step in time
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Figure 4.1: Top: schematic display of an RNN folded out in
time. Bottom: representation of the recursion of the feature
vector of a recurrent kernel. Here, the projection forward in
time is replaced by an operation F, defined by a kernel function
k.

is simply a single feed-forward projection, where the full input vector is the
concatenation of an input frame and a hidden state. Indeed, we can rewrite
the progression of a recurrent neural network as follows1:

a(t + 1) = f(Wa(t) + Vs(t + 1)) = f

A
[W|V]

C
a(t)

s(t + 1)

DB
. (4.5)

This means that an update of a recurrent network hidden state is essentially
an operation on the concatenation of a(t) and s(t + 1).
In order to find an equivalent form of recursion for kernel functions, we
will associate this operation2 with the feature map F. The hidden state we
will associate with a feature vector x(t), of the same dimensionality as the
output of F, and instead of static data points for input, we will now consider

1This way of thinking of recurrent neural networks can probably be attributed
to Elman (Elman, 1990)

2In RNNs this operation is a linear transformation followed by a hyperbolic
tangent
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time series s1(t) and s2(t). We can then write an update formula for the
associated feature vectors as3:

x1(t + 1) = F
AC

x1(t)
s1(t + 1)

DB
, (4.6)

x2(t + 1) = F
AC

x2(t)
s2(t + 1)

DB
. (4.7)

I have depicted this in the bottom part of Figure 4.1. We can now define
a recurrent kernel as the inner product of the associated feature vectors at
time t for the first and tÕ for the second. We write this kernel as

Ÿ
t,t

Õ(s1, s2) = x1(t) · x2(tÕ), (4.8)

where s1 and s2 are the two input time series, and I use the symbol Ÿ
instead of k to discern recurrent kernels from those operating on static data
points. Note that the true arguments of this function are the complete input
time-series up to times t and tÕ, and I use this abbreviated notation to keep
the mathematical formulations throughout this chapter readable. Often, we
shall consider scenarios where t = tÕ, or the distinction does not matter, and
then we simply write

Ÿ
t

(s1, s2). (4.9)

Now I will show that for a broad family of existing static kernel functions a
recurrent equivalent can be readily defined. More precisely, let us consider
kernel functions which have the following property:

k(s1, s2) = F(s1) · F(s2) = r(s1 · s2 , s1 · s1 , s2 · s2), (4.10)

i.e., the kernel function is a function r of the quadratic norms of the input
arguments and their inner product. Several commonly used kernel functions,
including the popular Gaussian RBF kernel, fall into this category. As is
written in equation 4.7, in the case of recurrent kernels, the arguments are
the concatenations of previous feature vectors with current input frames. If
we state that kernel function k has feature map F associated with it for

3Here an important remark needs to be made. I did not study the validity of
concatenating a finite-dimensional vector with an infinite-dimensional one. Even
though the concept of an inner product remains well defined in this case, which is
what we need in the end, the operator F itself may become ill-defined, as it needs
to operate on an infinite-dimensional vector. This problem is avoided due to the
fact that we do not require an expression for F if the underlying kernel function
is known. Nevertheless, the framework of recurrent kernels might greatly benefit
from some improved mathematical rigor.
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which equation 4.10 is valid, this means that this same feature map can be
applied for recurrent kernels, where the arguments of the function r need to
be replaced by inner products between these concatenations of input frames
and feature vectors. We can write:

Ÿ
t+1,t

Õ+1(s1, s2) = x1(t + 1) · x2(tÕ + 1)

= F
AC

x1(t)
s1(t + 1)

DB
· F

AC
x2(tÕ)

s2(tÕ + 1)

DB

= r

A C
x1(t)

s1(t + 1)

D
·
C

x2(tÕ)
s2(tÕ + 1)

D
,

C
x1(t)

s1(t + 1)

D
·
C

x1(t)
s1(t + 1)

D
,

C
x2(tÕ)

s2(tÕ + 1)

D
·
C

x2(tÕ)
s2(tÕ + 1)

D B
. (4.11)

If we write out these inner products, we see that
C

x1(t)
s1(t + 1)

D
·
C

x2(tÕ)
s2(tÕ + 1)

D
= x1(t) · x2(tÕ) + s1(t + 1) · s2(tÕ + 1),

and similar for the other two arguments. The left term of this equation is
the recurrent kernel value Ÿ

t,t

Õ(s1, s2), which allows us to rewrite equation
4.11 as follows:

Ÿ
t+1,t

Õ+1(s1, s2) = r
1

Ÿ
t

(s1, s2) + s1(t + 1) · s2(tÕ + 1),

Ÿ
t

(s1, s1) + s1(t + 1) · s1(t + 1),

Ÿ
t

Õ(s2, s2) + s2(tÕ + 1) · s2(tÕ + 1)
2

, (4.12)

i.e., a recurrent formula that can be applied for any kernel function of the
form specified in equation 4.10. Notice that this recurrent formula also
requires us to compute the recurrent kernels Ÿ

t

(s1, s1) and Ÿ
t

Õ(s2, s2). Often
a kernel function is only a function of the inner product of the arguments,
and not their quadratic norms. In this case the corresponding recurrent
kernel can be simplified to the following form:

Ÿ
t+1,t

Õ+1(s1, s2) = r(Ÿ
t,t

Õ(s1, s2) + s1(t + 1) · s2(tÕ + 1)). (4.13)

Before providing a set of important examples of recurrent kernels, I will first
introduce the concept of infinite-sized feedforward neural networks, which
have equivalent kernel functions. These kernel functions can then be made
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Figure 4.2: Schematic display of a finite versus an infinite
neural network.

recurrent, resulting in an expression that is associated with infinite-sized
recurrent networks.
Kernel machines have been extended to recurrent forms before (Suykens and
Vandewalle, 2000), but generally what is adapted is the framework of the
kernel machine. The used kernel functions are still the classical static kernels.
Instead, I directly start from a recurrent dynamical system and derive a
kernel function from that, which is a fundamentally di�erent approach.

4.3 Infinite neural networks

I start by taking a look at single-layered feedforward neural networks. Typ-
ically, the i-th element of the hidden state a is given by

a
i

= f(v
i

, s),

with s the input vector, v
i

the weights associated with the i-th neuron, and
f the activation function. Two important examples of neurons are sigmoid
neurons, for example:

a
i

= tanh(v
i

· s),

and Gaussian RBF nodes, where

a
i

= exp(≠||v
i

≠ s||2/2‡2).

We can consider the hidden state of the network as the feature vector of
the neural network. Each dimension of this feature vector, i.e., each neuron
activation, is uniquely characterized by v

i

. The set of weights V obviously
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will determine which computations the network actually performs. Suppose
we have a fixed number of neurons N . For any given task with a set of
training data, there exists a set of weights v

i

(not necessarily unique) which
minimizes the cost function for the task (together with the output weights).
Finding these optimal weights may be very di�cult or impractical. Therefore
we simply define a network that has all possible neurons, and so all possible
v

i

. Within this network the optimal weights are definitely present4, and we
can in theory solve the task perfectly. I have depicted this idea schematically
in Figure 4.2.
As we have no explicit way to compute an infinite-dimensional hidden state,
we now define the associated kernel. The inner product of the hidden states
for two input vectors s

i

and s
j

is simply

k(s
i

, s
j

) =
ÿ

v
f(v, s

i

)f(v, s
j

).

Since there are an infinite number of terms here, we will replace it by an
integration:

k(s
i

, s
j

) =
⁄

�v

f(v, s
i

)f(v, s
j

)dv,

with �v the space in which the input vectors exist. Very often, (for instance
for a sigmoid activation function), the above integral is undefined or diverges,
as it covers an infinitely large domain. Therefore we will add another re-
striction, and we say that v is drawn from a probability distribution P (v).
This leads to the final expression for the infinite neural network kernel:

k(s
i

, s
j

) =
⁄

�v

dvP (v)f(v, s
i

)f(v, s
j

). (4.14)

If this integral is analytically tractable, we will find a kernel function which
we can plug in into any existing kernel machine.
Using the integral expression of such kernels on recurrent networks is an ill-
defined problem, as the argument over which needs to be integrated would
become infinite-dimensional. However, if the resulting kernel function for
an infinite-sized feedforward network is of the type given by equation 4.10,
we can readily make this kernel recurrent. As the line of thought to derive
recurrent kernels is directly based on the recursion as it appears in RNNs, we
can readily find the recurrent kernel associated with infinite-sized recurrent
networks. In some specific cases as, e.g., the sparse threshold unit network,
which will be discussed in the next section, we cannot directly apply the

4In the case of sigmoid nodes we need to include input bias, i.e. an additional
input dimension which is constant and equal to one. This in order to ensure that
the network can include non-antisymmetric functions.
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framework of recurrent kernels. This is because the underlying feature map
does not operate on the input frame and the feature vector in the same
manner. In the case of sparse threshold unit networks specifically, however,
it is possible to explicitly solve an integral expression that takes the recursion
into account directly.

4.4 Examples

Now that we have a comprehensible way to produce recurrent kernels, I
will list some important examples in this section. I will use the following
convention in this chapter: input scaling and bias are included in the input
time series s(t); as the expressions for recurrent kernels are often already
quite lengthy I don’t wish to introduce additional parameters. Therefore,
if I solve tasks, I will mention an input scaling factor, i.e., a number with
which I multiply the raw input signal. If we wish to include bias, we will use
the convention that s(t) has an additional input dimension with a constant
value, but for the tasks in this thesis I never use input bias.

4.4.1 Linear and polynomial

The simplest kernel in existence is the linear kernel: k(s
i

, s
j

) = –s
i

· s
j

, with
– a scaling factor. The recurrent version of this kernel is given by

Ÿ
t+1,t

Õ+1(s1, s2) = –s1(t + 1) · s2(tÕ + 1) + –Ÿ
t,t

Õ(s1, s2).

We can explicitly write down the recursion in this equation as

Ÿ
t,t

Õ(s1, s2) =
Œÿ

i=0
–i+1s1(t ≠ i) · s2(tÕ ≠ i). (4.15)

From this equation it is clear that, if – > 1, Ÿ will grow exponentially.
Therefore we need to choose – between zero and one.
Interestingly, if we consider equation 4.14 and take the linear function where
f(v, s

i

) = v · s
i

, and we take P (v) to be a Gaussian distribution with co-
variance matrix –I and mean at the origin, we end up with the above linear
kernel. Notice that here we find an immediate link between the scaling of
the recurrent weights (determined by P (v)) and the dynamical stability.
Recurrent polynomial kernels of order p can similarly be defined as

Ÿ
t+1,t

Õ+1(s1, s2) = (–s1(t + 1) · s2(tÕ + 1) + –Ÿ
t,t

Õ(s1, s2))p

.
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In practice, the dynamical stability of this kernel can only be guaranteed for
p > 1 if –Ÿ

t,t

Õ(s1, s2) < 1 at all time, hence we shall not use it.

4.4.2 Gaussian RBF kernel
The Gaussian RBF-kernel is defined as

k(s
i

, s
j

) = exp
3≠||s

i

≠ s
j

||2
2‡2

4
, (4.16)

with a parameter ‡, known as the kernel width. Applying the rules of equa-
tion 4.12, we find that

Ÿ
t+1,t

Õ+1(s1, s2) = exp
3≠||s1(t + 1) ≠ s2(tÕ + 1)||2

2‡2 + Ÿ
t,t

Õ(s1, s2) ≠ 1
‡2

4
.

(4.17)
It is not directly clear what exactly defines dynamical stability for this kernel,
and later on I will derive a criterion. Here I ask a di�erent question. If we
actually reverse our earlier line of thought and try to discover a feedforward
network that, if made infinitely large, has the Gaussian RBF as its associated
kernel. If we would arrive at such a network, we would be able to make
it recurrent and actually produce a reservoir that is the finite-dimensional
equivalent of the recurrent Gaussian RBF kernel.
In appendix A.3.1, I will show that it is indeed possible to define such a
network. For nodes with activation function

f(v
i

, s) = exp (v
i

· s)Òq
j

exp (2v
j

· s)
, (4.18)

i.e., if the nodes have an exponential activation function, and the hidden
state is normalized, this behavior can be found if the weights are drawn from
a Gaussian distribution. Notice the similarity that this equation has with
the softmax function (as given in equation 2.7) which does not normalize its
activation, but rather divides it by its sum. As I derive in appendix A.3.1,
the kernel associated with an infinitely large softmax function can also be
derived. The kernel that is associated with an infinitely large softmax layer
operating on data points s1 and s2 is given by

k(s1, s2) = 1
‡

Ô
2fi

exp(‡2s1 · s2).

The recurrent version of this kernel can only be stable under strict condi-
tions, and hence I do not apply it on time series here.
Softmax-like models, i.e., models that assume the total activity of a dynam-
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Figure 4.3: Shape of the error function compared to that of
the hyperbolic tangent. The argument of the error function has
been rescaled to match a slope of one around the origin.

ical system is bounded, are interesting models for certain cognitive func-
tions in the brain, and especially the neocortex (Walley and Weiden, 1973;
Rutishauser et al., 2012). Recurrent kernels that are based on such bounded
DSs can potentially serve as mathematical models that will enable to provide
insight in cognitive processes.

4.4.3 Sigmoid network kernel
Obviously, what we wish to achieve most is the recurrent kernel equivalent of
ESNs, i.e., with a sigmoid activation function. As it turns out, equation 4.14
has no analytical solution for f(v, s) = tanh(v ·s). Nevertheless, in Williams
(1998) an analytical solution for the integral was found for the case where
the non-linearity is the error function5. The error function has a sigmoid
shape. The slope near the origin is equal to 2/

Ô
fi instead of 1 as in the case

of a hyperbolic tangent. Figure 4.3 shows a comparison between the shape
of a hyperbolic tangent and the error function. The di�erence is relatively
small, and therefore I believe it is reasonable to assume that RNNs with an
error function non-linearity will behave qualitatively similar to ESNs.
I choose the probability distribution P (v) to be a Gaussian distribution with
covariance matrix ‡2I and mean at the origin. The equivalent kernel is given

5The error function is defined as erf(x) = 2Ô
fi

s
x

0 exp(≠t

2)dt
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by

k(s
i

, s
j

) = 2
fi

arcsin
A

2‡2s
i

· s
j

(1 + 2‡2s
i

· s
i

) (1 + 2‡2s
j

· s
j

)

B
. (4.19)

The recurrent version of this kernel is given by

Ÿ
t+1,t

Õ+1(s1, s2) = 2
fi

arcsin
A

2‡2 (s1(t + 1) · s2(tÕ + 1) + Ÿ
t,t

Õ(s1, s2))
g

t+1(s1)g
t

Õ+1(s2)

B
,

(4.20)
with

g
t+1(s) = 1 + 2‡2 !||s(t + 1)||2 + Ÿ

t

(s, s)
"

,

and
Ÿ

t

(s, s) = 2
fi

arcsin
3

1 ≠ 1
g

t

(s)

4
.

I will call this kernel the recurrent arcsine kernel. In the next section I
will derive the stability criteria for this kernel, and I will show that we can
connect ‡ with the concept of spectral radius.

4.4.4 Sparse threshold unit networks
The last network model I will mention are sparse threshold unit networks
(STUNs)6. A threshold unit has a threshold function as activation function:

f(x) =
I

≠◊
n

if x < 0
◊

p

if x Ø 0
(4.21)

In the case where ◊
n

= 0, ◊
p

= 1 this is a Heaviside function, and these
nodes are known as binary nodes. If ◊

n

= ◊
p

= 1, we end up with the
sign function. Similar to sigmoid nodes, the threshold unit operates on the
inner product of the input signal with a weight vector. Solving equation
4.14 for this situation is relatively easy. In appendix A.3.2.1 I derive the
equivalent kernel, however, when we make it recurrent, the resulting kernel
has an infinitely high Lyapunov exponent, which means that it will never be
dynamically stable.
In order to still be able to get a stable recurrent kernel from an infinite re-
current threshold unit network, the recurrent connections need to be sparse.
More precisely: we state that each node in the recurrent network has K

6The idea of defining recurrent kernels for STUNs comes from Stefan Depeweg,
an intern working in our lab for a few months. Having forgotten to acknowledge
him in my original paper on infinite STUNs, I will set this straight here.
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incoming connections, where K is the so-called in-degree.
So far, we have always implicitly assumed that our networks were fully con-
nected, which made the transfer from normal kernels to recurrent kernels
straightforward. For sparsely connected networks, this line of reason will
no longer apply, and we need a more in-depth analysis. Appendix A.3.2.2
o�ers the full derivation, which is rather lengthy. Here I simply present the
result. I will only focus on the two previously mentioned situations: those
with ◊

n

= ◊
p

= 1 and with ◊
n

= 0, ◊
p

= 1. The first case gives us the
following kernel

Ÿ
t+1,t

Õ+1(s1, s2) = 2
fi

Kÿ

i=0
(h+)i(h≠)K≠i

3
K

i

4
H

i

, (4.22)

where

H
i

= arcsin
A

2i ≠ K + s1(t + 1) · s2(t + 1)
(K + ||s1(t + 1)||2)(K + ||s2(t + 1)||2)

B
(4.23)

and
h+ = 1 + Ÿ

t,t

Õ(s1, s2)
2 , h≠ = 1 ≠ Ÿ

t,t

Õ(s1, s2)
2 . (4.24)

The second case is slightly more complicated, giving:

Ÿ
t+1,t

Õ+1(s1, s2) = 1
2

Kÿ

i=0

K≠iÿ

j=0
(h1)i+j(h0)K≠i≠j

K≠i≠jÿ

k=0

3
K

i j k

4
G

Kijk

, (4.25)

where
h1 = Ÿ

t,t

Õ(s1, s2), h0 = 1
2 ≠ Ÿ

t,t

Õ(s1, s2), (4.26)

G
Kijk

= 1 ≠ 1
fi

arccos
A

i + s1(t + 1) · s2(t + 1)
i + k + ||s1(t + 1)||2

K ≠ j + ||s2(t + 1)||2

B
,

(4.27)
and we use the shorthand notation

3
K

i j k

4
= K!

i!j!k!(K ≠ i ≠ j ≠ k)! .

The interest in STUNs stems from the fact that they have often been used
as mathematical abstractions for a variety of phenomena. First of all there
was Kau�man (1969), who studied the dynamics of binary threshold unit
networks as a model for the genetic regulatory network in living cells. More
recently these networks have been studied in the context of order-chaos tran-
sitions as a function of the internal connectivity and input scaling, using a
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mean field approximation (Natschläger and Maass (2004)). Here, they serve
as an abstraction for liquid state machines, (where the binary node’s on-o�
behavior models spikes).
Extending the above kernel functions to networks with a variable in-degree
is straightforward, as I also show in appendix A.3.2.2. Suppose that the
probability of a randomly drawn neuron having K incoming recurrent con-
nections is given by p

K

, and suppose the kernel associated with a network
with fixed in-degree K is denoted by ŸK

t,t

Õ(s1, s2), the kernel for the variable
in-degree network is given by:

Ÿ
t,t

Õ(s1, s2) =
Œÿ

K=1
p

K

ŸK

t,t

Õ(s1, s2). (4.28)

This allows us in principle to study the dynamics of a variety of network
models. Special interest would go to the so-called scale-free networks, which
model a large variety of natural and artificial phenomena, such as the internet
and social networks (Barabasi and Albert, 1999), and the spread of diseases
(Pastor-Satorras and Vespignani, 2001).

4.5 Recurrent kernel dynamics

In this section I shall explain how we can investigate the dynamical stability
of infinite recurrent networks. The most straightforward method, which I
will discuss first is to find an analytical expression for the Lyapunov exponent
corresponding with the infinite network. This is only feasible for a certain
type of kernel though, and for others we will use di�erent strategies.

4.5.1 Lyapunov exponent
The definition of the Lyapunov exponent is given by:

⁄ = lim
tæŒ

lim
D(0)æ0

1
t

ln
3

D(t)
D(0)

4
, (4.29)

where D(t) is the distance between two state vectors at time t, D(0) is the
initial infinitesimally small distance between two initial conditions for the
system. In appendix A.3.3 we find that, for recurrent kernel functions that
have the property that Ÿ

t

(s, s) is constant (independent of t or the signal),
we are able to analytically derive the Lyapunov exponent7. If we denote it

7Here I need to add an important remark. Commonly the Lyapunov exponent
is defined for autonomous systems, i.e., not driven by external input. In the case of
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with ¸, we find that

¸ = 1
2

K
ln

3
ˆŸ

t

(s1, s2)
ˆŸ

t≠1(s1, s2)

4

s1=s2

L

t

. (4.30)

In what follows I apply this formula to both recurrent Gaussian RBF kernels
and sparse threshold unit kernels.

4.5.1.1 Recurrent Gaussian kernel

In the case of recurrent Gaussian kernels we yield

ˆŸ
t

(s1, s2)
ˆŸ

t≠1(s1, s2) = 1
‡2 Ÿ

t

(s1, s2).

If s1 = s2, and we consider the remark made in paragraph 4.4.2 that the
hidden state of the associated recurrent network is normalized, we can write
that Ÿ

t

(s, s) = 1. Applying equation 4.30, we find that

¸ = ≠ ln(‡). (4.31)

This has two very interesting consequences. First of all, in order to make
sure that ¸ < 0, we shall need to pick ‡ > 1. Secondly, the Lyapunov
exponent depends in no way on the input signal. This implies that, quite
unlike ESNs, we cannot get stable dynamics by increasing the input scaling.

4.5.1.2 Sparse threshold unit networks

The Lyapunov exponent of STUNs can be worked out similarly. The deriva-
tion I have left for appendix A.3.3.1, and here I will provide the results. For
sign-node networks we find:

¸ = 1
2

=
ln

3
K

fi
arccos

3
1 ≠ 2

K + ||s(t)||2
44>

t

, (4.32)

Binary networks yield:

¸ = 1
2

K
ln

A
K

fi2K≠1

K≠1ÿ

i=0

3
K ≠ 1

i

4
arccos

AÛ
i + ||s(t)||2

i + 1 + ||s(t)||2
BBL

t

. (4.33)

recurrent kernels this is definitely not true. Instead, we consider the input signal to
be part of the system. Essentially, the Lyapunov exponent as provided by equation
4.29 includes the input signal distribution as an important system variable. If the
input signal distribution changes, so will the Lyapunov exponent.
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Figure 4.4: Lyapunov exponent as a function of input scal-
ing ’. The left panel is measured for binary-node networks,
the right panel for sign-node networks. From bottom to top
K = {1, 2, 4, 8, 16}. The light grey lines are the theoretical
predictions as given by equations 4.32 and 4.33, and the black
plus signs are the empirical measurements

These results connect the influence of input signal scaling and in-degree.
We can provide empirical validation of these expressions by simulating fi-
nite STUNs and measure the average Lyapunov exponent. To do so I will
make two simplifications. First of all I assume that the input signal has the
property that ||s(t)|| = ’ for all t, which avoids the need to compute the
average in equations 4.32 and 4.33. Furthermore, we approximate exp(¸) by
D(t + 1)/D(t) where D(t) is the distance between the unperturbed and the
perturbed hidden state. The perturbation itself is performed by flipping one
randomly chosen node.
I performed the experiment with STUNs of 500 nodes. The input signal is
Gaussian noise of dimensionality 50 of which each frame has been normalized
and next multiplied with ’. To get rid of initial conditions, I let the network
run for 100 time steps before I applied the perturbation and perform the
measurement. I studied ¸ for combinations of K and ’ which I compared to
the analytical prediction. Each empirically obtained value is averaged over
2000 network initializations.
Results are shown in Figure 4.4. We see a very good correspondence between
the empirical and analytical values. Figure 4.4 also clearly shows the rela-
tion between the in-degree, input scaling and the Lyapunov exponent. In all
scenario’s, ¸ decreases as input scaling increases, as the input signal starts
to dominate the internal dynamics. Secondly we notice that the higher the
in-degree becomes, the stronger the input signal will need to be to obtain
a regime in which ¸ < 0, i.e., with fading memory. We see the di�erence
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between sign-node STUNs and binary STUNs. In the case of a very small
input magnitude, binary STUNs are always stable as long as K < 5, whereas
sign-node networks need K < 3.

4.5.2 Iterated function: cobweb plots
Here I will present another way in which to study recurrent kernel dynamics.
A recurrent kernel is essentially an iterated function, where each iteration
an outside argument, the input time series, is added. If we suppose that
the input signal is constant, we can graphically represent the evolution of
the recurrent kernel using a cobweb diagram. Consider an iterated function
x

i+1 = q(x
i

). We can show the evolution of x
i

by plotting the function
q(x) and the identity function. Each iteration the new value will be the new
argument of the next, and this can be represented by plotting vertical and
horizontal strokes between the identity function and q(x), and repeating this
process, leading to the cobweb plot.
Cobweb plots can be used to study kernel stability as follows. If the recur-
rent kernels are dynamically stable, there should exist a single stable fixed
point attractor to which all orbits converge, just like in an ESN the hidden
state should converge to zero when no input is presented. There is a mathe-
matical theorem called the Banach theorem (Banach, 1922). It states that,
given a non-empty, complete metric space X with a distance metric D, the
contractive mapping q has one and only one fixed point cú if there exists a
number 0 < p < 1 such that

D
!
q(a), q(b)

" Æ pD(a, b), (4.34)

with a and b any two elements from X. Put in simple terms, this means the
following. Suppose we have an iterated function, and we choose two di�er-
ent starting points a and b as initial values, with a distance D(a, b) between
them. In order to have only one fixed point for the iterated function, this
distance must decrease for each step in the iteration. Notice the similarity
to the definition of the Lyapunov exponent, where the distance needed to be
infinitesimal, and we only looked at the long-term evolution of the distance.
In Hermans and Schrauwen (2011), I have presented the derivation needed
to find the conditions under which Banach theorem holds. Here it su�ces
to say that, as long as q(Ÿ) increases monotonically, we only need to look at
its derivative with respect to Ÿ. If it rises faster than the identity function
(see the right panel of the middle row of Figure 4.5), the orbits will diverge,
and the dynamics are locally unstable.
I will study the cobweb plots for the three important examples of recur-
rent kernels: the recurrent Gaussian RBF, the recurrent arcsine kernel and
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Figure 4.5: Cobweb plots, representing the dynamics of recur-
rent kernels as iterated functions. The top row of panels are for
recurrent Gaussian kernels, the middle row for recurrent arcsine
kernels, and the bottom row for STUN-kernels for sign nodes
and in-degree K = 16. Each three panels in the rows represent
situations for di�erent parameters, such that the left panel cor-
responds to asymptotically stable behavior, the middle panel to
the edge of stability, and in the right panels the dynamics of the
underlying infinite DSs are unstable. The grey lines are example
orbits that converge to a stable fixed point. The dashed lines
in the right panels show the separation between the stable and
unstable region.
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the STUN kernel. For the recurrent RBF kernel I’ll suppose that the input
signals are identical (such that their relative distance is always zero). The
recurrent arcsine kernel I will study for input signals equal to zero. In the
case of STUNs, the parameter that decides dynamical stability is input scal-
ing. Therefore I will here assume that the input signals are constant and
equal to ’.
In Figure 4.5 I show the resulting cobweb plots for the three kernels, each for
three dynamical regimes, associated with di�erent kernel parameters. When
we first consider the recurrent RBF kernel (top row of Figure 4.5), we find
that we can confirm the earlier conclusion that ‡ is the decisive parameter.
When ‡ Ø 1, the recurrent kernel has one stable fixed point at Ÿ = 1 to
which all orbits converge. As soon as ‡ < 1, this point becomes an unstable
fixed point, and a second fixed point emerges. In the vicinity of the unstable
fixed point at Ÿ = 1, the derivative of the iterated function is larger than
one, and within this region, di�erent orbits will diverge. When the orbits
approach the second stable fixed point, the dynamics will become convergent
again.
Using the criterion of having one stable fixed point, we can derive for which
‡ the recurrent arcsine kernel will be stable. The iterative function, using
input signals equal to zero, is given by:

Ÿ
t+1 = 2

fi
arcsin

3
1 ≠ 1

1 + 2Ÿ
t

‡2

4
, (4.35)

Taking the derivative of this equation we find

ˆŸ
t+1

ˆŸ
t

= 2
fi

2‡2
Ô

1 + 4Ÿ
t

‡2(1 + 2Ÿ
t

‡2)
. (4.36)

When Ÿ
t

= 0, the fixed point, this leads to:

ˆŸ
t+1

ˆŸ
t

= 4‡2

fi
. (4.37)

In order for this to be smaller than one, we need

‡ <

Ô
fi

2 . (4.38)

The number
Ô

fi

2 is the inverse of the slope of the error function. In the next
section I will show that we can take the spectral radius stability argument
for ESNs, and extend it to infinite networks. I also show that ‡ is the direct
equivalent of the spectral radius of an infinite weight matrix. Hence, if we
linearize the error function at zero, we would indeed find that a net gain of
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one can be achieved with a spectral radius of
Ô

fi

2 .
The bottom row of Figure 4.5 shows the iterated function corresponding to
the STUN kernel for sign nodes. I chose a fixed in-degree of K = 16. It
is interesting to note that when ’ = 0, the stable fixed point of this kernel
is zero. In terms of network nodes this means that there is no correlation
between the hidden states of the two infinite STUNs.
The occurrence of a new stable fixed point is intriguing and can be under-
stood intuitively. In its vicinity, the dynamics are stable, so if we assume
that the input signals have a small magnitude, the recurrent kernels have
fading memory, even though their associated dynamical systems have not.
Suppose we have two identical sign node STUNs with high in-degrees and
input signals equal to zero. As shown in the right bottom panel of Figure
4.5, the stable fixed point of the associated kernel is zero, corresponding to
completely uncorrelated hidden states. If we would at a certain time frame
start to inject input signals into both systems, the kernel value will respond
to this, and become non-zero. This means that some of the nodes in the
two networks start to exhibit short-lived correlations, which correspond to
relations between both input signals. When after some time the input sig-
nals are set back to zero, the two networks will continue with purely chaotic
behavior, and whatever correlation there was will fade away again and the
kernel value will converge to zero. This is how a highly chaotic dynamical
system will show no fading memory, but its associated kernel actually will.
The more unstable the dynamics, the faster the correlations will disappear,
and the more stable the dynamics of the recurrent kernel are, indicating that
the role of fading memory and chaos have been switched around.
In section 4.6.3 I will provide an empirical example of this new type of fading
memory by showing that kernels operating in such a regime can perform well
on a task that requires fading memory.

4.5.3 Spectral radius

We can reconsider equation 4.14 for sigmoid nodes, and look at the linear
approximation of the sigmoids around the origin, very much like the line of
thought followed to reach the spectral radius stability argument. The linear
approximation is given by
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When we wish to make a finite Monte Carlo approximation of this integral
using N samples, we can rewrite this as
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where each instance v
k

is drawn from the distribution P (v). We wish to find
out what happens when N goes to infinity. In other words, what is known
about the behavior of the spectral radius for very large random matrices?
In Geman (1986), it was shown that, if a square matrix with spectral radius
fl has elements which are drawn i.i.d. from a distribution with zero mean
and variance ‡2, the following relation applies:

lim
NæŒ

flÔ
N

Æ ‡. (4.39)

In our case the factor 1/
Ô

N appears naturally as a consequence from the
summation approximation, such that we can e�ectively speak of the spectral
radius of an infinite recurrent neural network, being the standard deviation
of the distribution of the weights.

4.6 Tasks

In this section I will explain the practical side of recurrent kernel machines
and investigate their performance on both academical and real-world tasks.
First I will explain how I build kernel machines using recurrent kernels op-
erating on time series, and next I will provide examples of both theoretical
and practical applications of recurrent kernels.

4.6.1 Recurrent kernel machines in practice
Traditionally, in order to train a kernel machine, we need to have a set of
input data points s

i

, associated with desired output values y
i

which are a
function of s

i

. For a time series, we assume that the desired output y(t) is a
function of the recent input history, not only the frame s(t). Therefore, for
recurrent kernels, a support vector will be a time series, ending at the frame
associated with a certain output value.
In principle the hidden states that we associate with these kernels will depend
on the full input history of the input time series, and as such, a support vector
would be the full time series up to a certain frame. In practice, however,
this is computationally demanding, and we assume that, due to the fading
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Figure 4.6: Schematic display of a recurrent kernel machine.
The explanation is in the text.

memory, we can assume that we only need a short history of the input time
series to compute a kernel value. We will call the length of this history
the window length or recursion depth W . We can choose a value W by
empirically checking for which window length the kernel value of two time
series no longer significantly changes. Note that we need to provide an initial
value for the recurrent kernel as well. We will select this as being the kernel
value corresponding for input time series equal to zero for an infinitely long
history.
Once we have chosen W , we need to select a subset of support vectors s

i

(t).
In the extreme case we could for instance take all possible sequences of length
W from the training set (as depicted in Figure 4.6a), which would be feasible
if the training set is relatively small. For larger data sets we will need to
make a selection, and we can use any of a number of well-known support
vector selection strategies.
When we have selected the set of support vectors, we can construct the
Gram-matrix. The support vectors s

i

(t) are defined for t œ {1, · · · , W},
such that the entries of K are given by K

ij

= Ÿ
W

(s
i

, s
j

). This is because
the last frames of the support vectors are the frames that are associated
with their corresponding output. I have depicted the construction of the
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Gram-matrices in Figure 4.6b.
Using, e.g., equation 4.4 we can compute output weights �. Once these are
determined we now wish to apply the kernel machine on new input time
series. We will need to compute the kernel values of the support vectors
and a recent input history of the input time series, and linearly combine
them to form an output. Suppose we have an input time series s(t), and we
wish to compute an associated model output at time tÕ, we will then select
a sequence of a certain length W with its last frame being tÕ. If we call
this sequence s

t

Õ(t), where t œ {1, · · · , W}, the model output ỹ(tÕ) can be
computed as:

ỹ(tÕ) = — +
Nÿ

i=1
‚

i

Ÿ
W

(s
i

, s
t

Õ). (4.40)

I have given a schematic representation of this principle in Figure 4.6c.
Compared to ESNs, the great downside of recurrent kernel machines is that,
in order to obtain a single output frame y(t), we need to compute the recur-
sive kernels over the full window length, and we need to repeat the process
for all t if we want the full sequence of outputs of the test data. By contrast,
a single output frame in the ESN setup only requires a single step in the
recursion, which is computationally more e�cient. The advantage is that
we are no longer limited in network size: we can truly find out how well an
infinitely large reservoir scores on a task for any finite amount of training
data (i.e., a finite number of support vectors), as I have argued in more detail
in Hermans and Schrauwen (2011).
In what follows I will make comparisons between recurrent kernels and tra-
ditional kernels that operate on time windows. The principle remains largely
the same, as support vectors are sequences of length W , and their desired
output values are associated with the last frame. In order to make single
vectors from the time windows, we concatenate all frames into a single large
vector to compute the kernel value. Traditional kernels have no fading mem-
ory, and contrary to the case of recurrent kernels, the window length W is
an additional parameter that needs to be optimized.

4.6.2 Memory capacity
Not a ‘task’ in the true sense of the word, memory capacity tells us a lot
about the fundamental restrictions of recurrent kernel machines. We are
able to analytically compute the memory capacity for linear recurrent kernel
machines using equation 4.15. I will use the same line of thought as described
in Chapter 3, i.e., we evaluate how well the linear kernel machine is able to
remember a history of a one-dimensional input signal with each frame i.i.d.,
drawn from a certain distribution with zero mean and unit variance. I apply
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equation 3.1 to find an expression for the memory function, from which we
can analytically derive the memory capacity M . We assume a set of N
support vectors s

i

(t), which are defined for t œ {≠Œ, · · · , 0}.
As I show in Appendix A.3.4, it turns out that the linear memory capacity
of linear kernel machines is equal to the number of support vectors N . This
shows that, whereas neural networks encode the history in an N -dimensional
hidden state, for recurrent kernel machines the history is encoded in the
output values of the N kernel functions that are evaluated.

4.6.3 NARMA
The second task we consider is the so called NARMA-task, or Nonlinear
Auto Regressive Moving Average, which has been used for benchmarking in
many papers that consider time-series processing (Atiya and Parlos, 2000;
Jaeger, 2003; Steil, 2005). The task is a single input single output system,
with input s(t), which is a sequence of i.i.d. numbers drawn from a uniform
distribution between 0 and 0.5. The desired output y(t) is then constructed
as follows:

y(t + 1) = 0.3y(t) + 0.05y(t)
9ÿ

i=0
y(t ≠ i) + 1.5s(t + 1)s(t ≠ 8) + 0.1. (4.41)

As error metric to evaluate performance on this task I used the Normalized
Root Mean Square Error, or NRMSE, defined as

NRMSE =

Û
Èy(t) ≠ ỹ(t)Í2

t

var(y(t)) , (4.42)

in which ỹ(t) is the output of the trained system.
To compare di�erent e�ects and results, I performed four experiments, the
first three using LS-SVMs.

• First of all, I have used a classic windowed Gaussian RBF kernel (as
given by equation 4.16) as a reference value. I optimized both the
window length and kernel width by a two dimensional grid search.
Using a validation set, I found the optimal window length to be 27
frames and the optimal kernel width ‡ = 5, although performance
does not change much for a relatively broad range around this optimal
value.

• Secondly, I have measured the performance of the recursive Gaussian
RBF-kernel in relation to its corresponding spectral radius equivalent:
fl = ‡≠1. I limited the recursion depth to 50 frames, although a shorter
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Figure 4.7: Mean NRMSE of the NARMA-task for di�erent
setups in relation to the corresponding spectral radius fl. The
thin, light to dark grey lines are NRMSEs for ESNs with increas-
ing numbers of nodes N (specified in the legend). The thick
black line is for the arcsine kernel, i.e. for N æ Œ. The dashed
line is the performance of the recursive Gaussian RBF kernel,
and the dotted line (independent of fl) is the mean NRMSE for
optimized windowed Gaussian RBF kernels.

time would likely give very similar results.

• Thirdly I did the same experiment for the arcsine kernel in relation to
its corresponding spectral radius fl = 2Ô

fi

‡. I again used a recursion
depth of 50 frames.

• Finally, as arcsine kernels are strongly related to ESNs, I used the
opportunity for a comparison. I measured the performance of ESNs
with error function non-linearities for an increasing number of nodes
and in relation to the corresponding spectral radius.

In all of the above experiments I used a training set of 500 time series, which
consists of all possible time series drawn from a sequence with length 500+W ,
(W being window length), a validation set of 2000 frames, used to determine
the optimal regularization parameter, and a test set of 5000 frames. For the
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recursive kernels and the ESNs, performance as a function of input scaling
has a broad, shallow optimum (data not shown), but nevertheless the scaling
factors were optimized by a grid search at a corresponding spectral radius
of 0.9, which resulted in an optimal scaling factor of the input of 0.1 for
the arcsine kernels and the ESNs, and 0.4 for the recursive Gaussian RBF.
All results were found by averaging out over 100 di�erent trials with newly
generated data and/or reservoirs.
Results of the experiments are shown in figure 4.7. Optimal performance can
be found around fl = 0.9. Performance of the ESNs gradually increases with
the number of nodes, converging slowly to the performance of the arcsine
kernel. As fl becomes greater than one, performance rapidly deteriorates.
The recursive Gaussian RBF kernel performs best, and both recursive ker-
nels perform better than the classic time window RBF kernel.
In Hermans and Schrauwen (2012) I measured performance of STUN kernels
for sign nodes on the NARMA task. Their performance is not particularly
good, but I found that they do neatly show how recurrent kernels can still
exhibit fading memory, even when their associated DSs are strongly chaotic.
The training setup is completely the same as described above, except for
an additional preprocessing step on the input signal that needed to be per-
formed. I define the preprocessed input signal as sú(t) = 1 + ‘(s(t) ≠ 0.25),
i.e., I first center the signal around zero and rescale it with a small param-
eter ‘, and next shift it to have a mean equal to one. This will make sure
that the assumptions on the input signal I made in section 4.5.1.2 are met
approximately, and we can apply the formula for the Lyapunov exponent.
The parameter ‘ I optimized using a grid search. Finally, before inserting
sú(t) in the model, I scaled it with ’, which will provide control over the
Lyapunov exponent.
I have measured the average NRMSE for a logarithmic range of ’ values for
STUN kernels with in-degree K = 16, spanning its full potential range of
associated Lyapunov exponents. In Figure 4.8, I have plotted the average
NRMSE against the exponential of the LE, which has a similar interpreta-
tion as the spectral radius in Figure 4.7.
The first minimum we encounter we can readily associate with fading mem-
ory, with exp(¸) slightly smaller than one. The second one we can find at
a higher Lyapunov exponent, where the underlying dynamics are unstable.
Here we encounter the type of fading memory I have explained in section
4.5.2. This indeed confirms that the role of fading memory and chaos can
be switched around in recurrent kernels.
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Figure 4.8: Mean NRMSE of the NARMA-task for STUN ker-
nels with sign nodes and in-degree 16, as a function of the
associated LE.

4.6.4 TIMIT

The second task I consider is a speech recognition task in which the goal is to
classify phonemes, which are the smallest segmental unit of sound employed
to form meaningful contrasts between utterances. I used the internationally
renowned TIMIT speech corpus (Garofolo et al., 1993) which consists of 5040
English spoken sentences from 630 di�erent speakers representing 8 dialect
groups. About 70% of the speakers are male and 30% are female.
The speech is labeled by hand for each of the 61 existing phonemes, which
was reduced to 39 symbols as proposed by Lee and Hon (1989). The TIMIT
corpus has a predefined train and test set with di�erent speakers. The speech
has been preprocessed using Mel Frequency Cepstral Coe�cient (MFCC)
analysis (S.Davis and Mermelstein, 1980), which is performed on 25 ms Ham-
ming windowed speech frames and subsequent speech frames are shifted over
10 ms with respect to each other. Each frame contains a 39-dimensional fea-
ture vector, consisting of the log-energy of the first 12 MFCC coe�cients, as
well as their first and second derivatives (the so-called � and �� parame-
ters).
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4.6.4.1 One vs. one classifiers

In order to classify each frame into one of the 39 possible classes, I use a vot-
ing system that starts from a set of all possible one vs. one classifiers. Each
of these classifiers is trained to distinguish between two specific phonemes,
and as there are 39 classes there are (39 ◊ 38)/2 = 741 one vs. one classi-
fiers. Each classifier is only trained on data labeled with its corresponding
phonemes and outputs either 1 or ≠1 (the sign of the output value). Final
classification is performed by letting the classifiers each cast a vote.

4.6.4.2 Training method

One of the di�culties of using SVMs to train on TIMIT is the fact that the
dataset is very large. The training set consists of 1,124,823 frames, and the
test set of 353,390 frames. The number of frames per one vs. one classifier is
of the order 104 to 105. Traditional SVM methods for classification would run
into practical computational problems for such large datasets, and therefore
I will use the Newton approximation I elaborated on in section 4.1.4.
I trained each one vs. one classifier on a subset of 104 samples and chose
a separate validation set of 2000 samples, both randomly drawn from the
total training dataset associated with the corresponding labels. If the total
number of samples in the set was smaller than 12000, I randomly drew 1000
samples as validation set and used the rest for training.

4.6.4.3 Subsampling and parameter optimization

I have tested on both windowed Gaussian RBF kernels, recursive Gaussian
RBF kernels, and arcsine kernels. For both types of recursive kernels I
also investigate the e�ect of subsampling the MFCC-data. It was found in
Triefenbach et al. (2010) that large recurrent neural networks perform bet-
ter on phoneme recognition if the nodes are leaky integrators, conform the
network model discussed in section 2.1.3. Rather than incorporating this
into our kernels8, I subsampled the data by a factor of 2, 3 and 5. This
essentially means that we speed up the data rather than slowing down the
dynamics of our system. In Schrauwen et al. (2007) it has been shown that
both strategies yield similar performances.
For the non-subsampled variants of the data I classify on the third frame
of the time window or recursion depth, i.e., the SVM needs to classify the
phoneme of two frames in the past. For the subsampled versions, I classify

8As I will discuss at the end of this chapter, finding a recurrent kernel equivalent
for leaky integrator nodes seems far from trivial
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Table 4.1: Results on TIMIT. Results found in literature are
listed under the line.

FER N W ‡ inp. sc. f.
Windowed RBF 31.5% 1465 9 0.06
Rec. RBF 30.6% 1386 10 1 0.045
Rec. RBF 2◊ subs. 29.4% 1499 10 1 0.08
Rec. RBF 3◊ subs. 28.7% 1504 10 1 0.06
Rec. RBF 5◊ subs. 28.5% 1100 5 0.8 0.125
Arcsine 30.5% 1105 15 1.75

Ô
fi

2 0.026
Arcsine 2◊ subs. 29.3% 1511 8 2.25

Ô
fi

2 0.035
Arcsine 3◊ subs. 28.6% 1377 8 2

Ô
fi

2 0.04
Arcsine 5◊ subs. 28.9% 1210 8 2

Ô
fi

2 0.045
Cheng et al. (2009) 39.3%
Crammer (2010) 30.0%
Crammer (2010) 29.2%
Keshet et al. (2011) 27.7%
Keshet et al. (2011) 26.5%
Cheng et al. (2009) 25.0%

on the second frame (e�ectively the third, fourth and sixth frame in the re-
spective non-subsampled datasets). Rather than optimizing the parameters
for each one vs. one classifier, I looked for globally optimal parameters by
randomly selecting 250 from the 820 classifiers and trained them on a small
training, validation, and test set of 1000 samples each, drawn randomly from
the corresponding full training set and measured the average test error over
a relevant range of parameters. The window size of the Gaussian RBF ker-
nel was determined this way. Recursion depths of the recursive kernels were
determined by making sure the kernel value di�ered on average less than one
percent from its asymptotic value.

4.6.4.4 Results

Typically, the performance on the TIMIT dataset is evaluated based on the
phoneme error rate. However, this requires an additional mechanism such as
an HMM to segment the frames into groups corresponding to phonemes. As
we are only interested in the relative performance of the kernels, I restricted
myself to only measuring the frame error rate (FER), i.e., the percentage of
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input windows which were classified incorrectly. The result (FER), average
number of support vectors per one vs. one classifier (N), window size /
recursion depth (W ), optimal ‡ and the scaling factor of the input for each
variant are shown in Table 4.1. FER for the subsampled versions of the test
set were determined by labeling the missing frames with the nearest classified
frame in the case of subsampling 3◊ and 5◊. In the case of 2◊ subsampling,
the FER was calculated twice by using the classification of both the previous
and next frame as label for the missing frames, and I took the average of
both FER’s.
The fact that most literature doesn’t mention FER makes it hard to compare
our results to the state of the art, but some papers actually do mention
FER. To give some idea of our performance in general I have included some
representative results in the table.
All the techniques with recursive kernels outperform the classical windowed
Gaussian RBF kernels, even without subsampling, and it is obvious that
subsampling gives a boost in performance. Intriguingly, I found that the
optimal spectral radius of the arcsine kernels is greater than one. Upon
examining the necessary recursion depth I found that these kernels do indeed
only depend on a finite history of the input time series. This is due to
the relatively high variance of the input, which pushes the kernels into the
saturating part of their non-linearity.
It is interesting to note that in the case of the non-subsampled dataset we
find that the number of support vectors is lower for the recursive kernels
than for the windowed kernels. This seems to suggest that the recursive
kernels are better at capturing the inherent structure of the speech data9.
In Triefenbach et al. (2010), the same task was studied by (among other
techniques) using a very large reservoir of 20,000 nodes. The FER found
for this setup was 29.1% (FER is not mentioned in the paper, but I know
so from personal communication with the authors), which is comparable to
our own results. Currently, large-scale reservoirs have been shown to attain
performance matching state-of-the-art in word recognition (Jalalvand et al.,
2012).

9This comparison would be unfair for the subsampled datasets as these are
smaller.
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4.7 Comparing recurrent kernel machines
with reservoirs

In section 4.5.3 I used a Monte Carlo method to approximate the dynamics
of an infinitely large DS. This o�ers an intriguing new interpretation of the
functionality of reservoirs: they can be considered as finite approximations
of infinite DSs. In this section I will elaborate on the link between recurrent
kernel machines and RC.
Recurrent kernels and reservoirs are defined by only a small set of parame-
ters: the nature of the nodes and the distribution of the weights. Both ML
techniques are used to model the dynamical process that defines an appli-
cations. The set of parameters that we use to define a reservoir can be seen
as a prior assumption on the process that generated the data you wish to
model. If we generate an ESN with a certain spectral radius, input scaling
and leak rate, and use this to solve a speech recognition task, we generally
assume that the process that generated the data is similar to the dynamical
behavior of the ESN, such that there is a good chance it will contain this
dynamical behavior at least approximately within the dynamics of its hidden
state. How do we need to view the role of optimal parameters in recurrent
kernels?

4.7.1 Recurrent kernel machines
As I stated before, under the right conditions, infinite non-linear DSs are
computationally universal. This means that within the infinite-dimensional
hidden state there will be some subspace that perfectly models the task you
wish to solve. So why do we need to optimize parameters at all?
When we consider a recurrent kernel machine, each kernel value we use is
the inner product of the last hidden state, caused by the time series support
vector and that of the hidden state caused by the time series we wish to pro-
cess. The hidden states of the last frames of the support vectors are fixed.
This means that each time we evaluate the recurrent kernel machine, we
project the infinite-dimensional hidden state on a fixed set of infinite dimen-
sional vectors. Essentially, the hidden states associated to the last frames
of the support vectors can be seen as a set of untrained readout weights, as
we know them from classic RC. This means that the set of kernel outputs
provides a finite-dimensional projection of the infinite-dimensional hidden
state.
Why do we project onto this set of hidden states, and not just take any
projection? Very likely, any randomly chosen direction in this infinite-
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dimensional feature space will by almost completely orthogonal on the hid-
den state vector and as such produce very little useful information. If we use
actual hidden states to project on, these are much more likely to produce
informative kernel values, as these hidden states will reside within the part
of feature space that contains the hidden states.
This means that we can view recurrent kernel machines as nothing more
than a way to provide a finite set of well-chosen projections of the infinite
hidden state. I will now address the next question: what is the role of the
parameter set?
As I mentioned, the universally optimal solution to the task you wish to solve
is present within some subspace of the infinite-dimensional feature space, and
a recurrent kernel machine will try to approximate this projection by linearly
combining the projections provided by the kernels. I believe that optimiz-
ing the parameters increases the likelihood that such an approximation will
work well. In precise terms: if we consider the distribution of the infinite-
dimensional hidden state, a good parameter set will ensure that the optimal
projection direction will have a high likelihood to lie within this distribu-
tion. This will ensure that sampling projections from within this space can
e�ciently approximate this optimal direction.
From the point of view of someone modeling an ML task, we can state that
good parameters for recurrent kernels essentially makes sure that the dynam-
ics that define the application are well captured by the inherent dynamics
of recurrent kernels.

4.7.2 Reservoir Computing
Recurrent kernels provide sample projections from the infinite-dimensional
hidden state, which then need to be linearly combined in order to produce an
output. The approximation here lies in the fact that we need to use a finite
set of kernels to work on. Reservoir Computing makes the approximation
on a di�erent level. Instead of directly projecting from the infinite hidden
state, reservoirs will provide a finite-dimensional model of it, and use the
model hidden state as a feature vector that can be directly used for linear
regression. The inherent assumption that is made here is that most of the
dynamics of the infinite-dimensional hidden state can be captured by a finite
dimensional DS with similar properties.
Notice that the approximation here is much rougher. The only guarantee
that you have is that the reservoir will start to approach the dynamical be-
havior of the infinite DS for very large numbers of neurons. For any limited
training data set, recurrent kernels will always produce the asymptotical
performance for N æ Œ, N being the number of neurons. It should be
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stated that this does not mean that recurrent kernels will always perform
better than each individual reservoir. It is still possible to sample a reservoir
that happens to work very well on a certain task. In reality, however, this
probability is low, and an experimenter might need to take a prohibitively
large number of samples before finding one that beats recurrent kernel ma-
chine performance.
The plus side of the reservoir approximation is that we can directly find the
optimal projection direction, i.e., the optimal readout weights U. In the
case of recurrent kernels we could only project from a subspace spanned by
the hidden states of the support vectors. With reservoirs we have no such
limitation, and especially in the case of very large training sets, this provides
an important advantage.

4.8 Conclusions

In this chapter I have defined recurrent kernels, which can be associated
with infinitely large dynamical systems. The output value of such a kernel
operating on two time series is the inner product of the hidden states of an
infinite-dimensional DS, associated with the two input sequences.
I provide a range of examples of recurrent kernels. Some are based on spe-
cific neural network models, such as ESNs and sparse threshold function
networks, others are not explicitly based on network models, but on exist-
ing kernel functions that can be made recurrent, such as the Gaussian RBF
kernel.
Using the recurrent kernel function, it is possible to make predictions on
the stability of the DS it is associated with. I present a method for some
types of recurrent kernels to derive the Lyapunov exponent of the associated
DS. This allows us to find a closed expression which reveals the role of all
relevant parameters in the dynamical stability of the DS. For STUNs, I show
that the expression for the Lyapunov exponent can be validated empirically
with finite networks.
For other types of recurrent kernels, especially that of infinite-sized ESNs,
the Lyapunov exponent cannot easily be derived, and I resort to the Banach
fixed-point theorem and cobweb diagrams to analyze the dynamics of the
recurrent kernel more directly. As it turns out, recurrent kernel dynamics
can introduce a stable fixed point, even when the dynamics of the underlying
DSs have a Lyapunov exponent greater than zero. Around this stable fixed
point, the recurrent kernel dynamics will have fading memory, which still
allows for good performance on time series processing, even in an unstable
regime.
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In the final part of the section on kernel dynamics, I link the concept of
the spectral radius with recurrent kernels. If we approximate the recurrent
kernel by taking a finite hidden state, we can directly associate the stability
criterion of recurrent kernels with the notion of the spectral radius. Inversely,
this leads to the notion that reservoirs can be considered as a finite sample
from an infinitely large DS.
I explain how we can use recurrent kernels in common kernel machine se-
tups. First I use this framework on an academic task, where I show that
the performance of a recurrent kernel machine is the asymptotic limit of
increasing the number of nodes in ESNs. Next I apply recurrent kernels on
a challenging, real world speech recognition task, which yields performance
close to the state-of-the-art.
I concluded this chapter by arguing that recurrent kernel machines and reser-
voir computing can be seen as two di�erent approximations of the same
mathematical concept: infinite DSs. Recurrent kernel machines are particu-
larly practical for small training sets, as they yield performance that is the
asymptotic limit of infinitely large reservoirs. Reservoirs have the advantage
that, even though they only crudely approximate infinite-dimensional DSs,
they can be trained on unlimited amounts of data.

4.9 Future work and open questions

4.9.1 Expanding beyond simple kernel machines
As I mentioned before, recurrent kernels have one strong disadvantage com-
pared to ESNs: their computational demand. Each kernel value is obtained
recursively through a large set of operations on the data, and all these com-
putations only deliver a single piece of information: the final kernel value in
the sequence. One of the most obvious extensions of the current framework
would be to not simply limit the output to this single value, but also to
include the intermediate kernel values. If we have two time series s1(t) and
s2(t), with t = 1 · · · W , we have to calculate all W kernel values Ÿ

t

(s1, s2)
to obtain the desired output value Ÿ

W

(s1, s2). In the current setup, what-
ever information these other kernel values might contain, is thrown away.
It is an interesting thought to redesign the current kernel machine systems
such that it is able to include all this information. Each of these outputs
would then depend on an increasingly long context. Most importantly, the
expressive power of our model would increase W -fold at roughly the same
computational cost.
Such a system could not be trained in the classical LS-SVM setup, which
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requires a single output value for each kernel evaluation. Using simple least
squares to find optimal weights for such a system might also be problematic,
due to the fact that we now will have W ◊ N trainable parameters (N the
number of support vectors), the output weights for each output. Perhaps
finding these parameters is best tackled with gradient descent or similar it-
erative learning strategies.
A similar idea would be to define a linear combination of the sequence of
output values, which would produce a new kernel function that can be opti-
mized for the task. This idea is related to the field of multiple kernel learning
(MKL) (Bach et al., 2004; Lanckriet et al., 2004; Sonnenburg et al., 2006).
Here, the goal is to solve a task by creating a novel kernel as a linear combi-
nation of several di�erent kernels. Insights in the domain of MKL could be
readily applied on this problem.

4.9.2 Building efficient recurrent models from fea-
ture space

Compared to the ordinary RC setup, kernel machines have the disadvantage
of being di�cult to scale to large datasets. Whereas RC delivers a finite
feature vector, which is independent of the size of the dataset, for kernel
machines one could say that each additional data point generates a new fea-
ture.
One method that tackles this problem is the so-called Nyström-approximation
(Williams and Seeger, 2001); a way to create a finite-dimensional feature vec-
tor from a small set of support vectors. In essence the Nyström-approximation
boils down to selecting a small subsample of data points, and use (a linear
transformation of) the kernel values of these data points with those of the
whole dataset as feature vectors, such that we can include as much training
data as we like.
With recurrent kernels it would be far more interesting to attempt to go one
step further: to actually try and use the sequence of these feature vectors to
create a finite-dimensional recurrent model that approximates the dynamics
of the infinite-dimensional hidden state. Suppose we have a sequence of fea-
ture vectors x(t), created from a time series s(t). We can then for instance
try to optimize weights W and V such that

x(t + 1) = tanh(Wx(t) + Vs(t + 1)).

If this would be possible, it would mean that we can create a recurrent neural
network that approximates the dynamics of the infinite dynamical system.
This would be based on the data of the time series, in the sense that it is
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based on a set of support vectors, and it would provide a truly recurrent
system, where each new hidden state can be computed instantly from the
previous hidden state and the current input frame. This is much faster than
the cumbersome windowed method in which recurrent kernel machines are
executed at the moment.

4.9.3 Recurrence versus fading memory
Given that we have shown a clear advantage of recurrent kernels over classic
kernels operating on time windows, we run into the question as to why this
is the case. Most importantly, we need to ask the question: is it because of
fading memory, or is it due to the recurrence?
For example, we could artificially introduce fading memory into time win-
dows, simply by reweighting each frame such that they become gradually
less important towards the start of the time window. As a consequence, the
last few frames will matter most, and frames further in the past less and
less. Next, we could use this reweighted input (which is nothing but a linear
transformation) as input into a more common kernel, such as Gaussian RBF.
Would such a kernel function be able to compete with, or even transcend
recurrent kernels? Perhaps part of the relative success of recurrent kernels
truly resides in the recurrence itself; the fact that it inherits the prior as-
sumption of causality. Notice that this question is not limited to kernels,
and applies equally well to recurrent neural networks.
It is important to mention that these questions are tightly bound to non-
linearity. For a linear kernel, there is no distinction between recurrence and
fading memory. For non-linear kernels this di�erence is more obvious. In the
example I gave above, the fading memory is due to a linear transformation.
For recurrent kernels, the iterated non-linearity directly contributes to fad-
ing memory, making the two approaches fundamentally di�erent. Therefore,
if experiments are conducted that need to confirm or deny this question, I
would strongly suggest to try it on a highly non-linear task, as it will amplify
the di�erence between the two.

4.9.4 Recurrent kernels for continuous media
In chapter 2 I discussed some of the more exotic implementations of RC. One
of the most prominent candidates are physical reservoirs, where we for in-
stance connect a set of weights via fixed bars, springs, and dampers. Such a
system, when set into motion, can serve perfectly well as a physical reservoir
(Hauser et al., 2012), where the hidden state would consists of the current
position and speed of the weights. Using the same line of thought as we did
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at the start of this chapter, is it possible to increase the size of such a system
to infinity, where we exchange detailed knowledge on the connections for a
simple statistical model.
Such an infinitely large set of connected weights could be considered a con-
tinuous medium. If we would assume that the nodes of the dynamical system
are only locally connected, and we zoom out su�ciently from the microscopic
view of springs and dampers, we would end up with an elastic medium.
Other candidates for continuous media reservoirs would be models of chem-
ical reaction-di�usion systems. These are systems in which you have a
medium in which local chemical reactions occur, and of which the result-
ing reactants di�use throughout the medium, influencing chemical reactions
elsewhere. Many phenomena can be modeled by reaction-di�usion systems,
such as the famous BZ-reaction (Belousov, 1959; Zhabotinsky and Zaikin,
1973), the FitzHugh-Nagumo equation that models how action potentials
travel through nerves (FitzHugh, 1955; Nagumo et al., 1962), and blood
clotting (Ataullakhanov et al., 2007). Indeed, their interesting spatiotempo-
ral dynamics have been suggested as a potential computational entity (Dale
and Husbands, 2010).
Recurrent kernels could form an interesting approach to model spatiotempo-
ral dynamics in continuous media. If it is analytically tractable to find the
kernel, it is also possible to investigate the dynamical stability of the sys-
tem, or to explore how well such media may actually perform when applied
as reservoirs.

4.9.5 Continuous time recurrent kernels

Very related to the previous part, one truly interesting challenge is to try
and extend the whole framework of recurrent kernels to continuous time.
Not only would this have useful practical applications (in the same vein as
adding leak rate can boost ESN performance), continuous time recurrent
kernels would make it possible to analyse models of very large continuous
time dynamical systems, similar to the way STUNs are models of gene reg-
ulation networks. An interesting example of a continuous time dynamical
system are spiking neural networks. Spikes can occur at any moment in
time, and the underlying dynamics of the cell are continuous, governed by a
di�erential equation.
Let us consider a generic di�erential equation, based on 2.3, which would
describe the hidden state of a continuous time reservoir:

ȧ(t) = 1
·

R

(f(a(t), s(t)) ≠ a(t)) .
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If we have two signals s1(t) and s2(t), these will have two associated hidden
states a1(t) and a2(t). The kernel function we are after is then given by

Ÿ
t

(s1, s2) = a1(t) · a2(t).

Solving this equation directly seems intractable. Possibly there exists a
solution for Ÿ

t

(s1, s2) in the form of a di�erential equation. We can write:

Ÿ̇
t

(s1, s2) = ȧ1(t) · a2(t) + a1(t) · ȧ2(t)

= 1
·

R

(f(a1(t), s1(t)) · a2(t) + f(a2(t), s2(t)) · a1(t) ≠ 2a1(t) · a2(t))

= 1
·

R

(f(a1(t), s1(t)) · a2(t) + f(a2(t), s2(t)) · a1(t) ≠ 2Ÿ
t

(s1, s2))

The last term in the above equation is a leaky integration. The two first
terms are the drivers of the evolution of Ÿ

t

(s1, s2). Solving these however,
seems to be far from trivial. Hopefully this conundrum will be resolved in
future research.
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Thus far, the main theme of my doctoral research was focused on reservoir
computing. Nevertheless, I have spent some thought and e�ort on working
with more traditional means of training recurrent networks. This chapter
will discuss both published and unpublished results in this field. I will start
by elaborating on gradient descent via error back propagation, and more
specifically back propagation through time. Next I will talk on simplifying
this concept, and I will look at training only the input and output weights of
a network. The second part deals with very preliminary work on designing
layered architectures of recurrent networks which may have some advantages
in terms of training speed and stability.

5.1 Where reservoirs fail

Before we begin with this chapter, I will first explain why trained RNNs are
in fact needed at all. Consider the following task: we have one-dimensional
input time series s(t), where each element is randomly drawn from the set
{1, 2, · · · , 9, 10}. The desired output at each moment in time we define as
y(t) = s(t ≠ s(t)), i.e it must provide s(t) delayed with the current input
value.
Solving this task may seem straightforward at a first glance, simply because
its prescription is so short and easy to understand. Nevertheless, solving
this task with a standard reservoir is extremely hard. My coworker, Fran-
cis wy�els, who is experienced in optimizing reservoir systems, has applied
reservoirs of 1500 nodes on this task, optimizing spectral radius, input and
bias scaling. The best result he found after searching parameters for about
one day was a test NMSE of 0.54, still rather high. When I trained an RNN
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of 38 neurons explicitly1, which has about the same number of trainable pa-
rameters as the reservoir, it took only a few minutes to reach a test NMSE
of about 0.006.
Why is there such a great di�erence? The reason is likely the very non-linear
nature of the task. The RNN is required to store the history of the last ten
input entries, on its own an easy assignment, and next pick out a di�erent
item from this registry each frame in time and send it to the output. If we
put this in terms of the reservoir as a filter, the network output needs to
emulate a filter that completely changes shape every moment in time.
Even an extremely non-linear and relatively large ESN is unlikely to con-
tain this highly specific quality within its random set of functions. In fact I
believe that this demonstrative exercise gives insight into a larger problem,
which I can put into the following, intuitive terms:
There are more ways in which to be strongly non-linear than weakly non-
linear; the number of functions for each given degree of non-linearity in-
creases rapidly as this degree goes up.
For example: we can express every possible N

out

-dimensional linear function
on an input vector of size N

in

using a matrix of size N
in

◊N
out

. On the other
extreme of the spectrum, for modeling any non-linear function, we need an
infinite amount of parameters. If we would have a task that requires an
close-to-linear mapping of the output, chances are good that in any random
ESN instantiation the right set of filters will be present. As a task becomes
more and more non-linear though, the chance of finding the right kind of
non-linearity decreases dramatically, simply because there are so many ways
a function can be non-linear.
Herein the strength of explicit training of networks becomes obvious. If the
wanted non-linearity is highly complex, but can in principle be encoded in
the parameters of an RNN, a directed search has a chance of finding it,
whereas random ESN instantiations are sampling from such a tremendously
large search space that the chances of discovering an adequate one are prac-
tically zero.
Obviously, since we know the nature of the example task that I proposed
here, it is still possible to have a reservoir-like setup which can solve it. For
instance we could split the problem into two parts: we train one reservoir
to act as a delay line, already transforming the problem from a temporal
to a spatial one, and next take a (memoryless) random NN that needs to
select the right entry from this delay line. Two altogether much easier tasks.
Alternatively, we could reformulate the task as a classification task, where
we transform in- and output to ten-dimensional classifiers (the input being
all zeros and a single one on the corresponding channel of the current input

1Using backpropagation through time, which I’ll explain later.
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frame). For real-world tasks however, such ‘expert knowledge’ is not nec-
essarily available, or far too di�cult to find. If we cannot have a directed
search to a good solution, random dynamical systems will never provide a
practical solution.
Real world tasks that are very non-linear, and cannot be readily tackled
with RC do indeed exist, and can be quite interesting. One of the tasks I
will consider in this chapter is next-character-prediction in a text. Here, the
di�culty lies in the fact that, even before grammar and punctuation comes
to question, the model needs to learn a very large number of words. Put
di�erently: it needs to encode a very large list of highly specific sequences. A
classical reservoir will only be able to explicitly encode words into its output
weights, as they are the only parameters that are trained. Other than that,
the number of words the reservoir can learn will then largely rely on chance.
The expressive power of trained RNNs is far greater, hence the number of
words they can encode will be substantially larger. For this reason, in this
chapter I will study explicit training strategies.

5.2 Gradient descent: backpropaga-
tion through time

Reservoir computing has a quite specific perspective on Machine Learning.
In its rawest form, it takes a very large number of nonlinear spatiotemporal
functions of the input data, and correlates the desired output function with
a direction in this high-dimensional space. From this point of view, it is
clear that the larger the reservoir, and hence the larger the feature space
from which the output is projected, the better the system will work. The
best reservoir in existence is infinitely large.
The table turns when we think of a wholly di�erent scenario: I only give you a
finite number of neurons, and hence a fundamentally limited representational
power, to solve a particular task. But to keep things fair, I will give you
complete freedom of choice over the parameters (weights) of the network.
How should you go about to tweak and tune them? This question is what
this section is concerned with, and I will discuss a widespread solution to
this problem: gradient descent.
First, I describe the idea of minimizing a cost function by searching the
direction in parameter space which points in the direction of the largest
reduction in cost. Next I will discuss the limitations of such an approach and
finally I will elaborate on how we can apply it on recurrent neural networks.



“Book” — 2012/11/27 — 13:10 — page 138 — #166

138 5 Training Recurrent Networks

5.2.1 Cost gradient
We start from a similar objective as in Chapter 2: we wish to minimize a
certain cost, more specifically the Mean Square Error of the output of our
model. Suppose that we have a model, defined by a set of parameters ◊.
Given a certain amount of training data which defines the task we wish to
solve, we can define the total MSE as a function of ◊. This function is the
cost we wish to minimize.
If we assume that MSE(◊) is continuous and su�ciently smooth, there exists
a rather straightforward optimization method. Start with a model that has
random parameters. Obviously the odds that it will perform even remotely
satisfactory on the task you wish to solve are minute. But what we can do
is to see in which direction in parameter space the MSE will decrease. In
order to do so we need to define the gradient of the MSE with respect to ◊:

Ò◊(MSE) = dMSE(◊)
d◊

. (5.1)

This gradient has the same dimensionality of ◊ and points in the direction
for which the MSE will increase the fastest. When we wish to obtain a
model that scores better on the task we have to change the parameters in
the opposite direction. We define new parameters such that

◊ Ω ◊ ≠ ÷Ò◊(MSE). (5.2)

Here, ÷ is a (usually small) parameter that determines the size of the step we
take in parameter space. We let this algorithm run until the cost function
no longer decreases or until we reach a maximal number of iterations. When
the cost function no longer decreases we say that the learning algorithm has
converged. I have made an illustration of the principle of gradient descent
in Figure 5.1.

5.2.2 Weaknesses of gradient descent and their
solutions

Here I discuss some of the typical problems that occur when using gradient
descent algorithms, together with some of the solutions.

5.2.2.1 Computational demands

Normally, each gradient calculation will require you to run the model on
the complete dataset with the current parameters. For very large datasets
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Figure 5.1: Illustration of gradient descent. On the left I have
depicted a color coded cost function. The two dimensional plane
is the space of the parameters, and the color indicates cost (red
is high and blue is low). The right panel is a depiction of the
same function, but now as a contour plot. The algorithm starts
in the red star. It finds the local gradient, the direction per-
pendicular to the contours, and moves a step in that direction.
It repeats that process until it has converged at the minimum
value at the blue star.

this means that a single iteration might be a computationally expensive
operation. Normally a relatively large number of iterations is required before
the solution converges, and running gradient descent becomes infeasible. One
of the solutions to this problem is to use stochastic gradient descent (Bottou
and Bousquet, 2008). Instead of running all data through the model, we
sample small subsets of data and calculate the gradient on that. Even though
the gradient is less accurate, the number of parameter updates can be greatly
increased this way and convergence to an optimal value is much faster.

5.2.2.2 Initial parameters

It remains a challenge to find a good heuristic for choosing the initial values
for the parameter set ◊. If the region with low cost is very far away from
the initial parameters, gradient descent will wander around aimlessly, and
it might never reach a region with good performance. There are no real
guidelines as to what is a good starting point, as it depends on the model
and the task, and an experimenter usually has no choice but to use trial and
error.
Related to the problem of good initial parameters is the choice of the learning
speed. If it is too high, the jumps in parameter space are too large and the
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problematic curvature local minima

Figure 5.2: Illustration of two common problems with gradient
descent. On the left panel I show a cost landscape as a valley
that gradually narrows and deepens. The gradient descent al-
gorithm starts at the red star, finds the valley and descends into
it. As soon as the gradients at the edges of the valley grow too
large however, the search algorithm will start to oscillate and
jump back and forth between the valleys edges. Finally it no
longer moves in the direction in which the valley deepens. The
right panel show an example of a local minimum. Even though
a lower cost can be attained, the gradient descent algorithm
doesn’t find it and converges to a suboptimal parameter set.

algorithm may overshoot the optimal value or even be unstable and cause
the parameters to grow unboundedly. If it is too small, convergence of
the learning algorithm will be too slow and a good solution might not be
found within a reasonable time. Often, experimenters will gradually reduce
the learning speed as performance increases. This ensures that the search
algorithm will settle at the local minimum in the cost landscape.

5.2.2.3 Local optima and problematic curvature

Gradient descent works best when the cost landscape is smooth and has one
single deep valley, such that it doesn’t really matter that much where you
start. In many cases however, this assumption is not valid, and the cost
landscape has many local minima in which the search algorithm may get
stuck. Sometimes these local minima perform quite adequately, and there is
no real issue, but it may also lead to a parameter set which performs very
poorly.
Related to this problem, and probably even more common, is the issue of
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problematic curvature. When the cost function leads to a very narrow and
very steep ravine, with very high gradients on the edges, the finite step size
of the algorithm will make the parameter set oscillate in between the two
edges, and convergence will be either very slow or not happen at all. The
true direction in which the cost would decrease is essentially masked by the
high gradients at the edges.
Figure 5.2 illustrates both these problems. Notice how the finite step size in
the left panel starts to matter, and the gradient at the edges of the valley
completely dominates the search. Obviously, choosing a su�ciently small
learning speed ÷ may solve this problem, but in reality the curvature can
be so strong that it would need to be extremely small, leading to extremely
slow convergence.
The issue of local optima can be largely resolved by using stochastic gradi-
ent descent or by introducing a so-called momentum term in equation 5.2
(Rumelhart et al., 1986; Qian, 1999). Stochastic gradient descent works in
the sense that, due to the approximation, the gradient is noisy. This means
that it essentially ‘hops around’, and can easily escape a shallow local min-
imum. Momentum will make sure that the parameter evolution will have a
certain inertia. Intuitively it behaves like a ball rolling around through the
cost landscape, which allows it to overcome local minima.
Problematic curvature can be solved by using so-called second order meth-
ods. Rather than only considering the gradient, these methods will calculate
the local quadratic curvature of the cost landscape and compensate for it.
The success of this approach is striking, and usually the number of iterations
needed for convergence is significantly smaller. The great downside is the
fact that it is required to calculate the Hessian matrix, which is a square
matrix with as many rows and columns as trainable parameters. Even small
models often have several thousands of parameters, such that this computa-
tion quickly becomes impractical. Therefore there exist approximations that
only look at the diagonal of the Hessian (Broyden, 1970; Goldfarb, 1970), and
another method avoids calculating the Hessian altogether (Martens, 2010).

5.2.3 Backpropagation in neural networks

Here I discuss how gradient descent works for neural networks. The actual
derivation, though rather straightforward, is quite involved, and has been
explained thoroughly in literature. For details I refer to e.g. Bishop (2006).
Here I only provide a brief practical explanation.
To start with, let us consider the MSE for T data points s

n

with associated
one-dimensional target outputs y

n

. If the model we wish to train gives
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output ỹ
n

, the MSE is equal to

MSE = 1
T

ÿ

n

(ỹ
n

≠ y
n

)2. (5.3)

Taking the gradient to the parameters then yields

Ò◊(MSE) = 2
T

ÿ

n

dỹ
n

d◊
(ỹ

n

≠ y
n

) = 2
ÿ

n

dỹ
n

d◊
e

n

(5.4)

Here, e
n

is the error of the output of the i-th data point. Let us now consider
the case of a single-layered neural network as an example. The output is
given by ỹ

n

= U[a
n

; 1], a
n

being the hidden state associated with the n-th
input data instance. The derivative to the parameters U is then simply the
hidden state plus bias. We find that

ÒU(MSE) = 2
T

ÿ

n

e
n

[a
n

; 1]T, (5.5)

which already yields the updates for the output weights. Next we wish to
calculate the derivative to the input weights V. We find

dỹ
n

dV = d[a
n

; 1]
dV

dỹ
n

d[a
n

; 1]
= D(a

n

)UT
0 sT

n

.

Here, D(a
n

), is a diagonal matrix with as diagonal elements the derivatives
of the activation functions of the hidden state, in the case of hyperbolic
tangent units the diagonal elements are 1 ≠ a2

i

. We use U0 as notation for
the output weights without the bias elements. The input weights V are then
updated with

ÒV(MSE) = 2
T

ÿ

n

)
D(a

n

)UTe
n

*
sT

n

. (5.6)

The quantity between curly brackets we call the backpropagated error, as
it is the error projected over the transpose of the output weights, as if it
is projected onto the neurons in the hidden layer. Generalizing to multi-
dimensional output signals is quite straightforward. We can simply replace
e

n

by a vector e
n

in the above expressions.
The backpropagation algorithm is often attributed to Paul Werbos (Werbos,
1974).
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5.2.4 Schematic error backpropagation
Gradient descent for more complex neural architectures with multiple layers
can be quite easily abstracted using the concept of a backpropagated error
signal. Consider equation 5.6. The form of the equation is the column
vector of the backpropagated error which undergoes an outer product with
the input signal. The update rule for the output weights is essentially the
same, but since they are linear, the derivative is simply the unity matrix.
Furthermore, the ‘input’ of the output weights is the hidden state vector and
bias: [a

n

; 1].
In fact, this form of the update rule generally holds true for any layer in any
conventional neural architecture. The weights between every two layers are
updated in the same manner. I will skip the full derivation and only provide
the resulting algorithm. Suppose we have a complicated neural architecture
as depicted in Figure 5.3

• Run the network on a data instance. For each layer in your architec-
ture, store the activations.

• Determine the error at the output.

• Propagate the error back through the network. Each hidden layer
should have an error vector of the same size as the activation, which
can be attained with the following rules:

– Start at the output. Project the error to all layers that connect to
the output over the transpose of their respective weight matrices
(without bias elements).

– Suppose there are connections from hidden layer i to hidden
layer j. The error of layer j can be propagated to layer i over
the intermediate connections without bias elements.

– If a layer gives output to several other layers, the above process
is performed for all of them, and the backpropagated errors are
added up.

– The error on a hidden layer is complete when all backpropagated
errors from all its outgoing connections are added. The resulting
sum is multiplied with the derivative of the activations of the
respective layer. Only then can the error be propagated further.

• Each set of weights now obtains its respective gradient by calculating
the outer product of the errors on its outputs with its input vector,
optionally with an additional bias term equal to one.

• Repeat the process for all data entries in the dataset and add up all
the resulting gradients. Usually, for feedforward networks this can be
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Figure 5.3: Schematic depiction of error backpropagation. On
the left I have depicted a feed-forward network with seven hid-
den layers, interconnected in a complex manner. The blue circle
represents the input data and the green one the output layer.
Each black (or grey) circle is a hidden layer, and each arrow
represents a set of connection weights. The three left pictures
take out the grey hidden layer and show how the error on it can
be determined.

executed in parallel, and the whole set of calculations can be trans-
formed into a number of matrix-matrix multiplications which can be
computed very e�ciently.

Any neural architecture that is described by a directed graph, i.e. where
no feedback loops are present, can be trained in this manner with error
backpropagation.

5.2.5 Backpropagation through time
In the case of an RNN we need to slightly change the above line of thought,
and we need to think of the hidden layer in each instance in time as a separate
entity. This allows us to unfold the network evolution in time, and we again
obtain a directed graph. Figure 5.4 shows the graph associated with an RNN.
The di�erence between this graphical representation and the previous one is
of course that this time, the input, recurrent and output weights are no longer
represented by a single arrow, but are repeated in the graph for each network
iteration. We can still use the same reasoning, but this time we need to add
up all contributions to the gradient from each step in the backpropagation.
The idea to unfold an RNN in time to perform error backpropagation has
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Figure 5.4: Schematic depiction of backpropagation through
time. The top part shows the evolution of a recurrent neural
network unfolded in time. The blue circles are the input frames,
the black ones the hidden states, and the green ones the output
frames. The bottom diagram shows the direction in which the
error is propagated backwards through the unfolded network,
which shows that it is propagated back in time.

been invented independently several times (Mozer, 1995; Rumelhart et al.,
1986; Robinson and Fallside, 1987; Werbos, 1988), and is commonly known
as backpropagation through time (BPTT).
Notice that a single data entry in the framework of BPTT is a time series,
not a single input frame. If our data set consists of a single large time series,
the proper way to obtain the gradient is to run the network on the whole
time series, and then propagate the error back over the whole sequence. In
reality it is more common to run the network on short, randomly sampled
subsequences of the full time series, and apply stochastic gradient descent.

5.2.6 Common problems with training recurrent
networks

Here I discuss three special challenges that appear when applying BPTT.
Later in this chapter I propose a specific network architecture that tries to
resolve both these issues at the same time.
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5.2.6.1 Vanishing gradients

One of the most prominent di�culties is to find long-term historic relation-
ships in the data. If an error on an output frame is caused by input that
has been inserted a significant number of frames before, the only way the
BPTT-algorithm will find this connection is by propagating this error back
in time, up to the frame where the relevant input instance was inserted in
the network. The magnitude of the backpropagated error, however, will in
many cases rapidly decline as it is propagated back in time. This means that
by the time the gradient from the original frame has arrived at the relevant
input frame it might have become too small in magnitude to be e�ciently
used.
One of the most successful approaches that tackles this problem is the so-
called Long Short-Term Memory network (LSTM) (Hochreiter and Schmid-
huber, 1997; Schmidhuber et al., 2002). Here, special gated linear neu-
rons are present within the network, that can carry contextual information
through time indefinitely. More recently it has been argued that the vanish-
ing gradient problem is related to problematic curvature, and can be solved
using second-order training methods (Martens, 2010).

5.2.6.2 Bifurcations

The opposite situation, namely that of exponentially growing gradients, is
also a potential obstacle for BPTT. This happens when the network suddenly
has become chaotic. If we consider this from the original point of view, this
translates in the fact that the cost landscape is not necessarily continuous.
In Doya (1992) it is argued that an infinitesimal change in the parameters
may lead to an abrupt change in dynamical behavior, called a bifurcation. In
the cost landscape this means that the gradient descent may suddenly hit a
nearly vertical wall. Here, the gradient can be very large, and the parameters
make a sudden jump. If the dynamics of the network have switched into a
strongly chaotic regime, recovery from this bifurcation may be very slow or
not happen at all. Indeed, it is the experience of many researchers, myself
included, that such bifurcations do occur, and sometimes with catastrophic
consequences.

5.2.6.3 Computational considerations

As mentioned earlier, in the case of feed-forward NNs, it is possible to pro-
cess large amounts of data in parallel, as each data instance can be computed
independently of all others. This is an advantage that partially disappears
for RNNs. In order to compute the next hidden state we need to calculate
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the current one first. Each of these operations is a matrix-vector multiplica-
tion, which is only computable in parallel to a limited degree.
It is possible to split up the training data set in shorter sequences, and run
the RNN on each of those in parallel, still providing a significant speedup.
Unfortunately, gradient descent using the full gradient is often prohibitively
slow for RNNs, and in reality we often need to use stochastic gradient de-
scent, trading gradient accuracy for increasing the weight update frequency.
Stochastic gradient descent is truly not possible to compute in parallel, as
the weight updates are fully sequential.

5.3 Simplifications: Training only the in-
put and output weights

The content of this section has been published in Hermans and Schrauwen
(2010c). I have explored a highly simplified variant of BPTT, in which I only
train by propagating the error backwards for one step: from the outputs to
the hidden layer, and only base the gradient on this, as if we take a batch
length of a single frame. This allows to train an RNN during its operation.
The main research question I wished to address was how well a classical RC
setup, where only output weights are trained, holds up against the more
advanced setup of training the whole system. I considered three training
variants: training output weights only, training output and input weights,
and training the full network. The setup where I train only the output and
input weights has the inherent safety that bifurcations cannot occur, given
that the network is inherently stable. Indeed, the inherent dynamics of the
system do not change when the input weights adapt, only the kind of data
that enters the network changes.
Training the input weights of an ESN has been considered before in �er�anskỳ
et al. (2009). Here, the authors applied ESN on linguistic time series, where
the input weight training is based on co-occurrence of input symbols. In my
work however, the learning rule takes into account the inherent dynamics
of the ESN, and will employ the interplay of the input projection and the
network transients to improve the hidden-state representation of the input.
I have validated the performance of the three variants on a simple spoken
digit recognition task. Not only have I evaluated performance itself, I have
also investigated the way the structure of the input data is embedded in the
network dynamics.
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5.3.1 Network setup
All experiments were performed using RNNs of 50 neurons. I used nodes
with a fermi activation function, and a leak rate of “ = 0.2. The output,
input, and recurrent weight matrices, U, V and W respectively, were initial-
ized with elements drawn uniformly from the interval {≠1, · · · , 1}, and then
scaled by dividing them by the spectral radius of W. Note that, due to the
fact that I use fermi nodes instead of hyperbolic tangent nodes, a spectral
radius of one is not associated with the dynamical stability of the network.
The only reason I use it here is to have a convenient scaling measure. Scal-
ing all three weight matrices with the spectral radius proved to be a good
parameter initialization for this task.

5.3.2 Training setup
I use online training, which means that I update the weights each time step
as I run the network on the input data. The update rules can be written as

U Ω U ≠ ÷e(t)aT(t)
V Ω V ≠ ÷D(t)UTe(t)sT(t ≠ 1)

W Ω W ≠ ÷D(t)UTe(t)aT(t ≠ 1), (5.7)

where the elements of D are given by

D
ij

(t) = ”
ij

1
2·

!
1 ≠ tanh2([Wa(t ≠ 1) + Vs(t ≠ 1)]

i

)
"

. (5.8)

The update rules for V and W are in fact equivalent with the setup of
training an Elman network (Elman, 1990). An Elman network is basically a
feedforward network which has the hidden states of the previous time step
as extra inputs. It is easy to see that an Elman network always has an
equivalent recurrent network, and that propagating the error back one time
step is equivalent with classic backpropagation in an Elman network.
The update rule for the readout weights converges to the same weights that
would be obtained via linear regression, as the optimization criterion in both
cases is the minimization of the MSE. When I tested performance of the three
learning variants, however, it quickly became clear that only updating output
weights leads to extremely slow convergence. For this reason I have opted to
use a more advanced online learning strategy, called Recursive Least Squares
(RLS) (Grant, 1987). This technique will make an online estimate of the
inverse of the covariance matrix of the hidden state, which will significantly
speed up the convergence.
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5.3.3 Spoken digit recognition
To investigate the performance of our learning algorithm, I applied it to a
spoken digit classification task. I used a subset of the TI46 isolated digit
corpus where the digits from “zero” to “nine” are spoken 10 times by 5
di�erent women (a total of 500 words). The resulting data was preprocessed
using the Lyon passive ear model Lyon (1982), which initially produced 88
frequency channels. I reduced the data to 20 input channels and a sample
rate of approximately 35 frames per word. Next, I randomly selected half
of the words to be part of the test set, and the other half as the training
set. The training datasets were then constructed by randomly sampling
digits from the training set and separating them with intervals of 15 frames.
Testing was performed by presenting all 250 words of the frames in a random
order and measuring the classification error, which we call the Word Error
Rate (WER). A new training and testing set was drawn for each network.
The readout layer consists of 10 classifiers where initially each classifier had
a target output of 1 when their corresponding digit is uttered, ≠0.1 for the
other classifiers, and zero for all classifiers during the 15 frame intervals.
However, it appears that the networks have some trouble with this signal as
a desired output signal, probably since it is virtually impossible to recognize
a word at the very start of its utterance. This results in slightly worse
performance and I suspect that this is due to the fact that the network
will make wrong associations at the beginnings of the words. To reduce
this e�ect, I have low-pass filtered the target output with the leak rate of
the network, e�ectively slightly softening and delaying the desired output.
Put in a formula: if ŷ is the original desired output, we produce the actual
desired output by calculating y(t + 1) = (1 ≠ “) y(t) + “ŷ(t).
Classification is finally performed by taking the mean of the output signals
for the duration of the utterance, and selecting the digit which corresponds
to the channel with the highest mean output.

5.3.4 Experimental setup
First of all I measured the evolution of the WER for each of the three setups.
To monitor the progress of the training algorithms, I froze all the weights
after every 1000 presented digits and measure the WER on the test set. In
total I have initialized and trained 50 networks for each strategy, and show
the average WER as a function of the number of presented digits.
Second, I have investigated whether or not the network internally adapts
specifically to the task, i.e., whether or not the internal representation of the
digits depends more on the digit itself than its specific utterance. For this
purpose I have measured the centroids of the reservoir states during each
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Figure 5.5: WER of the three training setups as a function of
the number of presented digits. Results are averaged over 50
network initializations. OSBP stands for One Step BackPropa-
gation, which describes the nature of the training algorithm.

word (the mean over time of the network activation during the utterance
of a word), which I denote qk for the k-th word. I have investigated the
clustering of these before and after training V and/or W. As a distance
measure2, I used D = 1 ≠ r, in which r is overall correlation between the
centroids, i.e., the distance between the k-th and l-th word is given by

D
kl

= 1 ≠
q

Nd

i=1 (qk

i

≠ q̄k)(ql

i

≠ q̄l)Òq
Nd

i=1 (qk

i

≠ q̄k)2 q
Nd

i=1 (ql

i

≠ q̄l)2
, (5.9)

where q̄k = N
d

≠1 q
Nd

i=1 qk

i

and N
d

the total number of digits.

5.3.5 Results
Basic performance results are shown in Figure 5.5. It appears that the RLS
algorithm very rapidly converges to optimal readout weights and gives a final
performance of about 3% WER. However, it is clear that training all weights
with the update rules from equation 5.7, though slower in convergence gives

2Euclidian distance is less meaningful in high dimensional spaces (Aggarwal
et al., 2001).
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superior final results. Remarkably, it seems that only training the input
weights already gives a great improvement over random networks but with
obviously less computational demands than training the full network.
Figure 5.6 gives an example of the dendrograms of the centroids of the net-
work dynamics for the di�erent digits before and after adaptation. Untrained
networks seem to have very little to no tendency to cluster the di�erent dig-
its, suggesting that the dynamics of random networks depend more strongly
on the specific utterance of the digit than on the actual digit. The learn-
ing rule automatically seems to cluster the data, trying to enforce similar
trajectories for all digits within a single class while enlarging the separation
between the classes.
It is interesting to note that the clustering of the centroids is also very good
when only the input and output weights are trained. This can be due to two
factors. First of all, the input mapping can already improve the clustering
of the digits itself, i.e., the input mapping can try to find a projection which
performs optimal spatial clustering of the input data (where each datapoint
corresponds to the mean over time of the input data of a digit, i.e., the
centroids of the digits). On the other hand, the input mapping could also
take into account the dynamics of the network itself, where the temporal
structure of the data will play a crucial role.
To investigate this we consider the clustering of the centroids of the digits
and the centroids of the digits after the linear input mapping (i.e., the cen-
troids of Vs(t)). Examples of the resulting dendrograms are shown in Figure
5.7. Though some improvement is apparent, the linear mapping alone cannot
fully account for the nearly perfect clustering of the centroids of the network
states. This means that the learning rule finds an optimal mapping from the
input data to the network which also accounts for temporal information.
Apparently, finding an optimal projection into the state space of a random
dynamic network - at least for digit recognition - already o�ers a very sig-
nificant improvement over a random projection. Most importantly, training
only the input and output weights of a network has the great advantage
that problems such as bifurcation or loss of stability can no longer occur,
since none of the recurrent weights are trained. The network itself can still
be considered as a separate, stable-by-construction dynamic system which
is left unchanged.
There seems to be a great advantage in using even a simple learning rule
to adapt the input weights, and this is probably more true as input dimen-
sionality increases. As is suggested in section 3.2, high-dimensional input
data causes random networks to perform poorly in terms of memory. Likely
a similar e�ect can be spotted in task performance. The network receives
a random projection of the input data and will be sensitive for essentially
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Figure 5.6: Examples of typical dendrograms of the centroids
of the dynamics for di�erent digits before and after adaptation.
The written words are the digits, the number between brackets
are the number of digits in each leaf.

random features in the input time series. The larger the input dimensional-
ity, the smaller the odds are that these features will actually capture useful
information. Training input weights can greatly improve this mapping, and
allow the inherent network dynamics (which remain random in the reservoir
setup) to be put to use far more e�ciently.

5.4 Layered approach

Propagating the error back only one step may work in tasks that do not
require a long history of the input data. For more challenging tasks though,
it will not su�ce, and the full BPTT scheme will need to be applied. In this
section I elaborate on a specific RNN architecture, which allows for a very
large number of parameters while remaining relatively fast to train.

5.4.1 Layered architectures
A large research domain focuses on training so-called deep neural architec-
tures. These are feedforward networks, but with more than one hidden
layer. There is a large body of evidence that supports the notion that large
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Figure 5.7: Examples of typical dendrograms of the centroids
of the input data and the projected input data, the number
between brackets are the number of digits in each leaf.

parts of the human brain are organized in hierarchical layers, and nowhere
has this been as well-studied and understood as in the visual cortex (Chen,
1982). The image our eyes receives is sent through a series of increasingly
high-level filters. The first layer of processing is already in the retina, where
the image is compressed with a factor 100 in order to send it to the brain
through the limited capacity of the optic nerve (Ku�er et al., 1953). Once
the signal enters the first layer of visual processing, individual neurons are
sensitive to local features that build up an image, mostly edges, spots and
lines. Subsequent layers then recognize continually higher level features such
as objects, shapes, etc. (Van Essen and Maunsell, 1983). Much higher in
the cortical hierarchy, in the hippocampus3, we know that there exist single
cells or small groups of cells that encode highly specific concepts, such as
the famous ‘Homer Simpson’-neuron that only becomes active when viewing
or thinking about the animated TV-series ‘The Simpsons’ (Gelbard-Sagiv
et al., 2008).
Machine learning too has benefited from hierarchical processing. In vision
tasks, where the input consists of images and the goal is to recognize objects,
faces, or handwritten text, hierarchical processing seems to be particularly
successful (LeCun and Bengio, 1995). Still, training a feedforward NN with

3Seen by some as the highest layer in the brain (Hawkins and Blakeslee, 2004).
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many layers poses some unique problems. First of all, as I mentioned it
is important to initialize the parameters of the network more or less cor-
rectly. The larger the number of weight matrices defining the network, the
more initial parameters will need to be set. This quickly becomes a di�cult
search. Secondly, error backpropagation in deep networks su�ers from the
so-called fading gradient problem (which incidentally also occurs in RNNs).
This means that usually only the layers close to the output layer e�ectively
‘learn’ the desired mapping. When the error is propagated deeper down, it
quickly decreases in magnitude and as a consequence, the weights in these
layers barely change during training, and they barely play a useful role in
processing. As is suggested in Erhan et al. (2010), the challenge lies in the
fact that all layers are trained simultaneously. The role of deeper layers,
closer to the input would ideally be preprocessing of the data, which can
then be e�ciently mapped to the desired output by the higher layers. How-
ever, as the higher layers are constantly changing during the training phase
it is not obvious what this preprocessing exactly might entail, and gradient
descent may never find it.
A new strategy to learn deep networks was developed, in which the actual
training for a task is preceded by a phase of unsupervised pre-training of
each layer individually. This idea has been put forward a few times inde-
pendently, and the most notable two examples are Denoising Autoencoders
(Vincent et al., 2008) and Deep Belief Networks (Hinton et al., 2006). Such
strategies overcome many of the previous problems of training deep net-
works. The concept of the denoising autoencoder I will explain a bit more
thoroughly, as it may have potential applications for the network model I
will propose in the next section.
A denoising autoencoder will take an input instance which has been cor-
rupted with a form of noise. It is then projected onto a hidden layer, and the
resulting activations are projected back over the transposed input weights.
The goal is to reproduce the uncorrupted data point, i.e., to denoise it, which
can be performed with common gradient descent.
The easiest way the network can in fact reconstruct the input frame, is by
learning the distribution of the input frames. More particularly it will en-
code likely features of the input data in its weight matrix. This makes that
the representation of the hidden layer can be a compact way to specify a
specific input instance, which makes it more ‘useful’ than that of a random
network. The denoising part of the setup makes sure that the network is less
sensitive to unlikely input features (the noise), and more so for more likely
ones (which it needs to reproduce).
The next step is to perform the same process in the consecutive layers of an
NN hierarchy. The hidden state of the first layer is corrupted, send to the
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Figure 5.8: Structure of the LRNN. Blue circles are input and
green ones output layers. On the left I have drawn a diagram
of a common RNN, where the looped arrow represents a pro-
jection from the previous time frame. The right diagram shows
an LRNN, acting like a multilayered feedforward network, but
where each layer receives input from the previous hidden state.
The output is connected to all layers.

second hidden layer, and projected back, and the second hidden layer needs
to learn to restore the correct hidden state of the first layer. As such, a hier-
archy of di�erent layers can be built. After a su�cient number of layers has
been stacked and trained in this manner, we obtain the pre-trained multi-
layered NN. This network can then be used as an initialization for a specific
task applied on the input data, and can be trained further with gradient de-
scent (known as the fine-tuning phase). The presence of both low and high
level features in the hierarchy will provide a very good starting point for
common training strategies, and has been proven to be an excellent method
to boost performance in e.g. written digit recognition (Vincent et al., 2010).

5.4.2 Layered RNNs

Extending the idea of deep learning to a recurrent architecture has been
attempted to some level (e.g., the recurrent temporal Restricted Boltzmann
Machine (Sutskever et al., 2008)). What I explored in my research is to see
how well a rather simplistic hierarchical recurrent architecture might score
compared to a common RNN in terms of performance, computational cost,
and stability. In Figure 5.8 I have provided a schematic depiction of the
Layered Recurrent Neural Network (LRNN). Each step in time, each layer
receives input from the hidden state of the previous layer like in a multi-
layered feedforward NN, and each layer also has its own recurrence. If we
denote the hidden state of the i-th layer with a

i

(t), we can write the update
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Figure 5.9: Linear memory functions for each layer in an LRNN
with 20 layers. The input signal consists of one-dimensional i.i.d
normally distributed noise. The number of nodes in each layer
is equal to 50. Each recurrent weight matrix W

i

has a spec-
tral radius of 0.95, the input layer V is initialized with input
scaling ’ = 0.2, and each of the intermediate weight matrices
Z

i

is initialized with elements drawn from a standard normal
distribution, and next rescaled with a factor 0.07. The mea-
surement of the memory function is performed using 250,000
input frames.

equations as

a
i

(t + 1) = tanh(W
i

a
i

(t) + Z
i≠1 [a

i≠1(t + 1); 1]) for i > 1

a1(t + 1) = tanh(W1a1(t) + V [s(t + 1); 1])

ỹ(t) = U [a1(t); · · · ; a
L

(t); 1] .

Here, Z
i

is the set of weights that projects the i-th hidden layer onto the
i + 1-th, W

i

are the recurrent weights of the i-th layer, and L is the number
of layers. I have opted for letting the output weights tap into all the hidden
layers, not just the last one. Not only does this give the output layer more
information to work with, it also partially helps the problem of fading gra-
dient as each layer directly receives a backpropagated error.
I have designed the LRNN with some perceived advantages in mind. I will
list and briefly discuss these here.
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• Computational speed
Undoubtedly one of the greatest advantages of the LRNN over a com-
mon RNN is the fact that the training can be sped up quite sig-
nificantly. The computational bottleneck in running an RNN is the
matrix-vector multiplication of the recurrent weights with the hidden
state. This process is slow as it cannot be computed in parallel. With
the LRNN this problem is partially solved. We still need to run the
recursion for each layer, but the hidden states that are obtained this
way can be projected onto the next hidden layer in one step, which can
be fully run in parallel. As I will show later, this leads to a speedup
of roughly a factor 4.

• Bridge between delay line and fading memory
As I have discussed in Chapter 2 and 3, the hidden state of an RNN
is a function of the fading history of the input signal. In the case
of LRNNs, each hidden layer will provide a successively broader view
over the input signal, as it can be said to convolve its own memory
with that of previous layers. This may lead to a naturally appearing
hierarchy, where lower layers process short text features (at e.g., the
level of syllables), and higher layers will model features that require
longer memory (up to the level of complete sentences).
In Figure 5.9, I have depicted the linear memory functions for the
hidden state of each layer of an LRNN with 20 layers. More details
are provided in the caption, but what matters is that indeed, each
layer has a view on the past input that progressively broadens and
lies further in the past as the layers are higher in the hierarchy. If
a large number of layers is used, we could state that the memory of
the network begins to resemble a delay line, i.e., each layer remembers
input history further in the past.

• Unloading the burden of nonlinearity
As I have explained in Chapter 3, RNNs have to obtain a balance
between non-linearity and memory depth. For a trained RNN this
is not completely true. If the recurrent weights are scaled up su�-
ciently, the mapping it performs can be both highly non-linear and
depend on a long input history. Nevertheless I suspect that in such
a regime, where the network really operates on the edge of stability,
BPTT might quickly encounter di�culties with bifurcations.
A layered approach has the advantage of stacking its nonlinear map-
ping the higher it goes into the hierarchy. This means that the hidden
state of each layer does not necessarily need to be driven into the very
non-linear domain. To put it shortly, the dynamics of each layer don’t
need to be strained so much to reach a su�ciently non-linear mapping.
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Another fact that holds true for LRNNs is that they instantaneously
compute a hierarchical non-linear function of the input. As I ex-
plained earlier, deep architectures are desirable in the sense that they
can e�ciently represent complicated non-linear functions of the input
data. Common RNNs are also “deep” in the sense that the non-linear
mapping is iterated in time; generally the longer in the past an input
frame has been presented to the network, the more times it underwent
a non-linear transformation, and the more non-linear its current rep-
resentation in the hidden state will be. In the case of text prediction
we actually may need an immediate complicated nonlinear function of
the input frame, which perhaps cannot be represented e�ciently by
a transfer through a single layer. The instantaneous transfer of the
input data through multiple non-linear layers can potentially resolve
this issue.

5.4.3 Wikipedia dataset
As I specifically built LRNNs with training speed in mind, I will validate
their performance on a truly challenging task which requires a significant
time to train: next character prediction for an English text corpus sampled
from Wikipedia. This text is extremely varied, containing large numbers of
names of places and persons, abbreviations, scientific jargon from a broad set
of research fields, uncommon characters and generally rare words. Capturing
such complexity needs a very large representational power, i.e., a model with
a very large number of parameters. Not only is the set of words very large,
the nature of text makes that a relatively long history is required to predict
the next character.
The data for this task was collected and made publicly available4. It was
first used in Sutskever et al. (2011), where the authors trained a special kind
of RNN with multiplicative nonlinearities, for which the cost function has
a particularly di�cult curvature. They used an approximate second order
gradient descent technique called Hessian-free gradient descent (Martens,
2010).

5.4.4 The dataset
The full dataset consists of a single large text file containing over 1.3 billion
characters, roughly the amount of text you would find in about 2500 novels.
I converted the dataset to a set of 95 character symbols (the ones that can be
meaningfully represented in the Matlab console where the experiments were

4
http://www.cs.toronto.edu/~ilya/mrnns.tar.gz

http://www.cs.toronto.edu/~ilya/mrnns.tar.gz
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executed). They include small and capital letters, digits, spaces, punctuation
and a number of arbitrary symbols such as the dollar sign, the ampersand,
etc. All characters which were not part of this set, such as characters used
in, e.g., the Cyrillic alphabet, were mapped on an additional ‘unknown’
character. The input signal consists of a 96-dimensional vector of zeros,
except for the element corresponding to the current input character.

5.4.5 Next character prediction
The goal of the task is to predict the next character. Obviously, this is a
non-deterministic process, so in reality the best we can do is predict the
probabilities for the next character. In order to do so I use a softmax output
layer, given by equation 2.7. To train a softmax layer, we do not use MSE
as a cost function, but rather we wish to maximize the log-likelihood of the
output of the correct label. The derivation is given in e.g. Bishop (2006).
The result is that we do not need to take the non-linear nature of the softmax
into account when performing backpropagation. We define the error vector
e as the di�erences between the output of the softmax layer and the correct
output, being a vector with zeros for all characters except for the correct one,
which is equal to one. We can then use the same update rule for the output
weights as we used to, and propagate this error back into the network.
I will use two measures of performance: first of all I simply will consider the
character error rate (CER), which is the rate at which the output character
with the highest predicted probability is the correct one, and secondly I shall
measure the cross entropy between the network output and the text. This
number expresses the average number of bits that are needed on top of the
model prediction to correctly predict the next character, hence I call it bits
per character (BPC). It is calculated by:

BPC = ≠ Èlog2(ỹ
c

(t))Í
t

,

where ỹ
c

(t) is the model’s output for the correct next character, i.e BPC is
the average of the negative log likelihood for the correct next character, as
predicted by the model.

5.4.6 Experiments
I investigated computational speed and task performance on LRNNs with
di�erent numbers of layers, namely L = 1, 2, 4, 6, 8, 10. First of all I chose to
have the size of all hidden layers within one model equal. Next, I made sure
that the number of trainable parameters, i.e. the total number of weights
in the models, is equal for all the models I trained. The total number of
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trainable parameters was 5.400.000, a little more than the model researched
in Sutskever et al. (2011) (4.900.000 parameters). This leads to a hidden
layer size of 2236 neurons for L = 1, down to 513 for L = 10.
Due to the considerable computational cost of training these models, I only
investigated one instantiation of each network model. This has the downside
that we may accidentally draw a very bad or very good initial parameter set,
which would obscure the true average performance. However I suspect that
this e�ect is somewhat diminished due to the very large size of the models.
In the end, when it became clear which of the models is in fact the most
powerful, I have conducted an additional test, in which I initialized such a
model, and next only trained the output weights (in exactly the same manner
as when training the full model), to see whether the hierarchical RNN is
merely a good prior, and can be used in the common RC framework.

5.4.6.1 Parameter initialization

The input weights V were drawn from a normal distribution. All recurrent
weights W

i

and interlayer weights Z
i

were drawn from a normal distribu-
tion and next divided by the square root of the number of nodes in the layer.
This is based on the fact that the spectral radius of large, random matri-
ces is roughly equal to the square root of their number of columns, times
the standard deviation of their elements. This means that each network is
initially roughly on the edge of stability.

5.4.6.2 Training details

I used the whole Wikipedia dataset to train on, except for the last 10 million
characters, which served as a test set. Each training iteration I chose a
sequence of 250 characters at a random point in the training set. The 50 first
frames of each batch were not trained on, and were only used to eliminate
transient initialization e�ects.
The learning speed ÷ started at ÷ = 2 · 10≠4, and was reduced with a factor
0.9999 each 100 iterations, such that it gradually diminishes during training.
Also, I halved the learning speed after 105, 7 · 105 and 2 · 106 iterations, as I
empirically found it to be beneficial to have a fast initial training phase and
progressively slower ones in the later stages.

5.4.6.3 Measurements

In order to keep track of the performance of the models during training,
every 10,000 iterations I recorded the BPC and CER of the model, tested on
the last million characters of the test set. This in order to have an estimate
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of the true test error during the training phase. After training for about a
month, I looked at the final testing errors on the whole test set.
I am also interested in the usage of each layer. In the worst case scenario, the
model only trains the bottom layer and its corresponding output weights,
and makes the rest of the network redundant. In the most interesting case,
all of them would be comparably important. I will measure the BPC on
the test set, while cutting o� the output connections of one layer at a time
and see how much the BPC increases. This will give a crude measure of the
importance of each layer.

5.4.7 Results
In Figure 5.10 I show how the di�erent models evolve during training. I have
shown the BPC and the CER, both as a function of the actual training time
and a function of training iterations, which is proportional to the number
of training sequences the model is trained on. What is quite clear is the
di�erence in computational speed between the models. The model with a
single layer is over 4 times slower than the model with 4 layers.
Two models have stopped training prematurely: the model with two layers
had halted due to a computer error, and its training could not be contin-
ued due to limitations in the available number of computers, and the model
with 6 layers underwent a very strong bifurcation (leading to a CER above
0.5), from which it did not significantly recover. The results shown for the
6-layered model are those for the network right before the bifurcation.
What is apparent in Figure 5.10 is that sudden rises in BPC and CER are
quite common, but are not always catastrophic. In the case for L = 4, which
in the end performed best, we can see several distinct peaks, from which the
training algorithm seemed to recover rapidly. Conversely, the model with
L = 8 undergoes a bifurcation at roughly 650,000 iterations, and it never
seems to completely recover from it.
Consider again the bottom row panels of Figure 5.10. When we only con-
sider the training episodes of before 700,000 iterations, we can still make
a clear comparison between the di�erent models (before significant bifurca-
tions occur or the training of certain models ends). From this evolution it
is clear that the model with 4 layers converges the fastest, even when not
considering the time required for each iteration. This means that there is a
clear advantage to using a layered hierarchy of RNNs on this text generation
task.
The evolution of the BPC and the CER are very similar. Therefore, I will
only consider BPC in what follows, since the results are not qualitatively
di�erent.



“Book” — 2012/11/27 — 13:10 — page 162 — #190

0 10 20
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4

t im e (day s)

B
P

C
v
a
li

d
a
ti

o
n

 

 
1 layer
2 layers
4 layers
6 layers
8 layers
10 layers

0 10 20
0.35

0.4

0.45

0.5

t im e (day s)

C
E

R
v
a
li

d
a
ti

o
n

 

 
1 layer
2 layers
4 layers
6 layers
8 layers
10 layers

0 1 2 3
x 106

1.7
1.8
1.9

2
2.1
2.2
2.3
2.4

i te rat ion s

B
P

C
v
a
li

d
a
ti

o
n

 

 
1 layer
2 layers
4 layers
6 layers
8 layers
10 layers

0 1 2 3
x 106

0.35

0.4

0.45

0.5

i te rat ion s

C
E

R
v
a
li

d
a
ti

o
n

 

 
1 layer
2 layers
4 layers
6 layers
8 layers
10 layers

Figure 5.10: Convergence of LRNNs. The top row shows the
evolution of BPC and CER of the small test set, as a function of
time. The bottom row shows them as a function of the number
of training iterations (corresponding to the amount of training
data they have seen). In the bottom row I have indicated the
end points of the lines with dots in their corresponding color.
The results shown for the model with six layers is that what
was saved last before it bifurcated. The sudden drops in per-
formance correspond to the moments where the learning speed
was halved.
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Figure 5.11: Left panel: BPC on the test set for the di�erent
final models. The case of six layers was tested on the model that
was last saved before the bifurcation. Right panel: decrease
in BPC of the test set when eliminating output of one layer.
Results are shown for all models with more than one layer. The
results shown for the model with six layers is that what was
saved last before it bifurcated.

In the left panel of Figure 5.11 I show the final BPC on the test set for each
of the models. It appears that the model with L = 4 performs best, followed
closely by L = 6 (which had less training time in total). The model with 1
layer performs worst, most of all since its total number of training iterations
is significantly smaller than the other models.
In the right panel of Figure 5.11 I show how much the BPC reduces if I
remove the output from a single layer in each of the models, which I use as
a rough indicator of importance. Both the models with L = 2 and L = 4
have the strongest reduction in performance when the highest layer is not
included in the output. This gives an indication that the model indeed learns
a hierarchical model, where lower layer perform a preprocessing step for the
last layer, which contains the highest level features of the input data.
For models with more layers, especially L = 8 and L = 10, the layers in the
top of the hierarchy seem to matter far less. This shows that, if the hierar-
chy is too deep, most of the processing occurs in the lower layers, and the
higher layers never succeed in performing useful computations of the input
data, which means that a large part of the potential computational power
of the model is not employed. Likely this problem can be partially resolved
by leaving out output weights for lower layers, forcing the model to use the
full hierarchy.
It should be mentioned that the LRNN still performs significantly worse
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than the state-of-the-art on this task. In Sutskever et al. (2011), the final
test BPC was 1.56, much better than my optimal result5 of 1.68.
The model that was trained in the common RC setup had 4 layers and was
initialized in the same manner as I described before. The performance, mea-
sured during training, never went under a CER of about 50 %, far worse
than any of the trained LRNNs. Even when gradually lowering the learning
speed, performance no longer improved. Even when we do not make the
comparison to the trained LRNNs (which would not be justified, see next
paragraph), this performance is rather poor. If I let it generate text (see
next section), it mostly generated non-existing words, and some short and
common ones such as “and”, “the”,“of”, and “with”. There are two potential
reasons for this poor performance. First of all, it may just be the case that
RC is unsuited for a task like next-character prediction, simply because the
problem is of such a strongly non-linear nature. Secondly, it may also be the
case that the RC setup does not work well with untrained LRNNs. Perhaps
a randomly initialized LRNN will produce features that are too non-linear
and complicated to be put to use, and RC might score better with a single,
large reservoir.
An honest comparison between RC and fully trained LRNNs would require
that the number of trainable parameters is the same in both cases. Whereas
the trained LRNNs have over 5 million optimized parameters, the model that
only trains the output layers only has about 325,000: the readout weights.
This means that an honest comparison would require a reservoir where the
number of output weights is equal to 5 million, which would require over
56,000 neurons. Such a large network is not completely infeasible, as is
shown in the work of Triefenbach et al. (2010) and Jalalvand et al. (2012),
and it would be interesting to find out if in those cases one could still benefit
from a layered hierarchy like that of the LRNN.

5.4.8 Generating text
Since the model output are probabilities, it is possible to sample a character
from the output, and to use this as a new input character. Repeating this
process then allows the network to generate text. Especially, we can first
feed the model a fixed sequence, and next let it fill in the remainder.
In what follows I will provide some examples of what kind of text the model
can generate, using the 4-layered model. In this I will use a question mark
(which is altogether rare in Wikipedia) to indicate the “unknown” character.
Here is a sample of text, generated using It was a dark and stormy night. as

5The absolute best test BPC I ever attained, using a 5-layered LRNN where I
hand-tuned the learning speed during training was 1.65.
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initialization:

It was a dark and stormy night. In 2005 the ”Wat it to Cave The Pearl” played nine
years in the U.S. Senator on its restaurant, while still noticed by the armed The Player
of the Procumentary primitive e�orts on November 3, . ??As a job, the box o�cially
unusually started his legendary loss down to Atlas by Iraq. InGovering a buses the
heart of the film and its place, scientific separations found in battle. Around the two
tests and the Bacho Seadame American archaeological church is only entailed in the
1820s.??When the performance is published by which Hartford carefully bounded and
actual ILD releases with the supporters of peace systems. Admiral of the governments
then appeared on the Graduation that easoned the Western existing $1.5 million for
replacement plans outside the postmodel’s new producers between North

The model can generate a broad variety of words and phrases. Nev-
ertheless, the text only appears coherent for a history of a few words, and
grammatically correct sentences are rare. All in all, the model only produces
a few non-existent words, and some of those are capitalized. Indeed, in ac-
tual Wikipedia texts, capitalized words are often names of places or persons,
and they are far too diverse to be memorized by the model.
The next test I performed was to check whether the model is able to close
quotation marks and brackets, for which I used Known as the “ and What
followed next ( as initialization, two fairly generic phrases, meant to ini-
tialize the network. I noticed that in slightly over 80 % of the cases, the
model finished the quotes in a satisfactory manner, meaning that the closing
quotation mark appeared directly after a letter. If there was a space or a
punctuation mark between the last word and the closing mark, I interpreted
this as if the model opens a new quotation. It fills the quotes mostly with
short, sometimes capitalized, phrases, which are interesting in their own
right. Here are some examples:

“British Nordware”, “Basilis”, “publisher James Days”, “Christian Eaglet”, “Super
Bowl? 8th Press”, “Old War Detroit”, “Yuan Duchi”, “House Storm”, “Enterprise
Centre”, “Sirsset Gots Christe”, “Northumberland”, “Riyal Observer and Fernando
Royal School”, “senses back re-related women”, “Luxembourg”, “agricultung and to
the Dita’s Republic of Versailles”, “Rudish Park”, “Oregon of New Jersey”, “first
particle murders”, “Club of Ed”, “Power Holton”

Brackets are more di�cult, as in normal text they often contain longer
phrases. If the intermediate text is too long, the model will forget the open-
ing bracket during progression over the text, and not learn the fact that they
always need to be closed. A similar test as before reveals that in about 70 %
the model closes the brackets in a satisfactory manner. The phrases are
somewhat similar to the phrases between quotation marks, but also include
statements that can be interpreted as relative clauses (which are indeed of-
ten found between brackets). Here are some examples:
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(courage Bear Pear XIII), (7), (streetcar), (ABRCA), (later = in Dunt), (500
m), (except), (1931), (the intensity of memory), (after work in New York Catholic),
(according to nhooters), (Wellesley;), (in the Human Richtermann in Boat), (11 and
3,197 mD), (Williamstown), (PPC), (which provoked guilt as part of the activ), (diesel
boas), (2002), (1st heaven), (200 ED0), (one of the masters’ 6 is illustring), (played
by a FT), (which also did the numerable recovered)

5.5 Conclusions

In this chapter I have bundled results of my research into backpropagation
through time. I have investigated the e�ect of introducing a highly simplified
variant of BPTT, where I truncate the the propagation to only a single step,
which allows for an easy online learning rule. I researched three variations:
the classic RC setup, where only output weights are trained, a setup where
only the input and output weights are trained, and a setup that trains all
parameters. The task I considered was a spoken digit recognition task.
I showed that training both in- and output weights performs significantly
better than only training output weights. Training the full network per-
formed still slightly better, but it included the chance of bifurcations. I also
showed that training the input weights will provide a good clustering of the
spoken digits, which means that even a simple learning rule to adapt the
input weights can provide a great increase in performance. This suggests
that for high-dimensional data reservoir computing can greatly benefit from
learning the input weights.
Next, I designed a layered hierarchy of RNNs. It has been suggested in past
research that feedforward neural networks with multiple layers may encode
certain non-linear mappings more e�ciently. Therefore I extended the con-
cept of multilayered networks to recurrent networks. In order to train these
architectures e�ciently, I connected each layer to the output. This also pro-
vides some insight in the importance of each layer, as we can measure the
decrease in performance when we disconnect a single layer.
I applied the LRNNs to next character prediction, trained on a large cor-
pus of Wikipedia text, which is a very di�cult and highly non-linear task,
requiring a lot of representational power. I showed that the LRNN has as
main advantage that it speeds up the training process more than 4 times
compared to a normal RNN, allowing for significantly more training itera-
tions. Furthermore it appears that, especially for the case of 4 layers, the
model outperforms a common RNN, even when not considering the time
required for training. Finally, I showed that applying too many layers in the
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LRNN (models with 8 and 10 layers) is detrimental, as the higher layers are
not e�ciently used.

5.6 Future work

Here I discuss what the potential extensions of my research in BPTT are.

5.6.1 Advanced training methods
In Sutskever et al. (2011), the performance reached on the Wikipedia char-
acter prediction task far surpasses the best I ever obtained. They applied a
specific kind of network which they claim is particularly unsuited for com-
mon gradient descent techniques. In fact, this claim is hard to check, as it
is particularly slow to perform stochastic gradient descent on their model6
Still, they reach very impressive performance with only 160 weight updates
using a Hessian-free training method. This raises the question whether it
is their model or the training method that leads to such impressive perfor-
mance.
For this reason it would be highly informative to train LRNNs using Hessian-
free gradient descent. The computational power required for this is rather
high, but as each weight update is based on the full dataset, it can be com-
puted in parallel far more readily than stochastic gradient descent. Using,
e.g., a cluster of GPUs, as the authors of Sutskever et al. (2011) did, would
make this quite feasible.

5.6.2 Pre-training: deep learning for RNNs
Recurrent neural networks are a particular kind of deep network, where
the depth is the recursion through time. Successfully applying deep-learning
techniques on RNNs is currently a hot topic of research7, but seems to remain
challenging. There are many potential ways one can interpret deep-learning
strategies for RNNs, and it is unclear which one, or which ones, are correct.
The LRNN poses a new platform on which such deep-learning strategies can

6Roughly stated, this model has a di�erent recurrent connection matrix for each
input character, which is defined by a matrix-matrix multiplication. For a limited
character set, all these matrices can be computed in advance, a process that needs
to be repeated every time the weights are updated. For the Hessian-free technique
this is no problem, as the number of training iterations is particularly low. For
stochastic gradient descent, however, there are many millions of iterations, which
would render this model prohibitively slow to train.

7Which I know from informal communications.
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be applied. These models are not only deep in the temporal sense, they
are also spatially deep, i.e., they represent a deep hierarchy at each single
frame. It is known that - even when they are potentially very powerful -
deep models cannot always be trained e�ciently, due to problems such as
a fading gradient. Can we find e�cient ways to pre-train such models by
extrapolating idea from the deep learning community? Can such a pre-
training phase produce powerful spatio-temporal features of the input data?
Suppose we would, e.g., apply the framework of denoising auto-encoders
on an RNN, and consider the network, unfolded in time as a multilayered
network. What would we denoise? The current input frame, the previous
hidden state, or both? Do we then need to feed the network with the noisy
data, or only apply the noisy data for the last frame (such that it can use
‘clean’ context from before), etc. The potential ways to incorporate this
concept in RNNs are indeed quite diverse. For LRNNs, the problem becomes
even more convoluted. If we unfold it in time, the hierarchy runs in two
directions: in time and up the layered hierarchy. Finding good pre training
schemes for this architecture seems like a tantalizing challenge.

5.6.3 Architectural priors
When we apply a sophisticated network model like an LRNN, we implicitly
assume that the data can be e�ciently model by such a system. One could
say that an LRNN is an architectural prior, i.e., the prior assumption on the
nature of the data is encoded in the specific architecture that we use.
The LRNN is but one of many potential temporal hierarchical architectures.
A systematic investigation to how such architectures can influence training
and modeling power would be highly informative. Especially for recurrent
systems, a good architectural prior can impose very specific dynamical be-
havior on a model, which may greatly aid training algorithms to find a
suitable solution for an application.
Obviously, searching through the space of possible structures for such archi-
tectures is a computationally demanding undertaking. Nevertheless, with re-
cent advances in computing power, and mainly the application of GPUs and
similarly massively parallel computers, such a search may be feasible. Re-
cently, great success has been achieved in this domain by searching through
a large parameter space for a visual recognition architecture (Pinto et al.,
2009). They showed that applying a large-scale brute force search for good
parameters can yield solutions that beat state-of-the-art by a wide margin.
Such a search, applied not just on parameters, but also network architec-
tures, like LRNNs, might yield very powerful solutions to di�cult problems
like next character prediction.
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5.6.4 Reservoirs, hierarchies and training algo-
rithms

The final research question that I pose here is the following: are hierarchies
suitable to be incorporated in the framework of RC? As I mentioned before,
an LRNN used as reservoir performs much worse than a fully trained net-
work. In principle, for such a task we would need a far greater number of
neurons to make a fair comparison. It would be for instance possible to make
very large, very sparsely connected ESNs, and use gradient decent to train a
softmax layer as output. It is also possible to apply the same framework as
LRNNs to this problem: for instance by taking 5 layers of each about 11,000
neurons. Still, even though a layered hierarchy may produce more complex
features of the input data stream, in the framework of RC these will still be
random, and it is yet to be proven whether a hierarchical setup would have
any benefits at all. Perhaps unsupervised pre-training may prove a powerful
RC strategy to employ hierarchical reservoirs.
From a broader perspective, it remains an open question to pinpoint exactly
what reservoirs are good at. Even though I have given some suggestions
at the start of this chapter, we still don’t know if untrained, random DSs
are fundamentally limited in their application domain, or whether we could
simply find better prior assumptions on parameter distributions, such that
they could also be applied on di�cult, highly non-linear tasks that require
a lot of representational power.
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6
Conclusions and Future

Perspectives

In my final chapter I will give a brief overview of my field of study, reiterate
the most important contributions of my work and provide a spectrum of
potential follow-ups for my research. I will largely try to follow the structure
of the dissertation, in the sense that I discuss its three main research topics:
memory, recurrent kernels and training algorithms.

6.1 Summary

Reservoir Computing (RC) is a promising Machine Learning strategy for
processing time series. It provides a method to employ large non-linear dy-
namical systems to perform useful computations on an input time series.
The field of RC is an amalgamate of training strategies that have emerged
from a diverse set of angles. The main idea is that we can use essentially ran-
dom dynamical systems as models. All that needs to be explicitly optimized
is the so-called readout-layer, which is typically a direct linear projection of
the internal state of the model. This is particularly fast and easy to train.
The fact that random dynamical systems can be such powerful computa-
tional entities came as a surprise, and has sparked a whole new field of
scientific exploration. This thesis addresses some of the more theoretical
questions that followed from this endeavor. Two questions in particular
have been explored in depth, namely: how does a reservoir keep track of the
history of its input and what happens if we make reservoirs infinitely large.
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6.2 Research conclusions

Here I will state the main conclusions that follow from my research, grouped
by theme.

6.2.1 Memory
The first main theme of this dissertation is on how dynamical systems can
store a fading history of their input signal. I have applied the framework
of linear memory capacity on two important reservoir computing schemes:
that where the input signal is high-dimensional, and that where the model
operates in continuous time.
I have shown that many of the well-known conclusions for linear memory
capacity hold true in the high-dimensional case, namely that the total mem-
ory capacity is no higher than the number of neurons in the network and
that increased non-linearity will deteriorate it.
Most real-world high-dimensional signals have a broad power spectrum.
When braking down the signal into uncorrelated components, it quickly
becomes clear that most of the signal variance (which we call power) resides
in a few channels, and the power of the other channels falls quickly to very
low levels. Usually, the bulk of useful information is present in the principal
components with the highest power, and the ones with lowest power carry
only noise. When we insert such a signal into a reservoir, we would like the
available memory capacity to be distributed over the components roughly in
proportion to their power.
I have shown that, in random networks, this is not the case. The low-power
channels will hog a disproportionally large portion of the available memory
capacity, and as such they can impair the proper functioning of the reservoir.
If we consider the low-power channels as noise, it turns out that random net-
works are quite sensitive to noise. When I applied orthogonal networks as
reservoirs, this problem was solved, confirming the well-known result that
they are superior w.r.t. noise robustness.
The message for researchers applying reservoir computing to high-dimensional
data is that they may benefit from either using orthogonal networks, or us-
ing only a select set of principal components of their input data.
For the second part of my study of reservoir memory, I have extended the
concept of memory function and memory capacity to the continuous time
domain. Continuous time models are an important subdomain of RC, partic-
ularly since one of the most common implementations involves leaky integra-
tion, a discrete-time approximation of a continuous time dynamical system.
I have investigated three distinct network setups, and see how well they per-
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formed in terms of noise robustness.
The first conclusion I drew was that random networks score particularly
poorly. The set of filters that a random network provides in discrete time is
quite unsuitable in the continuous time domain. Therefore I transformed this
set of filters in a mathematically correct way, using an inverse z-transform.
These networks have a strongly improved robustness against noise.
Finally I designed a continuous time counterpart of orthogonal networks.
Essentially they consist of a set of damped oscillators with di�erent fre-
quencies but identical decay rates. I show that the way in which they store
information on input history is similar to encoding a signal by its Fourier
components, a particularly e�cient way to store information on a signal. As
a consequence, these networks are very robust against noise, and keep a high
memory capacity even when the signal-to-noise ratio approaches one.
Finally, I have discussed the limitations of linear memory capacity, and
briefly presented work (not from myself) that provides a non-linear exten-
sion of memory capacity. It models higher-order dependencies and is far less
constrained than linear memory. I suggest another alternative way of inter-
preting memory in reservoirs, using the Jacobian. This method allows us
to visualize memory through time. I also show that we can view the degree
of non-linearity as the variability of this Jacobian, i.e., the more non-linear,
the more a reservoirs sensitivity to past input changes over time.

6.2.2 Recurrent kernels
The second theme of my dissertation is the unification of kernel machines
with Reservoir Computing. I started from the existing framework of feed-
forward networks with an infinite number of hidden nodes. Even though it
is not possible to explicitly define such a construct, it is possible to compute
the inner product of two hidden states associated with two di�erent input
instances, given a prior on the distribution of the input weights. This inner
product is a kernel function. It allows to perform linear regression of the
infinite hidden state, given that there is a finite number of training examples.
The training data is then directly incorporated into the end solution.
I show that it is possible to extend this framework to recurrent neural net-
works. In fact, for any kernel function that is a function of the inner product
and norms of the input instances, it is possible to define a recurrent version.
The input of these recurrent kernels is no longer a static data point but a
time series; the recurrent kernel takes two finite time series and provides a
series of kernel functions, each corresponding to the current inner product of
the hidden states. When we use such a kernel in a standard kernel machine
we shall typically use the final kernel value as an output value.
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I provide a broad set of examples for recurrent kernels. For the most com-
mon Echo State Network implementation, with hyperbolic tangent nodes,
the solution is analytically intractable, but for networks that use an error
function as nonlinearity, which is highly similar, the kernel has an explicit
solution. I also provide recurrent versions of the most popular kernels in
literature: the linear, polynomial and Gaussian RBF kernel. Finally I de-
rive a kernel function that is associated with infinite sparse threshold unit
networks, an important academic model for a broad number of natural and
manmade phenomena.
After having provided the expressions for recurrent kernels, I study how
they behave dynamically as a function of their parameters. I show that, in
the case of the kernel associated with error function nodes, it is possible to
associate the concept of spectral radius with the standard deviation of the
weight distribution of the infinite recurrent weight matrix. In this sense,
the well-known result from Reservoir Computing that asymptotic stability
requires a spectral radius smaller than or equal to one, remains true for in-
finite networks.
For other types of kernels a linearization around the origin is not practical.
I have found a way for certain types of recurrent kernels to calculate their
Lyapunov exponent, which also takes into account the influence of the input
signal. Using this, it is possible to compute the Lyapunov exponent of infi-
nite sparse threshold unit networks and recurrent Gaussian RBF kernels.
Finally, I study the practical applicability of recurrent kernels. I consider
two tasks: firstly an academical example which I use to illustrate how ker-
nel dynamics relate to real Echo State Networks, and secondly a real-world
speech recognition task. For the first task I compare the performance of
recurrent kernel machines with their finite counterparts. I show that, for
a given amount of training data, the average performance on the task will
increase for increasingly larger networks, and finally it converges to the per-
formance of the associated recurrent kernels. In the second task I compare
recurrent kernels with the more classic windowed approach. I show that not
only recurrent kernels perform better, they also select a smaller number of
support vectors, which illustrates that fading memory is a better prior for
speech data than a fixed window.

6.2.3 Training recurrent networks
The final part of my research considers training algorithms. Most of the re-
search in this chapter is quite preliminary, and due to the nature of training
algorithms for recurrent networks, it is di�cult to draw strong conclusions.
Nevertheless I have tried out some strategies which are worth to mention in
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my dissertation.
First of all I consider a highly simplified variant of the typical backpropagation-
through-time algorithm. Here I adapt the network and input weights by only
propagating the error back one step. I then apply this strategy to a simple
spoken digit classification task. I compare three situations: one where I only
train the output weights, conform classic Reservoir Computing, one where I
train input and output weights, and one where I train all the weights. As is
to be expected, the full training works best. Nevertheless, the second strat-
egy is almost as good, and it has the inherent advantage that the network
dynamics cannot suddenly become chaotic. All that changes is the input
projection. If the network is stable by construction it will remain so.
Next, I consider the situation in which the task is highly nonlinear, and
requires a long history of the input. I argue that common RNNs may not
be very e�cient in modeling an instantaneous strong non-linearity of the
current input frame, which may in some cases be required.
I propose a partial solution to this problem by stacking recurrent neural
networks. Each layer is a recurrent network, and their input consists of the
hidden state of the previous layer (except for the first one, which receives
the input data). I argue that the activations of each layer do not need to be
as highly nonlinear, due to the fact that the nonlinearities are stacked. As
such, the network as a whole may find an easier balance between memory
and nonlinearity. This model also makes use of the known fact that certain
non-linear functions can be represented more e�ciently using multiple lay-
ers. Each new input frame can instantaneously undergo a strong non-linear
transformation, which in classic RNNs is more di�cult.
I test this architecture on a good real-world example of a highly non-linear
task that requires a relatively long input history: next character prediction
in text. I use a text corpus which is assembled from English Wikipedia arti-
cles. I test the performance of the task using models with di�erent numbers
of layers.
The results indicate that networks with four layers perform better than the
common RNN setup. Not only can they be trained significantly faster in
terms of computational costs, but they also perform better, even when not
considering the time required for training. Models with larger numbers of
layers perform less well, and I show this is due to the fact that the highest
layers in the hierarchy cannot be trained e�ciently.
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6.3 Future directions

Throughout my four years of study, many questions have been left unan-
swered, and many doors to new research paths have been brought into view.
Here I will provide an overview of them, again grouped by the three main
themes, put in the form of questions.

6.3.1 Memory
As far as Linear Memory Capacity is concerned, I believe research in this
field has been more or less exhausted, and this part will deal with questions
on non-linear behavior. I will list my main unsolved research questions here.

• Is it possible to find a useful measure of history dependency?
What is most interesting at the moment is a better understanding of
non-linear memory, i.e. we do not look at how well input can be lin-
early reconstructed from the hidden state, but we ask how much the
current hidden state depends on the input history. The term ‘depen-
dency’ is still rather vague. I have proposed a possible measure of
this, being the Frobenius norm of the Jacobian, which allows an in-
stantaneous view on the ‘sensitivity’ of the current hidden state on
past input. Though illustrative, all that is visualized is the derivative
of the hidden state to past input. It does not give insight into the na-
ture of the non-linear map, and a derivative does not necessarily give
an adequate view on what we would understand under ‘dependency’.

• Can history dependency be shaped by well-chosen parameter
priors?
If we would define a good dependency measure, we would in principle
be able to search for network parameters that provide specific dynami-
cal behavior. One of the conclusions we could draw from the Jacobian
sensitivity measure is that the dependency history of a highly nonlin-
ear network seems to be variable. Would we be able to find a network
setup in which we would have control over this variability; giving the
network e.g. a long memory at one time and a short one in others.

• Can history dependency be used to visualize the underlying
nature of a task?
Suppose we have trained a recurrent network for a specific task. If a
good measure would exist, it would in principle allow a researcher to
visualize the historic dependency for a specific task. In data of which
little additional knowledge exists, this could be used to show relations
between input and output which were previously hidden.
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6.3.2 Recurrent kernels
Lots of open questions and interesting challenges remain in the field of recur-
rent kernels. Here I provide a short overview of the ones I have considered
in the end of chapter 4.

• Can we accommodate recurrent kernels better than the stan-
dard kernel machine setup?
Computing a recurrent kernel is expensive. All intermediate kernel
values have to be determined, and only the last value is used in the end
solution. Current kernel machines assume that each kernel evaluation
provides one output number. The representational power of recurrent
kernels could potentially be greatly improved, if we allow for interme-
diate outputs to be integrated into the end solution, possibly greatly
boosting the e�ciency of the model. Multiple Kernel Learning may
provide a potential solution here, as it is a field of study that tries to
find task-specific kernels by linearly combining several di�erent kernel
functions.

• Can we approximate the dynamics of the infinite hidden state
via a simple recurrent model?
Each time a recurrent kernel machine needs to produce an output,
it needs to pick a time window with the current input as last frame,
and run the recursion. Compared to a recurrent model this is highly
ine�cient. A recurrent neural network only needs to do one evalu-
ation for each frame of the input series, whereas a recurrent kernel
machine with the same expressive power needs to do as many as there
are frames in the time window.
If we consider the output values of the kernel functions of each eval-
uation as a feature vector, we can essentially treat this feature vector
as a hidden state. Would it be possible to find a recurrent model
that mimics the dynamics of this hidden state? If it can be found we
essentially find a very e�cient way to make an approximation of the
dynamics of the hidden state, and we can construct data-determined
models that are far more e�cient to compute than the recurrent ker-
nels themselves.

• Is the computational power of recurrent models due to fad-
ing memory or the recurrence?
Fading memory only implies the shape of historic dependency. It does
not require a model to be recurrent. One of the most intriguing ques-
tions this thesis has raised is whether or not it is only the fading
memory that is a good model for time series processing, or whether
the recurrence (and hence the causality of the model) is the key to
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their power. Presumably the answer will be highly task-specific. Nev-
ertheless, a thorough comparative study to this question would be
very informative.

• Can the framework of recurrent kernels be extended to mod-
els of natural phenomena, continuous media and continuous
time?
Recurrent kernels have to ability to abstract large dynamical systems
that have a random element by assuming it is infinitely large, and we
can average out the random element. This makes it suitable not only
as a potential ML solution, but also as a way to study large-scale phe-
nomena in dynamical systems. Can we use the recurrent kernel setup
for, e.g., modeling the behavior of scale-free network phenomena?
Related to this, a captivating research thread has been considering
the non-linear dynamics of continuous media. Recurrent kernels have
one thing in common with this scenario: namely that they also treat
the neurons in the hidden layer as a continuum. Hence the question:
can we find recurrent kernels that model the dynamics of such sys-
tems? The biggest challenge at the moment seems to be finding a
method to account for continuous time. The math that is relatively
straightforward in discrete time cannot be trivially transmuted.

6.3.3 Training algorithms
Even after a few decades of research, training algorithms for NNs are still a
highly active research domain. RNNs pose a specific challenge in this field,
due to special problems that appear from its recurrent nature. I will here
list some of the most intriguing and promising lines of research that would
directly follow from my research.

• How much can advanced training strategies improve perfor-
mance of the LRNN?
Common gradient descent techniques for RNNs are severely hampered
by problematic curvature. This problem appears in any structure that
needs to propagate an error through several non-linear layers, and in
the case of LRNNs this problem appears twice: the errors need to be
propagated both through time and through the layered hierarchy of
the architecture.
In my research I’ve only used stochastic gradient descent to train
LRNNs, and quite possibly their potential is far greater than can
be achieved this way. Therefore, the application of training strate-
gies that are known to be able to deal with problematic curvature
could be very informative to gauge LRNNs true computational power.
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The choice of algorithm would be Hessian-free gradient descent. This
training strategy is highly parallelizable, which makes it well-suited to
run on massively parallel architectures such as GPUs.

• How can deep learning strategies be applied on recurrent
networks?
Other strategies to train deep neural architectures rely on a pre-
training phase, where each layer is trained in an unsupervised fash-
ion before actually training the whole system on a task. RNNs are
a special case of deep networks, and it remains a challenging quest
to introduce such deep learning strategies for recurrent models. In
particular, the LRNN is an even better candidate for deep learning
strategies, due to it being layered both in space and time.

• What is the role of architectural choices and how can we au-
tomatically find them
Just like the parameters that determine a reservoir imposes a prior
assumption on the nature of the task you wish to solve, so does a
structured network such as an LRNN impose an architectural prior.
A layered hierarchy can potentially work well if the input data is hi-
erarchically structured, which is the case for data types such as text
and images, which have challenging applications.
An LRNN is one possible architecture from a large set of recurrent
structures. We need to gather more insight into how an architec-
ture can help to model certain types of data, and how their structure
influences the ease with which they can be trained. Can we easily
find architectures that are well suited for particular tasks? Can we
significantly increase performance by performing a brute-force search
through the space of possible architectures and parameters? These
are questions that give rise to a riveting field of investigation.

• Are there fundamental limitations to Reservoir Computing?
The final question I ask deals with the contrast between directed train-
ing algorithms, that optimize the whole model, versus Reservoir Com-
puting approaches. I have argued that for some applications, basic
RC setups such as ESNs may be fundamentally limited, as the odds
of finding the correct kind of functionality in a random dynamical sys-
tem may prove to be vanishingly small. Is it possible to resolve this
issue by using di�erent network types, di�erent priors on weight dis-
tributions, or indeed, by imposing a well-chosen reservoir architecture,
such that more useful features naturally appear within the reservoir’s
dynamics?
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A.1 Memory for multidimensional input

A.1.1 Compensating overestimation of the mem-
ory function

Here we will explain that the measured MF will approximately have a pos-
itive o�set of N

T

. We start by considering the principal components of the
reservoir activation a. If we write the eigendecomposition of the covariance
matrix C = O�OT, the principal components are given by ã = OTa. Using
this expression and the fact that C≠1 = O�≠1OT, we can rewrite equation
3.5 as
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the variance of the j-th principal component of the reservoir state.
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mated are finite, there will always be a positive overestimation of the mem-
ory function; We start by splitting the principal components of the reservoir
states: ã
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ā

j

(l) is the part of ã
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â

j

(l) is completely uncorrelated with the signal. Generally Ès
n

(i ≠ k)ã
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j

(l)) ¥ ‡2(ã
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Figure A.1: (a,b): Comparison between the mean standard de-
viation of reservoir states measured empirically (black) and the
estimated value (grey) for principal components with the same
energy (a) and an energy spectrum as described in the text (b).
(c,d): Empirically measured standard deviations in hyperbolic
tangent reservoirs for di�erent corrected input scaling factors:
from light grey to black, „ = {0.2, 0.4, 0.8, 1.6, 3.2}, for
principal components with the same energy (c) and an energy
spectrum as described in the text (d)

Equation A.2 then reduces to
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j

(i)Í2
i

+ Ès
n

(i ≠ k)â
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The third term in this equation will be very small and therefore we shall
neglect it (this is especially valid since its expected value is equal to zero).
The first term is the actual measurement of the memory function, the second
term is always positive and leads to the systematic overestimation, since it
will always be positive with a finite sample size. The central limit theorem
states that the expected value of the second term will be 1

T
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with T the number of samples. When we assume that s
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statistically independent, the variance of their product is equal to the prod-
uct of their variances. This, and the assumption that ‡2(â
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(l)) ¥ ‡2(ã
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(l))
allows us to work out the second term to be approximately equal to N

T

.

A.1.2 Input scaling
To quantify the amount of non-linearity in a reservoir, we will form an es-
timation of the standard deviation of a linear reservoir. It is possible to
exactly calculate the standard deviations of the states for any given linear
network, but the resulting formula is highly convoluted and does not give
insight into its dependence on general parameters such as spectral radius
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and number of input channels. Therefore we shall have to make some broad
assumptions to simplify this formula.
In a linear reservoir, the states have an analytical expression as a function
of the input signal White et al. (2004):

a(i) =
Œÿ

k=0
WkVs(i ≠ 1 ≠ k). (A.3)

Using this, we can calculate the average variance of the reservoir states:
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Writing this out as an explicit sum this becomes
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, i.e. no spatial
or temporal correlation exists in the input signal, this expression simplifies
to
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can be calculated analytically for individual reservoirs,
but it doesn’t give a general idea of how it relates to N
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and the spec-
tral radius of the reservoir. For this reason we make the following strong
simplification: we only consider orthogonal connection matrices, such that
WWT = fl21. With these assumptions we can then calculate that
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where V
m

signifies the m-th column of V. To come to a useful final result,
we can make further assumptions. If the elements of V

m

are chosen from
a normal distribution with unit standard deviation and zero mean, then
its square norm has a Chi-square distribution and its mean is equal to the
number of elements (i.e. N). Using this, we can finally write down the mean
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variance of the reservoir states:
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We now have a formula that gives an estimation of the variance of the net-
work states with a very clear relation to the signal energy and fl: the state
variance is proportional to the total signal energy, and increases when fl in-
creases. In the special case that all energies Â

m

are equal to one (whitened
data), this gives us
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We will check whether the approximations we made still can be generalized
for regular (i.e. non-orthogonal W). Therefore, we simulate linear networks
with the conditions described above (i.e the elements of V have unit stan-
dard deviation and zero mean). We study this for two types of input signals:
one with Â

i

= 1 (using Equation A.5), and one where Â
i

= 10≠5 i
Nin (using

Equation A.4), which is comparable to the signal used in Section 3.2.3. We
measure the average standard deviation in relation to fl and N

in

and compare
this with our estimation. We used 10000 input samples and averaged over
10 reservoir initializations with 100 neurons. Figure A.1a and A.1b shows
the comparison between our estimation and the measured value of the mean
standard deviation of the network activations. Clearly there is a good corre-
spondence between our formula and the actual result. When fl gets closer to
one, it appears we systematically overestimate the standard deviation. This
is likely due to the fact that the eigenvalues of orthogonal matrices all have
the same absolute value, which corresponds to the same amplification for all
its oscillatory modes. Random matrices have their eigenvalues more or less
uniformly spread over the area of the disk with radius fl, such that many of
its oscillatory modes will decay more quickly.
It is now easy to define an input scaling „ which signifies the amount of non-
linearity of the network states. We choose the initial input weights from a
normal distribution with unit variance and zero mean, and next we multiply
this with

„

Û
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q
Nin

m=1 Â
m

, (A.6)

where „ is the desired standard deviation of the reservoir states. One major
drawback of the above formula is the fact that it goes to zero when fl ap-
proaches one (and becomes even imaginary when fl > 1). Obviously there is
no real issue using a reservoir with spectral radius equal to or slightly higher
than one, exactly because the e�ective spectral radius will always drop un-
der one when the states are pushed far enough in the nonlinear part of the
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hyperbolic tangent. We will replace fl with an estimate of the spectral radius
of the Jacobian J of the system, which is defined as

J
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.

Disregarding individual di�erences between the reservoir states, we estimate
the average spectral radius of J as
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J

= (1 ≠ 1
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+
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,
k

)fl.

We now have to estimate the variance of the states for a nonlinear reservoir,
which is very hard indeed. However, since our goal is to give a rough input
scaling factor which also works for fl ¥ 1, we found an ad hoc solution which
works quite well. Since we ‘impose’ the standard deviation „ upon the
linearized reservoirs, we expect that the standard deviation in the nonlinear
reservoir will be roughly equal to the hyperbolic tangent of „. This gives us
the above correction for equation A.6:
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We tested these assertions by measuring the standard deviation of reservoir
states in hyperbolic tangent reservoirs, and see how much the actual mean
standard deviation of the network states still depends on fl and N

in

after
rescaling. Figure A.1 shows the result for mildly to very non-linear reservoirs
(i.e. with mean standard deviation close to one). It appears that our result
generally holds quite well, and the mean standard deviation only depends
little on fl and N

in

in the tested ranges.

A.2 Memory in continuous time

A.2.1 Transformed matrices

A.2.1.1 Constructing connection matrices from a set of
eigenvalues

Here we explain the process for building connection matrices with a given
eigenvalue distribution. Though this is common knowledge, we include it
here for completeness. To build a connection matrix W for a given eigen-
value distribution we start of with a diagonal matrix D with the eigenvalues
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ordered by absolute value on the diagonal. Since our resulting connection
matrix has to have real elements, all eigenvalues will be either real, or com-
plex conjugated pairs. In the next step, we perform an orthogonal transfor-
mation to make this a real block-diagonal matrix. To do this, we construct a
matrix O. When D

ii

is real, O
ii

= 1. When D
ii

and D
i+1,i+1 are a complex

conjugated pair, we take the elements of the 2 ◊ 2 block on the diagonal at
the i-th and i + 1-th row and column of O as

[O]{i,i+1} =
A

1Ô
2

1Ô
2

äÔ
2 ≠ äÔ

2

B
.

All other elements of O are zero. Finally, we can transform D to a real
block-diagonal form: Db = ODO†. The resulting matrix is a block-diagonal
matrix with the same structure as O. All real eigenvalues remain in the
same place as in D, complex pairs of eigenvalues are replaced by a block
with elements

[Db]{i,i+1} =
A

Ÿ(⁄
i

) ⁄(⁄
i

)
≠⁄(⁄

i

) Ÿ(⁄
i

)

B
,

Which means one can also directly construct Db from the real and imaginary
parts of the eigenvalues.
One can already use Db as a connection matrix, where it is clear that all
single diagonal entries simply act as disconnected low-pass filters, and 2 ◊ 2
blocks are associated with two interconnected neurons which together act as
a damped resonator. A more general connection topology can be constructed
by a similarity transform:

W = CDbC≠1,

where C can be any nonsingular matrix with the eigenvectors of W as its
columns. For the connection matrices used for empirical testing throughout
this paper we will choose C with random Gaussian elements.

A.2.1.2 z-transform of eigenvalue spectrum

To transform a dynamical system in continuous time to discrete time, one has
to use the z-transform (see for instance Jury (1964)). The transformation
between the complex variable z in the z-domain and s in the Laplace domain
is defined as

z = esTs ,

where T
s

is the sampling period by which the input signal is sampled.
Discrete-time reservoirs can in fact be considered as a system where the
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input signal is sampled from a continuous signal at each time step. As such,
we can transform this system to a continuous time equivalent by an inverse
z-transform. Since reservoir dynamics are predominantly determined by the
eigenvalues, we can use the above equation to find the Laplace-domain equiv-
alent eigenvalues. Obviously, the sample period has no well defined meaning
in this reasoning. However, when applying the transformation in the two
following examples, one can quickly see that it is fact proportional to the
reservoir timescale.

A.2.2 Laplace-eigenvalue distribution for a uni-
form distribution in the z-domain

Starting from a distribution in the z-domain, defined in Ozturk et al. (2006)
as uniform over a disk with radius fl, we can again use the z-transform
to determine the distribution of eigenvalues in the Laplace domain. Using
coordinates ‡ and È which denote the real and imaginary part of s, we
can define an infinitesimal patch of area d‡dÈ. In the z-domain, we use
coordinates ÷ and „ for the radius and angle. A patch of area is here defined
as ÷ d÷ d„. The expected number of eigenvalues in this patch is proportional
to its surface because of the uniform distribution. Using the relation ÷ = e‡Ts

we find d÷ = T
s

e‡Tsd‡. Together with d„ = dÈT
s

we can finally write that
the expected number of eigenvalues in the patch d‡dÈ is proportional to
T 2

s

e2‡Tsd‡dÈ. Since „ goes from ≠fi to fi, the distribution as a function
of È will be uniform between È œ {≠fi/T

s

· · · fi/T
s

}, and zero outside this
range. Equivalently, we find that for ÷ > fl, the distribution is zero, so in
the Laplace-domain the distribution will be equal to zero for ‡ < ln(÷)/T

s

.
We can then finally write for the distribution of eigenvalues in the Laplace
domain D

⁄

:

D
⁄

(‡, È) ≥ e2‡TsH
3

ln(÷)
T

s

≠ ‡

4
rect

3
T

s

È

2fi

4
,

where u(x) is the unit step function, and rect(x) is the rectangle function,
equal to one when x œ {≠1/2 · · · 1/2}, and zero everywhere else. Since we
defined ·

R

as the inverse of the mean real part of the eigenvalues, we can do
the same here and use the above formula to find that ·≠1

R

= (2T
s

)≠1 +ln(fl).
For simplicity, we assume fl = 1. This finally yields for the distribution D

⁄

:

D
⁄

(‡, È) ≥ e‡·RH (≠‡) rect
1·

R

È

4fi

2
. (A.8)
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A.2.2.1 Distributing eigenvalues

One strategy to generate eigenvalues for an exponentially distributed spec-
trum, is to use a random number generator with an exponential distribution
for the real part, and one with a uniform distribution for the imaginary part.
The problem that one faces with this strategy is that the eigenvalues will
not necessarily be evenly spread; some places will be crowded, others empty.
This gives a very large variance of the MFs; some performing very poor,
others very good. Therefore, we shall use a simple algorithm that avoids
clustering of eigenvalues. We start from the z-domain where we spread
eigenvalues more or less evenly, and later transform them to the Laplace
domain using the z-transform. The method used in Ozturk et al. (2006) to
generate even distributions is based on Erdogmus et al. (2003), which uses
an iterative method with entropy maximization as its end goal. We used a
much simpler approach starting from a geometric point of view. We first
define the upper half of the unit disk. The first eigenvalue of the discrete
system is chosen randomly from this circle segment. Next, we define a circle
of a certain radius fl

h

around this point, and make sure no other eigenval-
ues can be chosen within it. We repeat the process until we have defined
N/2 points and then include their complex conjugates. We also make sure
no eigenvalue is chosen with an imaginary part smaller than fl

h

/2, which
avoids clustering with the complex conjugates. fl

h

has to be chosen small
enough so that there will be enough space to have N/2 eigenvalues within
the given area, but large enough to avoid clustering. Since the area cut out
by each circle is proportional to fl2

h

, and the total area cut out by the cir-
cles is proportional to N , fl

h

will have to be proportional to N≠1/2. Rather
than meticulously working out the necessary conditions for fl

h

, we eventually
settled after some trial and error to choose fl

h

= (1.7N)≠1/2.

A.2.3 Resonator reservoirs

Here we base ourselves on a result found in White et al. (2004). In this paper
it was found that optimal noise robustness for memory storage is found for
reservoirs where the eigenvalues of the connection matrix all lie on a circle on
the complex plain centred on the origin, with a radius smaller than 1 (i.e. an
orthogonal connection matrix). We assume that discrete-time eigenvalues,
denoted by ⁄Õ

i

can be written as

⁄Õ
i

= fl exp (2fiä◊
i

) ,
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where we use the symbol ä as the imaginary unit to avoid confusion with
indices i or j. Transformation of this system to the Laplace domain yields

⁄
i

= ln(fl) + 2fiä◊
i

T
s

,

which means all eigenvalues will lie on a line parallel to the imaginary axis
which crosses the real axis at ln(fl)/T

s

= ≠·≠1
R

. We are free to choose the
values T

s

and fl, which means we have control over the imaginary as well
as the real part of the eigenvalues. We will choose the eigenvalues to lie
equidistantly on this line spread between values ÊN/2 and ≠ÊN/2. This
way, when choosing i as i = ≠(N ≠ 1)/2 · · · (N ≠ 1)/2, we can write the
eigenvalues as

⁄
i

= äÊi ≠ 1
·

R

. (A.9)

A.2.4 Properties of resonator reservoirs

A.2.4.1 General shape of the memory function

We can draw conclusions concerning the shape of the MF of resonator reser-
voirs when we look at equations 3.13 and 3.18 which state that the MF con-
sists of a set of cross-products of the elements b

i

(·). The timescale ·
R

defines
the exponential window as defined above and we assume that ·

R

∫ –≠1,
i.e. that the reservoir timescale is much longer than the signal fluctuations.
This way, for · ∫ –≠1 we can neglect the term with exp(≠–·) in equation
3.18. The cross-products of the elements of b(·) can then be written as

b
i

(·)bú
j

(·) ¥ exp
3

≠2 ·

·
R

4
exp (äÊ(i ≠ j)·)

(–2 ≠ ⁄2
i

)(–2 ≠ ⁄ú2
j

) ,

which means that the MF consists of a factor which is periodic with maxi-
mum period T

R

, and a factor which decays exponentially with decay period
·

R

/2. In Figure 3.12a is a depiction of the MF for a resonator reservoir
which confirms this.

A.2.4.2 Approximation of the memory quality

Here we will derive the approximation for the memory quality M
q

(T
R

) for
resonator reservoirs. We will split the calculations up in two main parts.
First, we investigate interference from the signal beyond the reservoir period,
next we will account for the finite number of Fourier coe�cients.

We will redefine the windowed signal s
W

(t, tÕ) as being equal to s(t ≠
tÕ) exp(≠tÕ/·

R

) for 0 < tÕ < T
R

and zero elsewhere. It is useful to state this
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as its full Fourier series:

s
W

(t, tÕ) =
Œÿ

i=≠Œ
eäÊit

Õ
a

i

(t),

where
a

i

(t) = 1
T

R

⁄
TR

0
eäÊit

Õ
e≠ tÕ

·R s(t ≠ tÕ)dtÕ.

Next we define s̃
W

(t ≠ tÕ) as the truncated Fourier series:

s̃
W

(t, tÕ) =
(N≠1)/2ÿ

i=≠(N≠1)/2
eäÊit

Õ
a

i

(t).

Thirdly, we define the actually reconstructed windowed signal ‚s
W

(t, tÕ),
which is also a truncated Fourier series, but has coe�cients which are defined
by equation 3.25, i.e:

‚s
W

(t, tÕ) =
(N≠1)/2ÿ

i=≠(N≠1)/2
eäÊit

Õ
aÕ

i

(t),

with (adding the scaling factor T ≠1
R

)

aÕ
i

(t) = 1
T

R

⁄ Œ

0
eäÊit

Õ
e≠ tÕ

·R s(t ≠ tÕ)dtÕ. (A.10)

Similar to s
W

(t, tÕ) we define s̃
W

(t, tÕ) and ‚s
W

(t, tÕ) to be zero outside the
interval 0 < tÕ < T

R

. Looking at equation (A.10), we can divide the integra-
tion in equal intervals, i.e., we define

⁄ Œ

0
f(t)dt =

Œÿ

j=0

⁄
TR

0
f(t + jT

R

)dt.

Since 2fi

Ê

= T
R

, this yields

aÕ
i

(t) =
⁄ Œ

0
eäÊit

Õ
e≠ tÕ

·R s(t ≠ tÕ)dtÕ

=
Œÿ

j=0
e≠j

TR
·R

⁄
TR

0
eäÊit

Õ
e≠ tÕ

·R s(t ≠ tÕ ≠ jT
R

)dtÕ

=
Œÿ

j=0
a

i

(t ≠ jT
R

)e≠j

TR
·R .
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We can then redefine ‚s
W

(t, tÕ) as

‚s
W

(t, tÕ) =
N≠1

2ÿ

i=≠ N≠1
2

eäÊit

Õ
Œÿ

j=0
a

i

(t ≠ jT
R

)e≠j

TR
·R

=
Œÿ

j=0
e≠j

TR
·R

N≠1
2ÿ

i=≠ N≠1
2

eäÊit

Õ
a

i

(t ≠ jT
R

)

=
Œÿ

j=0
e≠j

TR
·R s̃

W

(t ≠ jT
R

, tÕ).

Finally, we can use this expression in the first step to finding the memory
quality. Since the MF does not depend on the scaling of the reconstructed
signal, we can write (replacing tÕ with ·)

m(·)[·œ{0···TR}] = Ès
W

(t, ·)‚s
W

(t, ·)Í2
t

‡2(s
W

(t, ·))‡2(‚s
W

(t, ·)) .

The numerator is given by

Ès
W

(t, ·)‚s
W

(t, ·)Í2
t

=
Œÿ

j=0
e≠j

TR
·R Ès

W

(t, ·)s̃
W

(t ≠ jT
R

, ·)Í2
t

¥ Ès
W

(t, ·)s̃
W

(t, ·)Í2
t

,

since we can safely assume that the present signal will be virtually uncorre-
lated with the signal from a multiple of T

R

in the past. The denominator can
be worked out in a similar manner. Calculating the variance for ‚s

W

(t, tÕ),
we find

‡2(‚s
w

(t, ·)) = lim
P æŒ

1
2P

⁄
P

≠P

‚s2
W

(t, ·)dt

= lim
P æŒ

1
2P

⁄
P

≠P

S

U
Œÿ

j=0
e≠j

TR
·R s̃

W

(t ≠ jT
R

, ·)

T

V
2

dt

Again, we neglect correlation between the present signal and the signals
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which extend multiple times T
R

in the past. As such we can rewrite this as

‡2(‚s
w

(t, ·)) ¥
Œÿ

j=0
e≠2j

TR
·R lim

P æŒ

1
2P

⁄
P

≠P

s̃2
W

(t ≠ jT
R

, ·)dt

= ‡2(s̃
W

(t, ·))
Œÿ

j=0
e≠2j

TR
·R

= ‡2(s̃
W

(t, ·))

1 ≠ e≠2 TR
·R

,

which finally leads us to the MF up to T
R

in the past:

m(·)[·œ{0···TR}] =
5
1 ≠ e≠2 TR

·R

6 Ès
W

(t, ·)s̃
W

(t, ·)Í2

‡2(s
W

(t, ·))‡2(s̃
W

(t, ·)) .

To calculate the memory quality, we will have to make further approxima-
tions:

1. We assume that m(·) is nearly constant in the range · œ {0 · · · T
R

}.
This constant is equal to the memory quality M

q

(T
R

). The assumption
can be validated by looking at Figure 3.11a.

2. We assume that Ès
W

(t, ·)s̃
W

(t, ·)Í, ‡2(s
W

(t, ·)), and ‡2(s̃
W

(t, ·)) all
evolve with · as exp(≠2·/·

R

), multiplied by some constant value.
This assumption is exactly true for ‡2(s

W

(t, ·)), and approximately
for the others as long as ·

R

is not too small relative to T
R

.

Applying this approximation, we only need to find the relative proportions of
Ès

W

(t, ·)s̃
W

(t, ·)Í, ‡2(s
W

(t, ·)), and ‡2(s̃
W

(t, ·)) to find the actual memory
quality. In order to do this, we integrate these expressions over · in the
reservoir period. We find

⁄
TR

0
Ès

W

(t, ·)s̃
W

(t, ·)Í
t

d· =
⁄

TR

0
d·

K Œÿ

i=≠Œ

N≠1
2ÿ

j=≠ N≠1
2

eäÊ(i≠j)· a
i

(t)aú
j

(t)
L

t

=
Œÿ

i=≠Œ

N≠1
2ÿ

j=≠ N≠1
2

+
a

i

(t)aú
j

(t)
,

t

⁄
TR

0
eäÊ(i≠j)· d·

=
N≠1

2ÿ

i=≠ N≠1
2

+|a
i

(t)|2,
t

.
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Similarly, we find
⁄

TR

0
‡2(s

W

(t, ·))d· =
Œÿ

i=≠Œ

+|a
i

(t)|2,

⁄
TR

0
‡2(s̃

W

(t, ·))d· =
N≠1

2ÿ

i=≠ N≠1
2

+|a
i

(t)|2,
.

This finally yields for the memory quality

M
q

(T
R

) ¥ [1 ≠ exp(≠2T
R

/·
R

)]

q N≠1
2

i=≠ N≠1
2

+|a
i

(t)|2,

qŒ
i=≠Œ È|a

i

(t)|2Í . (A.11)

The terms
+|a

i

(t)|2,
form the power spectrum of the windowed signal. We

can use the Wiener-Khinchin theorem which states that the power spectrum
of a signal is equal to the spectrum of its autocorrelation function, which we
shall denote as R

W

(t). Since this is a discrete spectrum, we have to assume
the windowed function is periodic and calculate the autocorrelation function
accordingly. Since we take the mean power spectrum over t, we shall take
the mean over t for the autocorrelation function as well. This will allow us
to incorporate the signal statistics R(t) = exp(≠–|t|). We can calculate

ÈR
W

(tÕ)Í
t

=
K⁄

TR≠t

Õ

0
s

W

(t, ·)s
W

(t, · + ◊)d·

L

t

+
K⁄

t

Õ

0
s

W

(t, T
R

≠ tÕ + ·)s
W

(t, ·)d·

L

t

=
⁄

TR≠t

Õ

0
e≠ 2·+tÕ

·R Ès(t ≠ ·)s(t ≠ · + tÕ)Í
t¸ ˚˙ ˝

R(t

Õ)

d·

+
⁄

t

Õ

0
e≠ TR≠tÕ+2·

·R Ès(t ≠ ·)s(t ≠ · + tÕ ≠ T
R

)Í
t¸ ˚˙ ˝

R(t

Õ≠TR)

d·

= ·
R

2

1
e≠t

Õ(–+·

≠1
R )(1 ≠ e(t

Õ≠TR)·

≠1
R )

2

+ ·
R

2

1
e(t

Õ≠TR)(–+·

≠1
R )(1 ≠ e≠t

Õ
·

≠1
R )

2

¥ ·
R

2

1
e≠t

Õ(–+·

≠1
R ) + e(t

Õ≠TR)(–+·

≠1
R )

2
.
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The discrete Fourier spectrum of this function can be calculated as

+|a
i

(t)|2,
t

= 1
T

R

⁄
TR

0
exp(äÊitÕ) ÈR

W

(tÕ)Í
t

dtÕ,

which yields
+|a

i

(t)|2,
t

≥ 1
T

2
R

4fi

2

!
– + ·≠1

R

"2 + i2
.

The sums in equation (A.11) can be approximated by integrals:

N≠1
2ÿ

i=≠ N≠1
2

+|a
i

(t)|2,
t

≥
⁄

N/2

≠N/2

1
T

2
R

4fi

2

!
– + ·≠1

R

"2 + q2
dq,

and similar for the denominator. This finally yields for the memory quality

M
q

(T
R

) = 2
fi

5
1 ≠ e≠2 TR

·R

6
arctan

3
fiN

T
R

(– + ·≠1
R

)

4
. (A.12)

The validity for this approximation is pictured in Figure 3.12b and 3.12c. It
appears this gives a good estimate for the memory quality as long as ·

R

is
not too small compared to T

R

.

A.2.4.3 Asymptotic memory capacity

The limit situation ·
R

æ Œ can now also be worked out. Notice that the
assumptions we made in Section 3.3.6 for the normalized ⁄̂

i

implies that ⁄̂
i

remains finite, and so the imaginary parts to have to be finite. This means
that, since ⁄

i

= ⁄̂
i

/·
R

, the imaginary parts of the eigenvalues will go to
zero as well, implying that T

R

has to go to infinity together with ·
R

for the
derivation to remain valid. When we assume that the MF is flat in intervals
{iT

R

· · · (i + 1)T
R

}, and using the results from (A.2.4.1), we can write

M = T
R

Œÿ

j=0
M

q

(T
R

)e≠2j

TR
·R = T

R

M
q

(T
R

)

1 ≠ e≠2j

TR
·R

,

and together with equation (A.12) this becomes

M = 2
fi

T
R

arctan
3

fiN

T
R

(– + ·≠1
R

)

4
.
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When ·
R

and T
R

go to infinity we can l’Hopital’s rule to find that:

lim
TR,·RæŒ

M = 2N

–
,

confirming equation (3.19).

A.3 Infinite Reservoirs: Recurrent Kernels

A.3.1 Finite network equivalent for Gaussian RBFs
Here we shall try to find a finite network which - when made infinite - is the
equivalent network of a Gaussian RBF kernel. We repeat equation 4.14:

k(s
i

, s
j

) =
⁄

�v

P (v)f(v, s
i

)f(v, s
j

). (A.13)

The first thing we shall attempt is to see what happens if we use Gaussian
RBF nodes, where

f(v, s
i

) = exp
3≠||v ≠ s

i

||2
2‡2

0

4
.

The distribution P (v) we shall choose to be a Gaussian distribution with
covariance matrix ‡2I and mean at the origin, but for reasons that will
become clear later, we choose not to normalize it. The integral then becomes:

k(s
i

, s
j

) =
⁄

�v

exp
3≠||v||2

2‡2

4
exp

3≠||v ≠ s
i

||2
2‡2

0

4
exp

3≠||v ≠ s
j

||2
2‡2

0

4
,

(A.14)
which can be solved easily by integrating over each dimension separately.
The solution is:

k(s
i

, s
j

) = ‡‡0
Ô

2fi
‡2

0 + 2‡2
exp

3≠‡2||s
i

≠ s
j

||2 ≠ ‡2
0(||s

i

||2 + ||s
j

||2)
2‡2

0(‡2
0 + 2‡2)

4
. (A.15)

Can we reduce this equation to obtain the gaussian RBF kernel? If we take
the limit for ‡ æ Œ, indeed we find that

lim
‡æŒ

k(s
i

, s
j

) = ‡0
Ô

fi exp
3≠||s

i

≠ s
j

||2
4‡2

0

4
, (A.16)

which is (down to a factor two for the standard deviation) the RBF kernel.
If we would have normalized the probability distribution we would still have
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to divide this by infinity, which would make the kernel equal to zero.
We now unfortunately have the situation that, in order to make such a
network finite, we have to pick our input weights from an infinitely wide
distribution, which is of course impossible. As it turns out, no applicable
form of Gaussian RBF node networks leads to the RBF kernel.
What if we work with exponential nodes instead of Gaussian RBF nodes,
i.e., the activation function is

f(v, s
i

) = exp (v · s
i

) .

If we again assume a Gaussian distribution for the weights, we can solve
equation 4.14. We find

kÕ(s
i

, s
j

) = exp
3

‡2

2 ||s
i

+ s
j

||2
4

.

This kernel, when made recurrent, will rapidly diverge to infinity, and is
unsuited for true applications. Suppose that we apply an equivalent to the
softmax function, i.e., we divide the activation by its sum. This means that
we need to divide the kernel by B(s

i

) and B(s
i

), which would be computed
in this case by an integral:

B(s
i

) =
⁄

�v

P (v) exp (v · s
i

) dv = exp
3

‡2

2 ||s
i

||2
4

,

i.e., of the same form of the kernel function. The kernel function associated
with the softmax function is finally given by

k(s
i

, s
j

) = kÕ(s
i

, s
j

)
B(s

i

)B(s
j

) = exp
!
‡2s

i

· s
j

"
.

This kernel is again unstable when made recurrent, so not of immediate
interest. What if, instead of taking the sums of the activations, we use the
norms? We call the norms H(s

i

) and H(s
i

), and they are given by

H(s
i

) =
Û⁄

�v

P (v) exp(2v · s
i

)dv = exp
!
‡2||s

i

||2"
.

This time, the division leads to

k(s
i

, s
j

) = kÕ(s
i

, s
j

)
H(s

i

)H(s
j

) = exp
3

≠‡2

2 ||s
i

≠ s
j

||2
4

.

This means that, except for the role of ‡, which has been inverted, we
actually do attain a Gaussian kernel function.
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A.3.2 Sparse threshold unit networks

A.3.2.1 Deriving the equivalent kernel for non-sparse net-
works

We start from equation 4.14, with P (v) once again a Gaussian distribution
with covariance matrix ‡2I and mean at the origin. It is possible to cal-
culate this integral formally, however one can find a fairly simple geometric
argument to find a solution to this problem. First realize that we can choose
the coordinates of v such that the two first dimensions lie in the 2D-plane
spanned by s

i

and s
j

, which reduces the integral to a two dimensional inte-
gral over this plane. Next, realize that the function f(s · v) can be visualized
easily as a function were half of the plane equals ◊

p

and the other ≠◊
n

. The
edge between the two lies perpendicular to s. If we then consider the prod-
uct under the integral, we see that the plane is divided in four sections. If
– is the angle between s

i

and s
j

, we get two fractions of – ≠ fi equal to ◊2
p

and ◊2
n

, and two fractions of – equal to ≠◊
n

◊
p

. As the Gaussian is spheri-
cally symmetric we need only to consider the normalizing constant, and the
integral can be solved as

k(s
i

, s
j

) = A
1

1 ≠ µ

fi
–

2
, (A.17)

where
µ = 1 + 2 ◊

p

◊
n

◊2
n

+ ◊2
p

, (A.18)

and
A =

◊2
n

+ ◊2
p

2 . (A.19)

The angle – is given by

– = arccos
3

s
i

· s
j

||s
i

||||s
j

||
4

. (A.20)

Applying equation 4.12 we can then write down the recurrent version.

Ÿ
t+1,t

Õ+1(s1, s2)

= A

A
1 ≠ µ

fi
arccos

A
s1(t + 1) · s2(tÕ + 1) + Ÿ

t,t

Õ(s1, s2)
(||s1||2 + Ÿ

t

(s1, s1))(||s2||2 + Ÿ
t

Õ(s2, s2))

BB
.

It’s easy to see that the term Ÿ
t

(s1, s1) = Ÿ
t

Õ(s2, s2) = A, because if we
consider equation A.17, we have to take the angle between the two vectors
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and if they are equal this angle is always zero. This reduces the recurrent
kernel to:

Ÿ
t+1,t

Õ+1(s1, s2) = A

A
1 ≠ µ

fi
arccos

A
s1(t + 1) · s2(tÕ + 1) + Ÿ

t,t

Õ(s1, s2)
(||s1||2 + A)(||s2||2 + A)

BB
.

(A.21)
In A.3.3.1 I will show that this kernel has an infinitely high Lyapunov expo-
nent. This means that it will always have unstable dynamics.

A.3.2.2 Deriving STUN kernels

Here we shall derive the expression for the STUN kernel. As equations in
this section can become lengthy we shall abstain from writing out kernel
dependencies on the time series.
We start by introducing a neuron index z. This index is of an unspecified
nature or dimensionality, but we assume it to be continuous and to span all
the neurons in the network. Each neuron in the network is then characterized
by a set of K indices which index the neurons this neuron receives input
from, a weight vector w of dimensionality K, i.e. the recurrent weights for
the network nodes, and input weights v. We write the set of indices as
z = [z1, · · · , z

K

]. If we assume an input signal s(t) of dimension N
in

, we can
write the hidden state of a neuron with index zÕ as

av,w,z(zÕ, t + 1) = f

Q

a
Kÿ

i=1
w

i

a(zi

, t) +
Ninÿ

j=1
v

j

s
j

(t + 1)

R

b . (A.22)

Here, f is the threshold function. Notice that we used zÕ to index this
particular neuron. In this sense, the index zÕ contains all the information of
v, w, and z.
If we wish to define a kernel function we shall need to solve the following
integral:

Ÿ
t

=
⁄

�z

dz
⁄

�v,w

dvdwP (v, w)a1
v,w,z(zÕ, t)a2

v,w,z(zÕ, t), (A.23)

where �w is RK , �v is RNin , and
s

�z
dz is a shorthand notation for

⁄

�z1

⁄

�z2

· · ·
⁄

�zK

dz1dz2 · · · dz
K

.

I have used the abbreviation a1 and a2 to indicate that these are hidden
states resulting from two di�erent input streams s1(t) and s2(t). The prob-
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ability distribution P (v, w) is a a Gaussian distribution with covariance
matrix I and mean at the origin. The integral over v and w can be solved
in a highly similar fashion as in section A.3.2.1. We simply unite the two
vectors as u = [v; w] such that we obtain

a1
v,w,z(zÕ, t + 1)a2

v,w,z(zÕ, t + 1) = f
!
u · [s1(t + 1); a1

z]
"

f
!
u · [s2(t + 1); a1

z]
"

,

in which ai

z = [ai(z1, t); · · · ; ai(z
K

, t)] and we left out the dependency of t
for brevity. This means that we can reuse equation A.17, where the angle –
is given by

– = arccos
A

s1(t + 1) · s2(t + 1) + a1
z · a2

z
(||s1(t + 1)||2 + ||a1

z||2)(||s2(t + 1)||2 + ||a2
z||2)

B
. (A.24)

We shall use the shorthand notation –z for this angle, where we again omit
the explicit dependency on time. Equation A.23 reduces to

Ÿ
t+1 =

⁄

�z

dz A
1

1 ≠ µ

fi
–z

2

¸ ˚˙ ˝
kz

=
⁄

�z

dzkz. (A.25)

This integral can be solved when we realize that the variables ai(z
j

, t) are
discrete, taking on either ≠◊

n

or ◊
p

. Suppose we will start by integrating
over z1:

⁄

�z1

dz1kz = h
nn

[kz]
a

1(z1)=a

2(z1)=≠◊n
+ h

np

[kz]
a

1(z1)=≠◊n,a

2(z1)=◊p

+ h
pn

[kz]
a

1(z1)=◊p,a

2(z1)=≠◊n
+ h

pp

[kz]
a

1(z1)=a

2(z1)=◊p
.

Here, the numbers h
nn

, h
np

, h
pn

, and h
pp

correspond to the fractions of the
hidden state, i.e. the fraction of the total number of neurons, where the
hidden state at time t for time series 1 is the value corresponding to the first
index, and the hidden state for time series 2 is the second. We can solve the
integration recursively over all z

i

, since they are all the same.
It is possible to find an expression for the fractions in terms of the previous
kernel value Ÿ

t

, which will be the key to defining a recursive formula. Let
us first put forward that the sum of all of them equals one. Next, we shall
use the fact that when the kernel function acts on two identical time series,
the kernel function is always equal to A, since – = 0 and we assume that
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s
�zi

dz
i

= 1. The kernel values can also be written in terms of the fractions:

Ÿ
t

= ◊2
p

h
pp

+ ◊2
n

h
nn

≠ ◊
n

◊
p

(h
np

+ h
pn

)
A = ◊2

p

(h
pp

+ h
pn

) + ◊2
n

(h
np

+ h
nn

)
A = ◊2

p

(h
pp

+ h
np

) + ◊2
n

(h
pn

+ h
nn

)
1 = h

nn

+ h
pp

+ h
np

+ h
pn

.

Solving this set of equations gives:

h
nn

= h
pp

= Ÿ
t

+ ◊
n

◊
p

(◊
n

+ ◊
p

)2

h
np

= h
pn

= A ≠ Ÿ
t

(◊
n

+ ◊
p

)2

We shall now consider two specific cases. One where ◊
p

= ◊
n

= 1, and where
◊

p

= 1, ◊
n

= 0; the sign unit and the binary unit. The first case is the
simplest. Consider the terms ||a1

z||2 in the denominator. Since all elements
in this vector are either ≠1 or 1, this quadratic norm is equal to M . For
each integration over an index z

i

, the numerator can then be split into two
situations; when the two hidden states are equal, or when they are di�erent.
This means that, each time we integrate, we can split all terms the kernel
has into two new terms, each with respective fraction h

pp

and h
np

where
we can fill in one term in the inner product a1

z · a2
z. In the end we will get

2K terms. If we regroup these and count the number of times each of them
occurs we will finally reach equation 4.22.
The situation is slightly more complicated for binary nodes. Here, each time
we perform an integration we will split each term into three new terms. Still
we can regroup them in the end and obtain equation 4.25.
If we do not have a single in-degree, but rather a probability distribution
p

K

for each in-degree, we simply need to add up the contributions of each
in-degree, weighted with their respective probability. After all, we could say
that of all neurons, a fraction p1 has one incoming connection, a fraction
p2 has two incoming connections, etc. Equation A.23 can be exchanged by
a weighted sum over all in-degrees. Furthermore, nothing changes about
the line of thought that defines the fractions h

nn

, h
np

, h
pn

, and h
pp

, as
these only depend on the threshold values ◊

n

and ◊
p

. Therefore, each term
in the weighted sum is simply the corresponding kernel for that particular
in-degree, and the recurrent kernel for a STUN with a distribution over
in-degrees is the weighted sum of the kernels with fixed in-degrees.
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A.3.3 Lyapunov exponent

The definition of the Lyapunov exponent is given by:

⁄ = lim
tæŒ

lim
D(0)æ0

1
t

ln
3

D(t)
D(0)

4
,

where D(t) is the distance between two state vectors at time t, D(0) is the
initial infinitesimally small distance between two initial conditions for the
system. In the case of infinite networks, this distance is given by

D(t) =


Ÿ
t

(s1, s1) + Ÿ
t

(s2, s2) ≠ 2Ÿ
t

(s1, s2).

When Ÿ
t

(s1, s1) = Ÿ
t

(s2, s2) = c for all t, this becomes

D(t) =


2(c ≠ Ÿ
t

(s1, s2)).

From now on we shall omit the dependency on the time series s to lighten
notation. First of all we write the recurrent kernel as an iterative function:
Ÿ

t

= q(Ÿ
t≠1). As Ÿ

t+1 is infinitesimally close to c, we can write q with a first
order approximation:

Ÿ
t

(s1, s2) = q(c) + (Ÿ
t≠1 ≠ c)

5
ˆq(Ÿ

t≠1)
ˆŸ

t≠1

6

Ÿt≠1=c

.

If we then eliminate Ÿ
t≠1 by writing it as a first order approximation of Ÿ

t≠2,
and repeat the process until we reach Ÿ0, together with the fact that q(c) = c
we can write that:

Ÿ
t

= c + (Ÿ0 ≠ c)
tŸ

i=1

3
ˆq(Ÿ

i≠1)
ˆŸ

i≠1

4

Ÿi≠1=c

. (A.26)

We can then find that

D(t)
D(0) =

ı̂ıÙ
tŸ

i=1

3
ˆq(Ÿ

i≠1)
ˆŸ

i≠1

4

Ÿi≠1=c

, (A.27)

which leads to the following formula for the Lyapunov exponent:

¸ = 1
2

K
ln

5
ˆŸ

i

ˆŸ
i≠1

6

Ÿi≠1=c

L

i

. (A.28)
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A.3.3.1 Lyapunov exponent for sparse threshold unit ker-
nels

If we take the derivative of equation A.21, assuming s1 = s2, we find:

ˆŸ
i

ˆŸ
i≠1

= Aµ

fi

1
A ≠ Ÿ

i≠1
.

When the two input signals are equal, Ÿ
i≠1 = A, and this expression is

infinitely large.
STUN kernels do not su�er from this problem. Calculating the derivative of
equation 4.22 yields

ˆŸ
t+1

ˆŸ
t

= A

(◊
n

+ ◊
p

)2

Kÿ

i=0

K≠iÿ

j=0

#
(i + j)f i+j≠1

pp

fK≠i≠j

np

≠ (K ≠ i ≠ j)f i+j

pp

fK≠i≠j≠1
np

$
Q

ij

,

where

Q
ij

=
K≠i≠jÿ

k=0

K!
i!j!k!(K ≠ i ≠ j ≠ k)!C

0
ijk(K≠i≠j≠k). (A.29)

If we then insert the condition that Ÿ
t

= A, we find that the only terms in
the summation above are those where the power of f

np

is equal to zero (as
f

np

= 0 when Ÿ
t

= A), we find:

3
ˆŸ

t+1
ˆŸ

t

4

Ÿt=A

= A

2M≠1(◊
n

+ ◊
p

)2

C
M

Mÿ

i=0
Q

i(M≠i) ≠
M≠1ÿ

i=0
Q

i(M≠i≠1))

D

= M

2M≠1’

Mÿ

i=0

3
M

i

4
C0

i(M≠i)00

≠ M

2M≠1’

M≠1ÿ

i=0

3
M ≠ 1

i

4 1
C0

i(M≠i≠1)01 + C0
i(M≠i≠1)10

2

= 2M

’

C
1 ≠ 1

2M

M≠1ÿ

i=0

3
M ≠ 1

i

4 1
C0

i(M≠i≠1)01 + C0
i(M≠i≠1)10

2D

= M

fi2M≠1

M≠1ÿ

i=0

3
M ≠ 1

i

4 Ë
arccos(�0

i(M≠i≠1)01)
È

.

Filling in ◊
p

= 1, ◊
n

= 0 then yields the expression given by equation 4.32.
The case for ◊

p

= ◊
n

= 1 is again completely analogous where we start from
equation 4.25 instead of 4.22.
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A.3.4 Memory capacity
Here we will derive the memory capacity for recurrent kernel machines. We
shall only consider the linear recurrent kernel, as given by equation 4.15.
We assume a set of N support vectors s

k

(t), which are defined for t œ
{≠Œ, · · · , 0}. We now need to find weights �

·

which optimally recreate
the input signal from · frames in the past. Importantly, when deriving the
memory capacities we have to assume that we have an infinite amount of
training data, but a limited number of support vectors.
Suppose we have readout weights ‚(·)

k

that try to recreate the input signal
s(t ≠ ·). I denote this output signal s̃

·

(t), and it is given by

s̃
·

(t) = –
Nÿ

k=1
‚(·)

k

Œÿ

i=0
–is

k

(≠i)s(t ≠ i),

Or, if we introduce z
i

, a column vector with elements s
k

(≠i) we can rewrite
this compactly as

s̃
·

(t) = –�T
·

Œÿ

i=0
–iz

i

s(t ≠ i).

We will need to minimize the MSE between s̃
·

(t) and s(t≠·), which is given
by

MSE =
+
(s̃

·

(t) ≠ s(t ≠ ·))2,
t

.

=
+
s̃2

·

(t)
,

t

+
+
s(t ≠ ·)2,

t

≠ 2 Ès(t ≠ ·)s̃
·

(t)Í
t

.

The first term we can write as

+
s̃2

·

(t)
,

t

= –2�T
·

Œÿ

i,j=0
–i+jz

i

zT
j

Ès(t ≠ i)s(t ≠ j)Í
t

�
·

.

We make the same assumption as in chapter 3, namely that the frames
of s(t) are i.i.d with unit standard deviation and zero mean, such that
Ès(t ≠ i)s(t ≠ j)Í

t

= ”
ij

. This leads to

+
s̃2

·

(t)
,

t

= –2�T
·

Œÿ

i=0
–2iz

i

zT
j

¸ ˚˙ ˝
Z

�
·

= –2�T
·

Z�
·

.

The third term of the MSE we can similarly calculate to be

Ès(t ≠ ·)s̃
·

(t)Í
t

= –·+1�T
·

z
·

.
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In order to find optimal weights we need to derive the MSE to �
·

and equate
it to zero. Finally this yields

�
·

= –·≠1Z≠1z
·

.

Now we can explicitly solve equation 3.1. Notice that we already solved the
variance of s̃

·

(t) and the covariance between s̃
·

(t) and s(t≠·) as respectively
the first and third term in the MSE. When we insert the expression for �

·

,
we find that

cov(s(t ≠ ·), s̃
·

(t)) = var(s̃
·

(t)) = –2· zT
·

Z≠1z
·

,

which yields a memory function

m(·) = –2· zT
·

Z≠1z
·

.

Finally, we can now solve the memory capacity. We take the sum over all ·

M =
Œÿ

·=0
m(·)

=
Œÿ

·=0
–2· zT

·

Z≠1z
·

= tr
A

Z≠1
Œÿ

·=0
–2· z

·

zT
·

B

= tr
!
Z≠1Z

"
= N,

where tr stands for the trace of the matrix.
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