Voor alle Don Quichot(a)s
Vechtend tegen windmolens

Opgedragen aan tante Magda
We hebben elkaars afscheid gemist...
Promotors:
Prof. dr. ir. Nico Boon
Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium

Prof. em. dr. ir. Willy Verstraete
Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium

Dean:
Prof. dr. ir. Guido Van Huylenbroeck

Rector:
Prof. dr. Paul Van Cauwenberge

The presented work was performed at the Laboratory of Microbial Ecology and Technology (LabMET, UGent, BE), the Laboratory of Microbiology (LM-UGent, UGent, BE), the Institute for Environmental Biotechnology (Rhodes University, Grahamstown, SA) and the Department of Environmental Engineering (DTU Environment, Lyngby, DK)

This work was funded by the ‘Instituut voor de Aanmoediging van Innovatie door Wetenschap en Technologie in Vlaanderen’ (IWT grant n° 81259 and 83259), a research grant from the ‘Geconcerteerde Onderzoeksactie (GOA) of Ghent University’ (BOF09/GOA/005) and a grant for a stay abroad from the ‘Fonds voor Wetenschappelijk Onderzoek’ (FWO grant n° V401512N).
METHANOTROPHIC MICROBIOMES
AS DRIVERS FOR ENVIRONMENTAL BIOTECHNOLOGY

Thesis submitted in fulfilment of the requirements for the degree of Doctor (PhD) of Applied Biological Sciences
Titel van het doctoraat in het Nederlands:

Methanotrofe microbiomen als drijvende kracht voor milieubiotechnologische toepassingen

To refer to this thesis:

The author and the promoters give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author.
Notation index

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AME-D</td>
<td>Aerobic methane oxidation coupled to denitrification</td>
</tr>
<tr>
<td>AMO</td>
<td>Ammonia monooxygenase</td>
</tr>
<tr>
<td>AMS</td>
<td>Ammonium mineral salts medium</td>
</tr>
<tr>
<td>ANME</td>
<td>Anaerobic methane oxidizing Archaea</td>
</tr>
<tr>
<td>AOB</td>
<td>Ammonia oxidizing bacteria</td>
</tr>
<tr>
<td>AOM</td>
<td>Anaerobic oxidation of methane</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological oxygen demand</td>
</tr>
<tr>
<td>CDW</td>
<td>Cell dry weight</td>
</tr>
<tr>
<td>CFC</td>
<td>Chlorofluorocarbons</td>
</tr>
<tr>
<td>Co</td>
<td>Community organization</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>CSTR</td>
<td>Continuously stirred tank reactor</td>
</tr>
<tr>
<td>dAMS</td>
<td>Diluted ammonium mineral salts medium</td>
</tr>
<tr>
<td>DGGE</td>
<td>Denaturing gradient gel electrophoresis</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNA-SIP</td>
<td>DNA-based stable isotope probing</td>
</tr>
<tr>
<td>dNMS</td>
<td>Diluted nitrate mineral salts medium</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>EPS</td>
<td>Extracellular polymeric substances</td>
</tr>
<tr>
<td>ETC</td>
<td>Electron transfer chain</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatograph</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GWP</td>
<td>Global warming potential</td>
</tr>
<tr>
<td>HAO</td>
<td>Hydroxylamine cytochrome c oxidoreductase</td>
</tr>
<tr>
<td>HRAP</td>
<td>High rate algal pond</td>
</tr>
<tr>
<td>HRT</td>
<td>Hydraulic retention time</td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>IC</td>
<td>Ion chromatograph</td>
</tr>
<tr>
<td>IPCC</td>
<td>The intergovernmental panel on climate change</td>
</tr>
<tr>
<td>MAC</td>
<td>Coculture of methane oxidizing bacteria and algae</td>
</tr>
<tr>
<td>MMO</td>
<td>Methane monooxygenase</td>
</tr>
<tr>
<td>MOB</td>
<td>Methane oxidizing (proteobacterial) bacteria</td>
</tr>
<tr>
<td>MOC</td>
<td>Methane oxidizing community</td>
</tr>
<tr>
<td>MOR</td>
<td>Methane oxidation rate</td>
</tr>
<tr>
<td>NADP(H)</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NMS</td>
<td>Nitrate Mineral Salts medium</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetically active range</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PHB</td>
<td>Poly-hydroxy-butyrate</td>
</tr>
<tr>
<td>PHBV</td>
<td>Poly-hydroxy-butyrate/valerate (mixture)</td>
</tr>
<tr>
<td>PFP</td>
<td>Primary facultative pond</td>
</tr>
<tr>
<td>pMMO</td>
<td>Particulate methane monooxygenase</td>
</tr>
<tr>
<td>ppb</td>
<td>Parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PSI/II</td>
<td>Photosystem I/II</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>R</td>
<td>Richness</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotations per minute</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosmal ribonucleic acid</td>
</tr>
<tr>
<td>RuBisCo</td>
<td>Ribulose-1,5-biphosphate carboxylase oxygenase</td>
</tr>
<tr>
<td>RuBP</td>
<td>Ribulose biphosphate</td>
</tr>
<tr>
<td>RuMP</td>
<td>Ribulose monophosphate</td>
</tr>
<tr>
<td>sCOD</td>
<td>Soluble chemical oxygen demand</td>
</tr>
<tr>
<td>sMMO</td>
<td>Soluble methane monooxygenase</td>
</tr>
<tr>
<td>SBR</td>
<td>Sequence batch reactor</td>
</tr>
<tr>
<td>SCFA</td>
<td>Short chain fatty acids</td>
</tr>
<tr>
<td>Notation</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>SCP</td>
<td>Single cell protein</td>
</tr>
<tr>
<td>SIP</td>
<td>Stable isotope probing</td>
</tr>
<tr>
<td>SRT</td>
<td>Sludge retention time</td>
</tr>
<tr>
<td>TC</td>
<td>Total carbon</td>
</tr>
<tr>
<td>TCE</td>
<td>Trichloroethylene</td>
</tr>
<tr>
<td>TIC</td>
<td>Total inorganic carbon</td>
</tr>
<tr>
<td>TOC</td>
<td>Total organic carbon</td>
</tr>
<tr>
<td>TSA</td>
<td>Tryptic soy agar</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
<tr>
<td>VSS</td>
<td>Volatile suspended solids</td>
</tr>
<tr>
<td>WSP</td>
<td>Wastewater stabilization pond</td>
</tr>
<tr>
<td>WWTP</td>
<td>Wastewater treatment plant</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter I. Introduction ... 1

I.1 Global warming .. 3
I.2 The carbon cycle .. 6
I.3 Methanotrophy .. 10
I.4 Methane oxidizing bacteria ... 12
I.5 Biotechnological potential of MOB .. 24
I.6 Interactions of MOB with other organisms .. 28
I.7 Microalgae .. 30
I.8 Biotechnological potential of algae .. 37
I.9 Rationale and objectives of this study .. 40

Chapter II. Miniaturized isolation of methane oxidizing bacteria 43

II.1 Introduction ... 46
II.2 Experimental section .. 47
II.3 Results .. 53
II.4 Discussion .. 62

Chapter III. Copper enhances the activity and salt resistance of methane oxidizing communities .. 67

III.1 Introduction .. 70
III.2 Experimental section .. 71
III.3 Results .. 75
III.4 Discussion .. 81

Chapter IV. Selection of a methane oxidizing consortium resistant to high ammonium loads .. 87

IV.1 Introduction .. 90
IV.2 Experimental section .. 91
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.3</td>
<td>Results</td>
<td>94</td>
</tr>
<tr>
<td>IV.4</td>
<td>Discussion</td>
<td>98</td>
</tr>
<tr>
<td>V.1</td>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>V.2</td>
<td>Experimental section</td>
<td>105</td>
</tr>
<tr>
<td>V.3</td>
<td>Results</td>
<td>110</td>
</tr>
<tr>
<td>V.4</td>
<td>Discussion</td>
<td>117</td>
</tr>
<tr>
<td>Chapter V.</td>
<td>Selection of associated heterotrophs by MOB at different copper concentrations</td>
<td>101</td>
</tr>
<tr>
<td>V.1</td>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>V.2</td>
<td>Experimental section</td>
<td>105</td>
</tr>
<tr>
<td>V.3</td>
<td>Results</td>
<td>110</td>
</tr>
<tr>
<td>V.4</td>
<td>Discussion</td>
<td>117</td>
</tr>
<tr>
<td>Chapter VI.</td>
<td>Metabolic networking within the methanotrophic microbiome</td>
<td>123</td>
</tr>
<tr>
<td>VI.1</td>
<td>Introduction</td>
<td>126</td>
</tr>
<tr>
<td>VI.2</td>
<td>Experimental section</td>
<td>127</td>
</tr>
<tr>
<td>VI.3</td>
<td>Results</td>
<td>133</td>
</tr>
<tr>
<td>VI.4</td>
<td>Discussion</td>
<td>141</td>
</tr>
<tr>
<td>Chapter VII.</td>
<td>Carbon neutral methane oxidation by a partnership of MOB and microalgae</td>
<td>145</td>
</tr>
<tr>
<td>VII.1</td>
<td>Introduction</td>
<td>148</td>
</tr>
<tr>
<td>VII.2</td>
<td>Experimental section</td>
<td>150</td>
</tr>
<tr>
<td>VII.3</td>
<td>Results</td>
<td>155</td>
</tr>
<tr>
<td>VII.4</td>
<td>Discussion</td>
<td>167</td>
</tr>
<tr>
<td>Chapter VIII.</td>
<td>Facultative ponds harbor methane oxidizing communities supported by algae</td>
<td>173</td>
</tr>
<tr>
<td>VIII.1</td>
<td>Introduction</td>
<td>176</td>
</tr>
<tr>
<td>VIII.2</td>
<td>Experimental section</td>
<td>177</td>
</tr>
<tr>
<td>VIII.3</td>
<td>Results</td>
<td>182</td>
</tr>
<tr>
<td>VIII.4</td>
<td>Discussion</td>
<td>188</td>
</tr>
<tr>
<td>Chapter IX.</td>
<td>Conversion of biogas to bioproducts by algae and MOB</td>
<td>193</td>
</tr>
<tr>
<td>IX.1</td>
<td>Introduction</td>
<td>196</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Chapter X.</th>
<th>General discussion and perspectives</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.1</td>
<td>General research outcomes</td>
<td>217</td>
</tr>
<tr>
<td>X.1.1</td>
<td>Positioning of the research</td>
<td>217</td>
</tr>
<tr>
<td>X.1.2</td>
<td>Main research outcomes</td>
<td>217</td>
</tr>
<tr>
<td>X.2</td>
<td>Future perspectives</td>
<td>222</td>
</tr>
<tr>
<td>X.2.1</td>
<td>Increasing the available methanotrophic pool</td>
<td>222</td>
</tr>
<tr>
<td>X.2.2</td>
<td>Expanding the field for applications</td>
<td>225</td>
</tr>
<tr>
<td>X.2.3</td>
<td>Exploring the potential for eco-engineering</td>
<td>227</td>
</tr>
<tr>
<td>X.2.4</td>
<td>Creating a future for metabolic networking</td>
<td>229</td>
</tr>
<tr>
<td>X.2.5</td>
<td>Revealing the ecological relevance of the methalgae interaction</td>
<td>231</td>
</tr>
<tr>
<td>X.2.6</td>
<td>Methalgae for CH(_4) mitigation in anaerobic effluents</td>
<td>234</td>
</tr>
<tr>
<td>X.2.7</td>
<td>Methalgae as driver for valuable biocompound production</td>
<td>239</td>
</tr>
<tr>
<td>X.2.8</td>
<td>Conclusions</td>
<td>242</td>
</tr>
</tbody>
</table>

References ... 243

Summary .. 273

Samenvatting ... 281

Curriculum Vitae .. 289

Dankwoord ..
CHAPTER I

INTRODUCTION

Charles Darwin, Natural History Museum, London
hero [ˈhɪərəʊ]

1. a man/woman distinguished by exceptional courage, nobility, fortitude, etc.

2. a man/woman who is idealized for possessing superior qualities in any field

3. the principal character in a novel, play, etc.

4. he/she who can shake up my world, just for a second
Chapter I. Introduction

I.1 Global warming

I.1.1 The greenhouse effect

Life on Earth as we know it is only possible due to the influx of solar energy. Without an atmosphere, half of the incoming solar radiation would reflect on the earth surface and subsequently be send back to outer space. However, thanks to the specific atmospheric architecture, Earth’s surface is covered by a heat blanket (Kandel and Viollier, 2005); in the troposphere, molecules of so-called greenhouse gases (GHG) are present, with the ability to absorb reflected heat, i.e. the long wave radiation within the thermal infrared range. As a result, this heat is reradiated to the lower troposphere, causing - in addition to cloud formation - a temperature increase at the surface of the earth (Casper, 2009). Without this radiative forcing effect, the surface of the earth would be on average 33°C colder and inhabitable for most life forms (Le Treut et al., 2007). Water vapor is the most abundant and contributing GHG in the atmosphere, responsible for about 50% of the greenhouse effect, in addition to 25% attributed to clouds (Schmidt et al., 2010). However, a majority of scientists believes that human activity does not significantly affect water vapor concentrations, and therefore it is not perceived as a GHG sensu strictu; an assertion that will also be used in this dissertation. Still, increasing water vapor concentrations can result in positive feedback effects. For example, when the temperature rises, more ice will melt, leading to more water vapor and a faster temperature increase (Held and Soden, 2000).

I.1.2 Global warming

The main idea behind the global warming concept is that the rise in temperature since the late 19th century is mainly caused by human activity, as since the industrial revolution enormous amounts of anthropogenic GHG have been emitted to the atmosphere (Crowley, 2000). The concept of global warming gained momentum in the seventies as correlations were observed between the amount of emitted anthropogenic GHG and the observed increase of temperature (Broecker, 1975). Quickly, CO₂ was identified as one of the major
culprits, with 375 billion tons of CO$_2$-C emitted since 1750, the year typically chosen as reference before the industrial revolution (Ballantyne et al., 2012). During this period, the increase of the global temperature was significantly steeper than during the whole prior millennium (Ballantyne et al., 2012, Broecker, 1975). Over the years, more advanced models have been developed which were able to assign a large part of this increased heating to anthropogenic GHG. Since the ban on chlorofluorocarbons (CFC), the largest contributors to the global warming effect are, in order of magnitude, carbon dioxide (CO$_2$), methane (CH$_4$), dinitrogenoxide (N$_2$O) and ozone (O$_3$) (Forster et al., 2007, Milich, 1999).

The atmospheric concentrations of these GHG indeed increased over the last decennia, as models show that the CO$_2$ concentration in the atmosphere increased between 1750 and 2011 from 280 to 391 ppm (Figure I-1). The same cumulative trend is observed for N$_2$O (270 to 324 ppb) and CH$_4$ (715 to 1813 ppb) (Ballantyne et al., 2012). Estimations of CH$_4$ concentrations indicate that during the last 8000 centuries, CH$_4$ concentrations have never been as high as today (Loulouergue et al., 2008, Spahni et al., 2005).

![Concentrations of Greenhouse Gases from 0 to 2005](image)

Figure I-1. Estimated trends of the atmospheric concentrations for the three most influencing greenhouse gases indicate that until the 17th century, GHG concentrations were stable. From the start of the industrial revolution on, a steep increase occurred (Forster et al., 2007).
I.1.3 Global Warming Potential

Each GHG has a different global warming effect, which depends on its radiative forcing and the residence time in the atmosphere. To compare the effectiveness of greenhouse gases, the global warming potential (GWP) index was developed, whereby the GWP of a specific greenhouse gas is compared with CO$_2$ and expressed as CO$_2$-equivalents (Shine et al., 2005). The applied GWP values are regularly modified and even contested, as the enhancing factors, feedback effects, lifetime and indirect effects are all model based estimations. The Intergovernmental Panel on Climate Change (IPCC) is generally accepted as reference institute. In its last report, the GWP was considered to be 25 for CH$_4$, 298 for N$_2$O and 10,900 for CFC-12 on a timescale of 100 years (Boucher et al., 2009, Forster et al., 2007). This index is weight based and expresses that prevention or mitigation of 1 ton CH$_4$ has the same effect as mitigating 25 ton of CO$_2$. In Table I-1, some characteristics are depicted for the three main GHG.

Table I-1. Comparison of some global warming related parameters for the three main GHG: the contribution to relative forcing of long-lived greenhouse gases, atmospheric lifetime, global warming potential (100 years), global atmospheric concentration in 2011, relative abundance compared to the beginning of the industrial revolution and the relative increase of the atmospheric concentration in 2011 (Ballantyne et al., 2012, Forster et al., 2007, WMO, 2012).

<table>
<thead>
<tr>
<th></th>
<th>CO$_2$</th>
<th>CH$_4$</th>
<th>N$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to radiative forcing</td>
<td>64%</td>
<td>18%</td>
<td>6%</td>
</tr>
<tr>
<td>Atmospheric lifetime</td>
<td>30-95 y</td>
<td>12±3 y</td>
<td>114±18 y</td>
</tr>
<tr>
<td>Global warming potential</td>
<td>1</td>
<td>25</td>
<td>298</td>
</tr>
<tr>
<td>Global atmospheric concentration</td>
<td>390.9±0.1 ppm</td>
<td>1813±2 ppb</td>
<td>342.2±0.1 ppb</td>
</tr>
<tr>
<td>Abundance relative to 1750</td>
<td>140%</td>
<td>259%</td>
<td>120%</td>
</tr>
<tr>
<td>Relative increase during 2011</td>
<td>0.51%</td>
<td>0.28%</td>
<td>0.31%</td>
</tr>
</tbody>
</table>
I.1.4 Effects and awareness

Recent models predict a further increase of the global temperature of at least 0.1°C per upcoming decennia if the emission patterns of GHG do not change (Betts et al., 2011, Roeckner et al., 2011, Sanderson et al., 2011). This could lead to numerous unwanted effects and a higher risk for calamities: melting of ice caps and glaciers, more intense periods of drought, shifts of climate belts, insecure food production in fragile areas, etc. (IPCC, 2007a). Moreover, indirect effects could lead to an accelerating pattern. The melting of polar ice could cause extra heat absorption, while tons of sequestered CH₄ could seep out of melting permafrost (Isaksen et al., 2011).

Although not all climatologists are yet convinced that the current global warming is caused by anthropogenic sources, politicians and scientists in most parts of the world are taking initiative to lower the anthropogenic GHG emissions. An important milestone was the Kyoto protocol, which was signed on December 11th of 1997 by 184 countries (UNFCCC, 1998). The involved countries committed to lower their greenhouse gas emission by the year 2012 with on average 5% compared to 1990. This agreement also led to the creation of carbon markets since 2007, whereby countries with a surplus of emission rights can sell these at market price to countries who were not able to sufficiently reduce their emissions (Kossoy and Ambrosi, 2010). All these initiatives should limit further global warming to less than 2°C in 2100, compared to pre-industrial values. However, without more efforts from important emitting countries like the USA and China, this goal will not be easily reached.

I.2 The carbon cycle

I.2.1 Sources and sinks of CO₂

Carbon is the central element in all organic compounds, and therefore the backbone of the earth’s life forms. Plants and autotrophic bacteria are categorized as primary producers as they are able to produce organic compounds by reducing inorganic CO₂, thereby creating an important sink of CO₂. Most other life forms depend strongly on these
primary producers: Animals and humans include plant material in their diet, as they are not able to produce some essential compounds themselves. Also heterotrophic bacteria depend on these compounds for their carbon and energy needs (Malhi et al., 2002).

Respiration and photosynthesis are among the most important biochemical pathways whereby carbon-containing compounds are transformed. Respiration is the controlled oxidation of energy-rich organic compounds such as sugars, fats and proteins by means of enzymes (Madigan et al., 2012). All aerobic organisms – plants, animals, bacteria and archaean – are CO₂ sources as they all apply this transformation during their catabolic activities. The following reaction represents respiration, whereby glucose (C₆H₁₂O₆) is used as model organic compound (Thauer et al., 1977):

\[
C₆H₁₂O₆ + 6 O₂ \rightarrow 6 CO₂ + 6 H₂O \quad \Delta G° = -478 \text{ kJ mol}^{-1} \text{ CO}_₂
\]

Photosynthesis is the reverse reaction, whereby light energy is used for CO₂ fixation, resulting into the production of energy-rich carbon compounds. Overall, this is a transformation of inorganic carbon into organic carbon and therefore trees, grasses and algae, all performing photosynthesis, form an import carbon sink. Forests for example are responsible for about 60 Gton CO₂-C y⁻¹ sequestration worldwide (Malhi et al., 2002), while grasslands have, despite the respiratory processes taking place, a net sequestration rate of 104±73 g CO₂-C m⁻² y⁻¹, taking care of about 40% of global CO₂ sequestration worldwide (Soussana et al., 2007). Other important CO₂ sinks have an abiotic nature. While oceans are CO₂ sources due to respiratory activity and seeps, they also act as a sink by absorbing and buffering large amounts of CO₂, present in the atmosphere (Ridgwell and Zeebe, 2005). Overall, the net absorption rate of oceans is currently 2.0±1.0 Gton CO₂-C y⁻¹ (Takahashi et al., 2009). CO₂ is also removed from the atmosphere through weathering by silicate rocks and by burial in marine sediments, both are however slow processes (Reay and Grace, 2007). The rest of the produced CO₂ ends up in the atmosphere, enhancing the greenhouse effect.
I.2.2 Sources and sinks of CH₄

An important part of the carbon cycle takes place under anaerobic or anoxic conditions, whereby O₂ cannot serve as electron acceptor and only a partial oxidation is possible. Fermentation for example takes place when organic matter is decomposed in the absence of O₂ or other electron acceptors like nitrate, sulphate or ferric iron. Hereby, the substrate acts both as electron donor and acceptor and is transformed in fermentation products and CO₂ (Thauer et al., 1977). Anaerobic digestion on the other hand is a series of processes in which hydrolytic-fermentative organisms, acetate oxidizing organisms and methanogenic archaea work together to break down biodegradable material in the absence of O₂, finally resulting in the production of energy-rich biogas (Gujer and Zehnder, 1983). The latter typically consists of 40-70% (v/v) CH₄, 30-60% (v/v) CO₂ and 1-5% other gases like NH₃, H₂S and H₂ (Demirel et al., 2010, Long, 2000). These microbial processes, which are now also industrially applied for waste management, are the most important CH₄ source worldwide. Although the identity of the major global CH₄ sources is known, an estimation of their specific CH₄ emission is difficult (Figure I-2). About 69% of CH₄ emission is thought to result from microbial processes, next to 25% from purely anthropogenic activities like mining, and combustion, while 6% could result out of poorly understood chemical CH₄ producing processes in plant material (Conrad, 2009, Hsu et al., 2010, Vigano et al., 2008). Over the years, many natural CH₄ sources have been managed by humans for their benefit: the enormous growth of the cattle population is now responsible for ± 15% of the worldwide CH₄ production, as 15% of the feed intake ends up as natural gas after ruminant digestion (Kumar et al., 2009). Wetlands are the most important natural sources of CH₄, estimated to account for 70% of natural CH₄ emissions, but this number includes the large areas of man-made flooded rice fields (Anderson et al., 2010, Whalen, 2005). Entirely natural sources comprise all kinds of water bodies, gas hydrates in oceans and fermentation processes in termites (IPCC, 2007b, Milich, 1999). Conversely, anthropogenic sources include landfills, wastewater treatment plants and gas installations (Figure I-2) (IPCC, 2007b, Lechtenbohmer et al., 2007).
Man-made or managed systems are responsible for an increasing global emission of CH$_4$, currently in the order of 500-600 Mton CH$_4$ y$^{-1}$ (Cakir and Stenstrom, 2005, Wang et al., 2004). However, CH$_4$ is less stable in the atmosphere than CO$_2$, as different chemical mechanisms assure that CH$_4$ molecules do not accumulate indefinitely in the atmosphere. Consequently, the estimated lifetime of CH$_4$ is only 8 to 12 years (Lelieveld et al., 1998, Lucas et al., 2007). The largest CH$_4$ sink is the photo-oxidative reaction of hydroxyl radicals, responsible for 85-90% of the current CH$_4$ removal (Huijnen et al., 2010, Letexier et al., 1988).

Conversely, the second most important CH$_4$ sink has a microbiological origin and concerns the methanotrophs, responsible for about 5-15% of CH$_4$ removal (Wahlen, 1993, Yoon et al., 2009). The methanotrophic activity in soils alone accounts for a removal of 30 Mton

Figure I-2. Schematic overview of the contribution of the most important GHG to the increase in global warming (left), the ratio of natural and influenced CH$_4$ sources (middle) and an overview of the most important CH$_4$ sources (right). All percentages are estimations, based on data from Barker et al. (2007) and the USEPA (2008).
Chapter I

CH$_4$ y$^{-1}$ (Allan et al., 2005, Aronson and Helliker, 2010). It is hereby important to realize that a decrease of the current CH$_4$ emissions with only 6% (22 Mton CH$_4$ y$^{-1}$) would suffice to balance the global CH$_4$ budget (Jardine et al., 2004).

I.3 Methanotrophy

I.3.1 Anaerobic methane oxidation

Methane is a relatively stable molecule from a chemical point of view. It has a symmetrical structure, making it difficult to attack the molecule. Moreover, the four C-H bonds are notoriously unreactive as is illustrated by the fact that the removal of the first hydrogen atom in CH$_4$ demands 435 kJ mol$^{-1}$ (Dalton, 2005). Hence, controlled chemical oxidation technologies are based on specific catalysts and elevated temperatures (Muradov, 2001). However, as microorganisms have billions of years of experience with CH$_4$, specific groups of bacteria and archaea have found ways to oxidize this molecule, in order to fulfill their carbon and energy needs (Hanson and Hanson, 1996, Knittel and Boetius, 2009).

A first group of methanotrophs is known as anaerobic methane oxidizing archaea in deep-sea environments. Although there is a large knowledge gap, it seems that they form a symbiotic consortium with sulphate reducing bacteria, oxidizing one mol CH$_4$ mol$^{-1}$ reduced SO$_4^{2-}$ (reaction (a) in Figure I-3) (Valentine, 2002). This yields only a small amount of 20 kJ mol$^{-1}$ CH$_4$ Gibbs free energy, which is just enough to sustain activity (Thauer, 2011).

CH$_4$ + SO$_4^{2-}$ => HCO$_3^-$ + HS$^-$ + H$_2$O \[\Delta G^o = -20 \text{ kJ mol}^{-1} \text{ CH}_4 \]

Three phylogenetically different archeal groups have been identified, labeled as ANME-I, ANME-II and ANME-III (Garrett and Klenk, 2007). However, the biochemical mechanism of the enzymatic oxidation reaction is still unclear and none of the archaea has been isolated (Girguis et al., 2005, Nauhaus et al., 2007). These bacterial-archaeal communities form a major CH$_4$ sink, as they oxidize about 90% of CH$_4$ of oceanic origin before it reaches the surface (Knittel and Boetius, 2009). There are also indications that these consortia are present in sediments of marine, freshwater and soda lake environments (Nauhaus et al., 2007, Thauer and Shima, 2006). Very recently, it has been stated that anaerobic methane
oxidation (AOM) is not an obligate syntrophic process but is carried out by the archaea alone, resulting in a novel pathway (reaction (d) in Figure I-3) (Milucka et al., 2012).

Figure I-3. Four pathways are known whereby microorganisms achieve anaerobic methane oxidation (AOM): (a) and (b) rely on obligate associations between two or more microbial partners, of which one performs oxidation and the other reduction. In (c) and (d), a single microorganisms performs both simultaneously. In (c), a bacterium is responsible for the methane oxidation, while in (d) this is an archaeon (Joye, 2012).

Recently, the first bacterial phylum was found with members able to oxidize CH₄ under anaerobic conditions. The *Candidatus Methylomirabilis oxyfera* of the NC10 phylum couples CH₄ oxidation to NO₂⁻ reduction, with NO-radicals as central intermediates (Ettwig et al., 2010, Wu et al., 2011). Currently, more research is done on this intra-aerobic denitrification reaction ((c) in Figure I-3) (Ettwig et al., 2012):

\[
3 \text{CH}_4 + 8 \text{NO}_2^- + 8 \text{H}^+ \rightarrow 3 \text{CO}_2 + 4 \text{N}_2 + 10 \text{H}_2\text{O} \quad \Delta G° = -928 \text{ kJ mol}^{-1} \text{ CH}_4
\]
I.3.2 Aerobic methane oxidation

While anaerobic methane oxidation (AMO) is a relatively new finding, aerobic methane oxidation is known since 1906, when the Dutch microbiologist, N.L. Söhngen reported a bacterium capable of growth on CH$_4$ (Dalton, 2005). A real turning point came in 1970, when Whittenbury et al. (1970b) reported that they were able to isolate methane oxidizing bacteria under aerobic conditions without the addition of an organic C source. Indeed, except for the bacteria and archaea mentioned in the preceding paragraphs, all known methane oxidizing species are known to be facultative or obligate aerobic, applying O$_2$ as final electron acceptor. The Gram-negative alpha- and gamma-proteobacteria are by far the best known group of aerobic methanotrophic bacteria, and form the main subject of this dissertation. However, during the last years, members of novel phyla were described which are able to oxidize CH$_4$ (Khadem et al., 2011, Op den Camp et al., 2009). Methane oxidizing Verrucomicrobia have been found, thriving under acidophilic conditions, with optimal growth in a pH range of 1.0-3.5, a range wherein no alpha- and gamma-proteobacterium is known to be active (Islam et al., 2008, Pol et al., 2007). These species apply unknown pathways and are expected to play a major role in mitigating CH$_4$ emissions of peat lands and permafrost soils (Dedysh, 2009). Some sheathed gamma-proteobacterial species like Clonothrix fusca and Crenotrix polyspora were also added to the list of methanotrophs, but have never been isolated. All these new discoveries show that methanotrophy is taxonomically and ecologically more widespread than thought, and with the introduction of novel molecular techniques, it can be expected that more phyla are waiting to be discovered.

I.4 Methane oxidizing bacteria

The by far best described methanotrophic bacterial group comprises the alpha- and gamma-proteobacterial methane oxidizing bacteria (Hanson and Hanson, 1996). It was this group of methanotrophs that was under investigation in this dissertation. For clarity, they will be described from now on as methane oxidizing bacteria (MOB), while the larger group of organisms able to oxidize CH$_4$ will be annotated as methanotrophs.
I.4.1 Taxonomy

A good overview of the different milestones during the study of MOB can be found in a review by Trotsenko and Murell (2008). Up to a few years ago, the MOB were subdivided into three major groups, i.e. type I, type II and type X, based on taxonomic, physiological and biochemical characteristics (Hanson and Hanson, 1996). However, modern techniques like DNA sequencing have indicated that the subdivision into those three groups was not really accurate. From a taxonomical point of view, 18 genera can be currently described, belonging to three families. The five known type II MOB genera are now listed in the alpha-proteobacterial *Methylocystaceae* and *Beijerinckiaeae* families, while the 13 known gamma-proteobacterial type I and former type X genera belong to the family of the *Methylococcaceae* (Figure I-4) (Dedysh, 2009, Jiang et al., 2010).

Although many exceptions have been encountered, the subdivision between type I (gamma-proteobacterial) and type II (alpha-proteobacterial) is still useful to describe and understand the behavior of the different species. Differences are present in their carbon assimilation pathways, cellular structures, fatty acid composition, CH₄ affinity, copper dependence and N₂ fixation capacity, described in more detail later on (Bowman et al., 1993b, Dedysh, 2009, Hanson and Hanson, 1996, Wendlandt et al., 2010). As powerful high-throughput sequencing analyses find their way in microbiology, more knowledge is gained about the origin of MOB. Phylogenic 16S rRNA sequence trees show that type I MOB are quite closely related to beta-proteobacterial AOB, while type II MOB are already more distinct. Much more distinct are the *Verrucomicrobia* and *NC10* phylum, respectively (Figure I-5) (Vlaeminck et al., 2011).
Figure I-4. List of taxonomically described methanotrophic bacteria. Type II species belong to the class of the *Alpha-proteobacteria*, while type I and X MOB belong to the *Gamma-proteobacteria*. *Verrucomicrobia* form a separate phylum. N.s. means not specified (Dedysh, 2009, Geymonat et al., 2011, Hirayama et al., 2012, Jiang et al., 2010, Luke and Frenzel, 2011, Vorobev et al., 2011).
Figure I-5. Phylogenetic 16S rRNA sequence tree of life, displaying different important taxonomic groups in the N and C cycle in relation to the last universal common ancestor (LUCA). While type I and type II are relatively close, members from the *Verrucomicrobia* or the *NC10* phylum are already more distinct. ‘The all-species living tree’ project release LTP 100 (September 2009) was used as a backbone for the most up-to-date topology for the bacterial and archaeal domain (Vlaeminck et al., 2011).

I.4.2 Physiology and biochemistry

The aerobic methane oxidation process exists out of a sequel of oxidation steps, comparable to the principles of cytochrome P450, catalyst of the oxidation of organic molecules in most living organisms. Thanks to the enzyme methane monooxygenase (MMO), MOB can perform the difficult first and rate limiting oxidation step. This enzyme allows to split the O-O bond of O₂ into two reducing equivalents (Dalton, 2005, Yoon et al., 2009). While one oxygen atom is reduced to H₂O, the other atom is incorporated into CH₄ to form methanol (CH₃OH) (Tinberg and Lippard, 2011). The latter is then oxidized by periplasmic methanol dehydrogenase into formaldehyde (HCHO), an important
intermediate as it can be used for both catabolic as anabolic processes. It can be further oxidized to formate (HCOOH) and finally CO₂, hereby transforming CH₄ to its most oxidized state. A cascade of enzyme systems is hereby activated, including nicotinamide adenine dinucleotide (phosphate) or NAD(P) and NAD-dependant formate dehydrogenases (Figure I-6) (Hanson and Hanson, 1996).

Figure I-6. Schematic overview of methane oxidation by MOB. Methane is oxidized sequentially over methanol, formaldehyde, formate and finally CO₂. Formaldehyde (HCHO) can be used for anabolic activity via the serine or RuMP pathway. Cytc: cytochrom c; FADH: formaldehyde dehydrogenase; FDH: formate dehydrogenase (Hanson and Hanson, 1996).

The catabolic and anabolic processes are linked by the intermediate HCHO, which can be used for both purposes (Figure I-6). Type I and type II MOB apply different pathways to synthesize intermediates for the central metabolic processes, used for biosynthesis of cellular biomass. Type II MOB use the serine pathway, whereby two mol of HCHO and one mol of CO₂ – the end product of the catabolic pathway – are combined to create a C₃ intermediate. Type I MOB use the ribulose monophosphate (RuMP) cycle, whereby a C₃ intermediate is formed out of 3 mol HCHO (Hanson and Hanson, 1996, Trotsenko and
The stoichiometric reactions of the RuMP and serine pathway, respectively are as follows (Trotsenko and Murrell, 2008):

RuMP: \[\text{CH}_4 + 1.50 \text{O}_2 + 0.12 \text{NH}_4^+ \rightarrow 0.12 (\text{C}_4\text{H}_8\text{O}_2\text{N}) + 0.53 \text{CO}_2 + 1.71 \text{H}_2\text{O} + 0.12 \text{H}^+ \]

Serine: \[\text{CH}_4 + 1.57 \text{O}_2 + 0.10 \text{NH}_4^+ \rightarrow 0.10 (\text{C}_4\text{H}_8\text{O}_2\text{N}) + 0.59 \text{CO}_2 + 1.74 \text{H}_2\text{O} + 0.10 \text{H}^+ \]

Higher growth yields can be achieved by means of the RuMP pathway, as only 1 mol ATP per mol of C3 intermediate is needed, where the serine pathway consumes 3 mol ATP (Hanson and Hanson, 1996). MOB can regulate partially which amount of HCHO goes towards anabolic and catabolic processes, thereby influencing the \(\text{O}_2 \) consumption: while the complete oxidation of \(\text{CH}_4 \) to \(\text{CO}_2 \) requires 2 mol \(\text{O}_2 \) mol\(^{-1}\) oxidized \(\text{CH}_4 \), only 1 mol \(\text{O}_2 \) is required when formaldehyde is built in as biomass (Scheutz et al., 2009a).

I.4.3 The monooxygenase couple

MOB are actually a subgroup of the methylotrophs, defined as those bacteria that have the ability to use C1 compounds like \(\text{CH}_3\text{OH} \) as carbon and energy source (Madigan et al., 2012). Many MOB like *Methylosinus trichosporium* are able to grow on methanol as sole C source (4% v/v). For other MOB, even low concentrations of 0.01% (v/v) \(\text{CH}_3\text{OH} \) can cause a toxic effect (Best and Higgins, 1981, Malashenko et al., 2000). MOB distinguish themselves from the other methylotrophs by possessing the enzyme MMO. Two distinctively different types are known, both resulting in the same overall reaction. The first and most common type is particulate methane monooxygenase (pMMO), a membrane associated enzyme that has not been completely described yet, as isolation is difficult and the molecule extremely unstable (Kitmitto et al., 2005, Semrau et al., 2010). Active pMMO seems to include two Fe atoms and approximately 15 Cu atoms per molecule (Lieberman and Rosenzweig, 2004, Trotsenko and Murrell, 2008). Oxidation of \(\text{CH}_4 \) by pMMO takes place with reduced cytochrome C as electron donor. Also a small chromopeptide, called methanobactin, is important as it acts as a Cu shuttle, involved in the uptake and binding of Cu and possibly other metals (Choi et al., 2008, Kenney and Rosenzweig, 2012). Recently, two different *pmoA* genes were identified as being responsible for pMMO expression: the conventional *pmoA* and the novel *pmoA2*, which
seems to be essential for methane oxidation under atmospheric CH$_4$ concentrations (Kravchenko et al., 2010). Most MOB express pMMO, with some *Methylocella* and *Methyloferula* species as rare exceptions (Vorobev et al., 2011).

Soluble methane monooxygenase (sMMO) is the other known MMO. Expression of sMMO is not as widespread as of pMMO and seems more common in type II and type Ib MOB than in type Ia MOB (Semrau et al., 2010). In contrast to pMMO, it is not membrane bound but soluble in the cytoplasm (Semrau et al., 2010). Due to the Fe molecules in its center, Fe$^{2+}$ availability is important, while at the same type Cu$^{2+}$ can inhibit the enzyme. Moreover, the protein components and gene sequences differ significantly from pMMO (Martinho et al., 2007). The oxidation of CH$_4$ also differs, as sMMO applies a NAD(P)H- and O$_2$-coupled conversion of CH$_4$ to CH$_3$OH (Trotsenko and Murrell, 2008):

$$\text{CH}_4 + \text{NAD(P)H} + \text{H}^+ + \text{O}_2 \rightarrow \text{CH}_3\text{OH} + \text{NAD(P)}^+ + \text{H}_2\text{O}$$

The expression of sMMO and pMMO is highly regulated by the Cu$^{2+}$ concentration, with inhibition of sMMO often occurring at concentrations above 0.08-0.8 µM Cu$^{2+}$ (Green et al., 1985, Tsien et al., 1989). At the same time, concentrations lower than 1 µM Cu$^{2+}$ dramatically lower pMMO expression (Trotsenko and Murrell, 2008, Wendlandt et al., 2010). At such low concentrations, only those MOB that are able to express sMMO can sustain their metabolism. Due to the different nature of sMMO and pMMO, this also leads to different growth characteristics of the methanotrophic community. sMMO expressing MOB have a 35% lower growth yield, as NAD(P)H has a lower redox potential than the electron donor of pMMO, i.e. cytochrome C (Dalton, 2005). Moreover, sMMO expresses a lower affinity for CH$_4$ ($K_m = 3$ µM vs 1-2 µM) and O$_2$ (K_m of 17 µM vs 0.1 µM) in comparison to pMMO (Trotsenko and Murrell, 2008). Therefore, pMMO has an advantage for MOB active at low O$_2$ or CH$_4$ concentrations. On the other hand, sMMO shows a higher robustness against inhibitors like chelating agents and cyanide, thus creating an advantage in some polluted environments (Yu et al., 2009).
I.4.4 Living on the edge

Two different adaptations by MOB are also worth mentioning, i.e. methanotrophy under atmospheric conditions and facultative behavior, respectively.

The atmospheric CH$_4$ concentration is currently on average 1.8 ppmv (WMO, 2012). Hence, at atmospheric pressure, only about 32 ng CH$_4$ is dissolved in one liter of water, making CH$_4$ a growth-limiting element for MOB. Therefore, MOB living at such low concentrations demand enzymes with a very high affinity for CH$_4$ (Conrad, 2009). Although not much is unraveled yet, such methanotrophs have been found. The strain Methylocystis sp. SC2 is one of the few high-affinity MOB so far isolated (Dunfield et al., 1999, Kolb, 2009). A special type of pMMO seems required to grow on low CH$_4$ concentrations of 1-100 ppmv, as typical pMMO is only active at higher CH$_4$ concentrations (>600 ppmv) (Baani and Liesack, 2008).

One of the strategies to survive periods with a low or no CH$_4$ provision is facultative methanotrophy. For a long time it was assumed that all methanotrophic bacteria were obligate methylotrophic, i.e. could only utilize C1 compounds. Recently however, type II MOB of the genera Methylocystis, Methylocapsa and Methylocella have been found to grow on CH$_4$ as well as alternative C sources (Dedysh et al., 2005, Dunfield et al., 2010). Some of them even showed a higher growth rate and yield when cultivated with organic C sources like acetate, pyruvate, succinate, malate, citrate, ethanol and methylamine instead of CH$_4$ (Belova et al., 2011, Dunfield et al., 2010, Im et al., 2011, Semrau et al., 2011). Moreover, both sMMO and pMMO were found in some of these strains. A lot of research is currently done on these strains, as they have a large biotechnological potential.

I.4.5 Gas dependency

The activity and community composition of MOB is influenced by many factors such as temperature, pH, moisture content, N and P source, copper/iron availability and the availability of CH$_4$ and O$_2$. Because of the gaseous character of both the C source, electron
donor and electron acceptor, gas phase transfer and composition are particularly important towards the activity and ecology of methanotrophic communities.

MOB have a broad optimal O$_2$ range, as changes between 0.45 and 20% (v/v) only lead to minor differences in methane oxidizing activity (Wilshusen et al., 2004a). Although not much research has been performed with O$_2$ concentrations above the atmospheric O$_2$ concentration (21% (v/v)), oxidative stress due to the accumulation of reactive O$_2$ radicals can occur when O$_2$ concentrations are high, especially when a large amount of light energy is present (Medvedkova et al., 2009).

The CH$_4$ range wherein CH$_4$ oxidation has been observed is even broader. Although most MOB show optimal activity between 5 and 50% (v/v), so called high affinity MOB have been found that can survive on concentrations as low as 1-100 ppmv, as was mentioned before (Dunfield et al., 1999, Knief and Dunfield, 2005, Kolb, 2009). As the activity and growth of MOB is often limited by the availability of the relatively poorly soluble O$_2$ and CH$_4$, good gas mixing should always be provided.

The concentrations of both mentioned gases also influence the community structure, as it has been observed that type I MOB prevail under CH$_4$ concentrations lower than 1% (v/v), when atmospheric O$_2$ concentrations occur. Conversely, type II MOB seem to have an advantage when higher CH$_4$ concentrations are present (Hanson and Hanson, 1996, Nyerges et al., 2010, Semrau et al., 2010). In tests with agar diffusion columns and counter gradients of CH$_4$ and O$_2$, bands of type I and type II MOB were present at different heights, depending on the gradient of both gases (Amaral and Knowles, 1995). In natural samples, this distribution is however not that sharp, and often both type I and type II are found together (Knief et al., 2006).

I.4.6 Growth factors

Typically, increasing temperatures result in a higher enzymatic activity. However, in case of MOB, this effect is partly countered as a higher temperature leads to a lower mass transfer of CH$_4$ and O$_2$ towards the water phase. Therefore, the Q$_{10}$ value, indicating how
much the activity rate increases when the temperature rises with 10°C, has a relatively low value between 1.7 and 4.1 (Börjesson et al., 2004, Urmann et al., 2009). Most MOB are mesophilic with an optimum between 25°C and 35°C. However, extremophiles, almost all type I, are known living at temperatures as low as -5°C or as high as 72°C (Jiang et al., 2010, Khmelenina et al., 2007, Mohanty et al., 2007, Urmann et al., 2009). The optimal pH range for MOB is often between 6 and 7 and adaptation to fluctuating pH is common in a pH range between 5 and 8.5 (Hanson and Hanson, 1996, Melse and Van der Werf, 2005). While no MOB were found living at a pH below 3.8, extremophilic MOB are known withstanding a pH of 12 (Trotsenko and Khmelenina, 2002, Vorobev et al., 2011). The moisture content is also a steering factor for methanotrophic communities. A minimum of water is needed to maintain the cell functions. It is however of interest to limit the amount of water that the gases have to pass before reaching the bacteria, in order to increase the mass transfer rate (Melse and Van der Werf, 2005). As for all bacteria, phosphorus is an important macronutrient for MOB. A start concentration of only 1.5 mmol KH₂PO₄-P resulted in physiological stress during an incubation of a Methylosinus trichosporium strain (Zhang et al. (2008)). Due to the uncertainty in the needs, a wide range of concentrations and N:P ratios has been applied in literature (Nikiema et al., 2010).

A major steering factor is the availability, identity and quantity of N sources. As N is an important building block for their microbial cell structures, MOB require a rather high amount of 0.25 mol N mol⁻¹ assimilated C (Anthony, 1982). Therefore, N becomes a limiting growth factor when the C:N ratio is above 10 (Bodelier and Laanbroek, 2004). The versatility of the N metabolism of MOB is higher than of most common bacterial groups (Hamer, 2010). All known MOB are able to use NH₄⁺ as N source. Most MOB can also use NO₃⁻ as N source, hereby relying on catabolic nitrification (Modin et al., 2007, Nyerges and Stein, 2009). Although NO₂⁻ can also be applied, inhibiting levels are often as low as 1 mg NO₂⁻-N L⁻¹ (Nyerges and Stein, 2009). Even N₂ fixation can occur, when no organic N source is available. This is however a highly energy-demanding process that is mainly applied by type II MOB (Hamer, 2010). Under certain conditions, MOB can be a source of NO₂⁻, NO and N₂O, for example when NO₃⁻ is assimilated at low O₂ concentrations (Figure I-7) (Ren
et al., 2000, Stein et al., 2011). However, until now, no MOB has been found able to perform the complete denitrification pathway up to N$_2$ (Knowles, 2005).

Figure I-7. Pathways of nitrification and denitrification processes identified in some gamma-proteobacterial MOB (full line, black oval) or deduced from in vitro biochemistry (thin full line, grey oval) and transcriptional data (dashed line, white oval). An asterix (*) indicates that the products are derived from transcript and/or cell studies without knowledge of methanotrophic enzymes. Acronyms of enzymes: HAO, NH$_2$OH oxidoreductase; CytS, cytochrome c0-b; CytL, cytochrome P460; NIR, NO-forming NO$_2^-$ reductase (NirK, NirS or cytochrome c protein); cNOR, cytochrome c-dependent NO reductase; NirB, NH$_3$ forming siroheme NO$_2^-$ reductase (Stein and Klotz, 2011).

Standard growth medium of MOB contains NO$_3^-$-N or NH$_4^+$-N as N source. Carefulness is however needed when NH$_4^+$-N is applied. Although it can enhance the methane oxidizing activity when the N content is limiting, inhibiting effects have been observed, even at low concentrations of 25 mg NH$_4^+$-N L$^{-1}$ (Begonja and Hrsak, 2001). In certain soils, an addition of 40 mg NH$_4^+$-N kg$^{-1}$ soil resulted in a 96% reduction of the methane oxidation activity. Even after all the NH$_4^+$-N was nitrified, MOB activity was still 21% lower than before the treatment (Hutsch, 1998). Hereby, the prevailing pH is of importance, as NH$_3$ exerts a higher toxicity towards MOB than NH$_4^+$ (O’Neill and Wilkinson, 1977). The reasons for these inhibiting effects are not completely unraveled, but a good overview of current knowledge is given by Nyerges and Stein (2009).
I.4.7 Cultivation conditions and obstacles

As MOB can use CH$_4$ as their sole C source, a minimal mineral medium is commonly used to grow, enrich and isolate them. After extended testing by Whittenbury et al. (1970b), (diluted) nitrate or ammonium mineral salts medium (NMS/AMS) is typically used as growth medium. The MOB are incubated at their specific optimal temperature, commonly 28° or 37°C, and enrichments commonly occur under an atmosphere of 20-50% (v/v) CH$_4$ in air (Dunfield et al., 2007, Hanson and Hanson, 1996). Due to the formation of acidifying CO$_2$, a relatively strong phosphate buffer is used. The expression of the preferred MMO is altered by adapting the Cu$^{2+}$ concentration. Enrichment of MOB for industrial applications is however a difficult task due to (a) the limited CH$_4$ and O$_2$ solubility of ± 9 mg L$^{-1}$ at a concentration of 20% (v/v) (Hamer, 2010), (b) the slow mass transfer (Sander, 1999), (c) the relatively low specific growth rates ($\mu = 0.45\pm0.06$ d$^{-1}$ for an MOB isolate) (Hrsak and Begonja, 2000) and (d) the relatively low maximal cell density of cultures (e.g. 3.2 g CDW L$^{-1}$ after 140 h cultivation) (Han et al., 2009). By adding a CH$_4$ vector such as paraffin oil, the gas transfer of CH$_4$ can be increased, leading to a higher solubility. These additions shorten the lag phase of the MOB and allow a higher cell density of 14 g CDW L$^{-1}$ after 240 h cultivation, but create post-processing issues (Han et al., 2009, Jiang et al., 2010).

I.4.8 The close siblings: ammonium oxidizing bacteria

As can be observed in Figure I-5, MOB and ammonia oxidizing bacteria (AOB) share a close ancestor. Therefore, both groups still show some similarities (Madigan et al., 2012, Vlaeminck et al., 2011). One of them is the relatively high similarity between pMMO and the ammonium monooxygenase (AMO), used by AOB to oxidize NH$_3$ (Bedard and Knowles, 1989, Hanson and Hanson, 1996). However, this enzyme has a low specificity towards NH$_3$, resulting into oxidation of other compounds like CH$_4$. However, this is a co-metabolic reaction, as the AOB cannot take advantage of the released energy. The affinity of AMO for CH$_4$ is however low and therefore only a small CH$_4$ sink is assumed to be formed by AOB (Bedard and Knowles, 1989, Hanson and Hanson, 1996).
Chapter I

I.5 Biotechnological potential of MOB

I.5.1 Methane mitigation

From a biotechnological point of view, methane mitigation is the most important application that comes to mind. Although this is often a secondary goal, installations have been developed with the sole purpose to lower the CH$_4$ emissions of an industrial plant or ecosystem. Indeed, many natural anaerobic zones can be found worldwide where CH$_4$ formation takes place. Introducing or enhancing MOB close to these environments could lower the emission of this GHG to the atmosphere. As MOB are found in a large amount of soils and water bodies, the first task is often to find out what the growth limiting nutrient or condition is and how to improve the growth conditions (Bodelier et al., 2000, Noll et al., 2008). Carbon cycles in wetlands and rice fields have been a popular scientific subject, as these ecosystems are important CH$_4$ sources (Boeckx and Van Cleemput, 1996, Dalal and Allen, 2008). Some successes have been achieved by adapting the management of such diffuse systems. By draining wetlands, soils and sludge for example, the latter become more permeable, allowing O$_2$ to penetrate into deeper layers. This does not only inhibit methanogenesis, but also creates an environment wherein MOB can become more active (Dalal and Allen, 2008, Jackel et al., 2001).

Also in agricultural soils, awareness of the role of MOB is important. Agricultural techniques such as ploughing disturb the soil’s vertical profile and cause a decrease in CH$_4$ oxidation (Hutsch, 2001). Even more important is the role of N based fertilizers. As ammonia and nitrite can exhibit a significant inhibitory effect on MOB, applying too high doses of such fertilizers decreases the CH$_4$ oxidizing capacity of such soils dramatically (Bodelier and Laanbroek, 2004, De Visscher and Van Cleemput, 2003). Therefore better agricultural practices should be implemented, whereby the type and dose of fertilizers and possible inhibitory products are better managed. At the same time, applied physical disturbances should be avoided as much as possible (Ho et al., 2011, Menyailo et al., 2008, Seghers et al., 2005).
Due to the diffuse type of previous emissions, engineered solutions are not straightforward. This is different for point sources, where controlled mitigation techniques can be applied (Jiang et al., 2010). The most straightforward physico-chemical treatment is based on conventional gas turbines or internal burning motors, combined with electricity production (Maigaard et al., 2003). However, this technique can only be used for gas flows containing more than 15% (v/v) CH₄. Sometimes the CH₄ content in incompatible gas flows can be increased, for example by means of cryogenic purification or via membranes (Su et al., 2005). When the concentrations in the gas flows are lower than 3% (v/v) CH₄, the treatment cost increases drastically. Techniques like reversal flow reactors and porous burners for example are quite expensive and have issues with variable gas flows or changing compositions (Gosiewski et al., 2008, Wood and Harris, 2008). In those cases, biotechnological approaches are often the best and only solution.

Most success has been booked on landfills, highly controlled and monitored environments producing important amounts of CH₄ (Gebert and Grongroft, 2006, Scheutz et al., 2009a). By installing a biocover on top of landfills, 95-99% of CH₄ can be remediated by means of a passive MOB biofilter (Gebert and Grongroft, 2006, Huber-Humer et al., 2008). A biofilter based on leaf compost resulted in stable CH₄ removal rates of 120 g CH₄ m⁻² d⁻¹ (Wilshusen et al., 2004b). The same approach can be used in manure pits, where natural or (semi-)artificial crusts can be created on top of the manure pit. The latter acts as a CH₄ sink, due to the methanotrophic activity (Petersen et al., 2009).

The development of a biofilter for CH₄ loaded gas treatment, as found in stables, mines and wastewater treatment plants has also received much attention in the past (Melse and Van der Werf, 2005, Nikiema et al., 2009). These biofilters often contain a packing material whereupon methanotrophic communities can attach and grow. In lab tests, an 85% reduction of the CH₄ emission has been observed (Melse and Van der Werf, 2005, Nikiema et al., 2005). However, CH₄ has a low solubility in water and no good stripping potential towards the water phase, as both the affinity for changes in salt concentration and pH are low. Therefore large reactor volumes are needed when treating larger flows of CH₄ enriched gases. Until better reactor configurations are developed for treatment of
poorly soluble gases, such bioreactors will not be easily economically feasible. Removal of 85% of the CH₄ emissions from a cow manure pit would cost for example about 25 EUR per ton CO₂-equivalents removed (Melse and Van der Werf, 2005, Yoon et al., 2009).

I.5.2 Bioremediation

The specific ability of MOB to oxidize CH₄ lies in the nature of the MMO, able to oxidize the strong C-H bonds. Like the related AMO, they are relatively unspecific (Dalton, 2005). Consequently, MOB can perform a wide range of co-metabolic processes whereby substrates are oxidized without gaining energy out of these processes. There is however a distinct difference between sMMO and pMMO in the type of substrates that can be co-metabolized. The substrate profile of pMMO is narrow and includes mostly linear hydrocarbons such as C1-C4 alkanes and alkenes (Bedard and Knowles, 1989, Jiang et al., 2010). The sMMO substrates include alkanes, alkenes, aromatic compounds, alicyclic hydrocarbons and halogenated aliphatics (Jiang et al., 2010, Sullivan et al., 1998, Yoon and Semrau, 2008). Most researchers have focused on the breakdown of chlorinated hydrocarbons, often used as solvents (Koh et al., 1993). These compounds have become one of the most widespread groundwater contaminants due to the frequent use, for example in dry cleaning processes. MOB have successfully oxidized toxic chlorinated hydrocarbons like trichloroethylene (TCE), 1,2-dichloroethane and chloroform (Hesselsoe et al., 2005, Wendlandt et al., 2010). Hereby, metabolites are often formed that are more susceptible to further biodegradation by heterotrophs (Dalton, 2005, Jiang et al., 2010, Trotsenko et al., 2005). The upscaling of these processes was however not as easy as thought. The reliability of the different processes taking place in the mixed community is insufficient for industrial applications. Moreover, a very strict monitoring of the different processes is needed (Hamer, 2010, Wendlandt et al., 2010). It is also important to bear in mind that these bioremediation processes are often tested with a small selection of model organisms. Due to cultivation problems and the microbiological fixation on monocultures, a large range of MOB has never been tested and could exhibit a higher activity and robustness under such harsh and specific conditions.
1.5.3 Production of added value compounds

The first intermediate of CH₄ oxidation is CH₃OH, a valuable product with many applications in the chemical industry, for example as alternative fuel source, antifreeze or as building block for other chemical compounds (Schrader et al., 2009). The physico-chemical techniques that allow to produce CH₃OH out of CH₄ have a high energy demand and are therefore costly. A biotechnological approach has the benefit that it can be carried out at room temperature and at atmospheric pressure (Xin et al., 2004). It is however difficult to induce this partial oxidation while at the same time avoiding inhibiting concentrations (Schrader et al., 2009).

MOB are also able to produce epoxypropane via co-metabolic oxidation of propene by sMMO and pMMO (Xin et al., 2010). Epoxypropane is an important building block for polyether polyols in the chemical industry (Dalton, 2005). Production of other bioproducts has also been studied. Different enzymes produced by MOB can serve as oxidoreductases and bioprotectants. A promising compound is ectoine, produced by halophytic MOB, which finds applications in the biotechnological, cosmetic and medical sector (Reshetnikov et al., 2011, Trotsenko et al., 2005). Also the production of single cell protein (SCP) is worth mentioning. The biomass of methylotrophs is comparable in essential amino acid composition to fish and soybean flour. Therefore, this so-called BioProtein, created with MOB cultures, finds use as protein source in animal feed (Bothe et al., 2002, Overland et al., 2010).

Lastly, MOB can be used to produce biopolymers such as poly-hydroxy-butyrate (PHB). Poly-3-hydroxy-butyrate is a high quality biopolymer, which can be produced by various bacterial species as a kind of intracellular energy and carbon storage (Halet and Defoirdt, 2007, Zhang et al., 2008). These bacteria can then use this PHB as a storage polymer when growth conditions become worse. PHB accumulation has been observed with MOB under deficiencies of nitrogen, phosphorus and magnesium (Wendlandt et al., 2001, Zhang et al., 2008, Zuniga et al., 2011). To increase the PHB content, often a feast-and-famine strategy is applied (Pieja et al., 2011): during the feasting period, the bacteria are active under
optimal conditions, allowing to achieve a large increase in the CDW concentration. When the exponential growth phase is finished, one of the mentioned nutrients is limited, which results in an increase of the internal PHB reserves. As only the bacteria with a high PHB content are best able to sustain this famine period, a natural selection for the best PHB producers takes place. By applying sequential cycles, the PHB content can increase to a concentration of 0.6 g PHB g\(^{-1}\) CDW (Wendlandt et al., 2001, Zhang et al., 2008). Although both the RuMP as the serine pathway can be used to produce PHB, type II bacteria appear to be the most effective PHB producers (Helm et al., 2006, Zhang et al., 2008). The resulting PHB has found many applications, for example as prebiotic (De Schryver, 2010), as slow-release application for medication (Wendlandt et al., 2010) and most interestingly as bioplastic (Lee et al., 2005, Salehizadeh and Van Loosdrecht, 2004). Remarkably, certain methylotrophs introduce hydroxyvalerate into the chains of PHB, resulting in a polyhydroxy-butyrate/valerate (PHBV) mixture, thereby improving the physico-chemical properties (Trotsenko et al., 2005).

I.6 Interactions of MOB with other organisms

As MOB can fulfill their energy and carbon needs solely with CH\(_4\), they are able to be part of ecosystems lacking organic C sources. Moreover, some MOB have such a high affinity for CH\(_4\) that they can maintain their metabolism under atmospheric conditions, provided that the environment can fulfill their water and nutrient requirements. At the same time, MOB can form the basis of a whole microbial food web, as certain heterotrophic bacteria are capable of utilizing methanotrophic metabolites like methanol as energy source (Hrsak and Begonja, 2000, Modin et al., 2007, Murrell and Jetten, 2009). These cooperative bacteria possibly decrease the concentration of inhibitory intermediates and by-products like methanol and formaldehyde, which can negatively influence the activity of the MOB (Hesselsoe et al., 2005, Hrsak and Begonja, 1998, 2000, Megraw and Knowles, 1989, Modin et al., 2007). Also citrate, proteins, PHB, nucleic acids, carbohydrates and acetate have been suggested as leaking products from the methanotrophic metabolism (Costa et al., 2000, Eisentraeger et al., 2001, Modin et al., 2007). At the same time, heterotrophic
bacteria possibly produce growth factors, enhancing the metabolism of the MOB (Hesselsoe et al., 2005, Hrsak and Begonja, 2000). Although cobalamine has been the only component that has been identified, proteins and vitamins have been mentioned as most probable candidates (Hrsak and Begonja, 2000, Iguchi et al., 2011). An interesting application of this methanotrophic-heterotrophic interaction is AME-D: aerobic CH₄ oxidation coupled to denitrification (Modin et al., 2010, Modin et al., 2007). Hereby, organic compounds released by the MOB are used by heterotrophic denitrifiers as electron donor to fuel the transformation of NO₃⁻ to N₂ (Amaral and Knowles, 1995, Modin et al., 2007).

Also higher life forms show close interactions with MOB. Symbiotic relations have been observed between MOB and many marine invertebrates like snails, mussels, sponges and tubeworms (Dalton, 2005, Dubilier et al., 2008, Hanson and Hanson, 1996, Petersen and Dubilier, 2009). The host hereby provides the MOB with an ideal position in the mixing zone, where CH₄ rich fluids meet the aerated layer. In return, the MOB provide the host with carbon-rich metabolites. Interestingly, the host gains a lot of its energy needs from the MOB, hence, the MOB need to oxidize enough CH₄ to provide sufficient energy for itself as well as the host. Although none of these MOB have been successfully cultivated, sequencing results show that these bacterial communities almost entirely consist out of type I related MOB (DeChaine and Cavanaugh, 2005, Dubilier et al., 2008). Recent studies applying fatty acid isotope screening indicate that the MOB support whole aquatic food webs up to the fish level (Sanseverino et al., 2012). MOB were also detected in the gut system of termites, which are important CH₄ producers, (Leadbetter and Breznak, 1996). However, there have been doubts whether MOB indeed play a CH₄ mitigating role inside these termites (Pester et al., 2007).

As plants produce O₂ and consume CO₂, they are also candidates for interactions with MOB. Roots of the aquatic grass Calamagrostis canadensis seem to harbor methanotrophic communities (King, 1994a). The interior of aquatic macrophytes serves as transport channels for atmospheric O₂ to deeper zones, while at the same time CH₄ and other anaerobic gases are transported upwards. Recently, symbiotic interactions between
submerged *Sphagnum* mosses and both type I as well as type II MOB have been found. MOB deliver extra CO₂ to the mosses, while mosses in return provide O₂ and a growth surface for the MOB (Kip et al., 2012, Kip et al., 2010). This cooperation prevents a large fraction of CH₄ seeping from these peat bogs to the atmosphere (Raghoebarsing et al., 2005). Additionally, moss-MOB interactions were also observed in other biotopes, like lawns, pools and hummocks (Kip et al., 2010). Also floating plant material can result in significant rates of CH₄ oxidation. *Lemna minor* or little duckweed is a common inhabitant of freshwater ponds and can harbor large populations of MOB (Hanson et al., 1993). The same kind of interaction as with mosses can be suspected. This kind of plant-MOB interactions has also been observed in swamps. Harrison and Subramania-Aiyer (1914) discovered that roots of rice crops were covered by a microbial biofilm emitting O₂ rich gas while CH₄ was simultaneously oxidized. In this case, MOB are probably working together with O₂ producing algae in the biofilm (Hamer, 2010).

I.7 Microalgae

I.7.1 Taxonomy

As is the case with the term ‘methanotrophs’, also the definition of ‘algae’ is prone to confusion. All microorganisms that are able to photosynthesize are referred to as algae. This however includes next to the well known eukaryotic ‘algae’ also the prokaryotic cyanobacteria (Barsanti and Gualtieri, 2006, Herrero, 2008). Although the taxonomy of the latter changes regularly, two large subgroups can be distinguished, i.e. the *Cyanophyta* and *Prochlorophyta* (Herrero, 2008). The eukaryotic algae are typically taxonomically grouped according to their photosynthetic pigments, flagellation, life cycle and cell structure (Barsanti and Gualtieri, 2006). The most important divisions are the green *Chlorophyta*, the red *Rhodophyta*, the gold-brown *Heterokontophyta*, the *Phyrrhophyta* and the *Euglenophyta* (Barsanti and Gualtieri, 2006, Wang et al., 2008). The term microalgae is used for all algae with a size below 100-200 µm, mostly unicellular and without cell differentiation (Mata et al., 2010, Olaizola, 2003).
I.7.2 Oxygenic photosynthesis

Photosynthesis is one of the most important processes on Earth as it allows to capture light energy and subsequently transform it into chemical energy, applicable for living organisms. In short, the energy present in sun radiation is used to produce carbohydrates out of CO$_2$ and H$_2$O (Barsanti and Gualtieri, 2006). The photosynthetic pigment that allows to convert solar energy into chemical energy is chlorophyll a, which all algae posses (Evangelista et al., 2006). However, also other pigments and assisting pigments can occur (Evangelista et al., 2006, Richmond, 2004).

Photosynthesis actually comprises two closely linked processes: the light-dependent reactions taking place in photosynthetic thylakoid membranes and the light-independent reactions occurring in the stroma (Barsanti and Gualtieri, 2006, Richmond, 2004). During the light-dependent reactions, light energy is captured and transformed into energy-rich compounds: nicotinamide adenine dinucleotide phosphate (NADPH) and ATP (Finazzi et al., 2010, Rost et al., 2006). Two large protein complexes, named photosystem I (PSI) and photosystem II (PSII) absorb the photonic energy and induce excitation of two types of pigment, i.e. P700 and P680. When an excited electron falls along the electron transfer chains (ETC), NADP$^+$ is reduced to NADPH. These chains mainly consist of ferredoxin, cytochromes and plastoquinones. At the same time, an electrical potential and difference in proton concentration is created over the thylakoid membrane, leading to ATP production via ATP synthase. The electron transfer chain is represented in Figure I-8.

These light-dependent reactions lead to an uptake of CO$_2$, while H$_2$O is split and O$_2$ released (Barsanti and Gualtieri, 2006). During the light-independent reactions, the CO$_2$ is then fixed and reduced to carbohydrates, often starch or oils (Carlsson et al., 2007). The energy is provided by the NADPH and ATP, generated during the light-dependent reactions. The different light-independent processes are referred to as the Calvin Benson Bassham cycle, which consists of three main phases: first carboxylation takes place, merging CO$_2$ with ribulose biphosphate (RuBP), a C5 acceptor molecule.
Figure I-8. The light-dependent reactions of photosynthesis, showing the electron transfer chain in algae cells (CAPP, 2012).

The reaction is catalyzed by the ribulose-1,5-biphosphate carboxylase oxygenase (RuBisCO) enzyme, the most abundant protein on Earth. The resulting C6 molecule is then split into C3 products, called 3-phosphoglycerate. In a second phase, the latter is reduced to the carbohydrate level, requiring extra ATP and NADPH. In the last phase, the CO2 acceptor RuBP is regenerated. It takes six rounds of the cycle to produce one mol of hexose, leading to an energy balance as shown by following equation (Barsanti and Gualtieri, 2006):

\[
6 \text{CO}_2 + 12 \text{H}_2\text{O} + 18 \text{ATP} + 12 \text{NADPH} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{H}^+ + 18 \text{ADP} + 18 \text{Pi} + 12 \text{NADP}
\]

I.7.3 Light as driving force

Chlorophyll-containing organisms depend highly on the incoming light energy. The algae can however only use photons with a wavelength between 400 and 700 nm, defined as the photosynthetically active range (PAR) (Barsanti and Gualtieri, 2006). Although plants and algae have a certain adaptation potential, an optimal intensity range exists for their
photosynthetic processes. For every algae or plant, a light-saturation curve can be plotted, whereby the O₂ evolution is plotted in relation to the light intensity (Figure I-9).

When there is no light energy available, no light-dependent reactions can take place. Therefore no energy is available to fixate CO₂, leading to an uptake of O₂ due to respiratory activity. When sufficient light energy is available in the applicable wavelength range, the light-dependent reactions start up. With low light intensities, a linear relationship is observed between the light intensity and O₂ evolution, as 9.7 photons are needed to produce 1 mol of O₂ (Melis, 2009). A maximum solar energy conversion is observed in this lower range. The photosynthetic activity is limited by the light reactions until the saturation point is reached. For algae, this is often around 400 µmol PAR m⁻² s⁻¹ (Kumar et al., 2011, Melis, 2009). After that, light saturation conditions are reached and a plateau is observed (Figure I-9).

Figure I-9. The light-saturation curve of photosynthesis obtained with wild type microalgae. The rate of photosynthesis (O₂ evolved mol⁻¹ Chl s⁻¹) is plotted as a function of light intensity (Melis, 2009).
The underlying reason for this saturation lays in the slow catalytic rate of B6f and RuBisCO during the carbon reactions (Melis, 2009). While enzymes often perform more than 1000 actions in a second, RuBisCo only transforms 3 mol s\(^{-1}\) (Barsanti and Gualtieri, 2006). When the light intensity increases even more, damage can occur as PSII gets damaged (Barsanti and Gualtieri, 2006). This often occurs when the light intensity is higher than 1500 \(\mu\)mol PAR m\(^{-2}\) s\(^{-1}\) and the \(O_2\) concentration exceeds 200% (Molina et al., 2001). Algae can protect themselves to a certain extent via photo-adaptation, hereby regulating the amount and size of pigments (Niyogi, 1999).

Although saturation takes place at about 400 \(\mu\)mol PAR m\(^{-2}\) s\(^{-1}\), sunlight intensities can reach values of 2500 \(\mu\)mol PAR m\(^{-2}\) s\(^{-1}\). Often, photosynthetic systems are saturated during a large part of the day, leading to a loss of about 80% of absorbed solar irradiance via non-photochemical quenching (Melis, 2009). The ±20% that is absorbed cannot be used completely by the organisms. Indeed, each step of the photosynthetic reactions has its own efficiencies and losses. Therefore the best-case solar-to-biomass energy conversion efficiency is estimated to be 18% of PAR or 8-10% of total solar radiation (Wijffels, 2008).

In practice, efficiencies were achieved of about 2% of total solar radiation for the algal model organism *Chlorella* sp. For other tested species, measured values are even lower. Although some species prefer a 16:8 or 12:12 light regime (light:dark), most algae species can be cultivated under continuous light, without a huge loss of activity (Rost et al., 2006).

I.7.4 Oxygen sensitivity

The photosynthetic system is also sensitive to increased \(O_2\) concentrations as the RuBisCo enzyme is versatile and capable of catalyzing the oxygenation of RuBP. This photorespiration is possible because \(O_2\) can bind with RuBisCo on the active site. At the same time RuBisCo has a low binding affinity of 8.8 mg L\(^{-1}\) for \(CO_2\) (McNevin et al., 2006). Due to the competition with carboxylation, high concentrations of \(O_2\) lower the photosynthetic efficiency. Algae can counteract this shift by activating the ‘\(CO_2\) concentration mechanism’, which leads to an increased concentration of \(CO_2\) around the RuBisCo (Giordano et al., 2005). These photorespiration processes whereby \(O_2\) is taken up
and CO₂ released occur predominantly when there is a high O₂:CO₂-ratio and during the night period (Barsanti and Gualtieri, 2006).

1.7.5 Metabolic diversity

Some algae are strictly photoautotrophic: they can only use photosynthesis in order to reduce CO₂ into organic compounds. However, many algae are mixotrophic, combining photoautotrophy with heterotrophy (Richmond, 2004). Heterotrophy allows species to utilize exogenous organic compounds as their carbon and energy source. Instead of producing their own C source through photosynthesis, they take them up from the environment. Also other combinations of carbon and energy metabolisms exist, leading to a classification into four main groups based on their nutritional capacities:

- **Obligate phototrophic algae** normally strive for light energy, but can sustain themselves under light limiting conditions by taking up organic compounds by means of osmotrophy (uptake of dissolved substances) or phagotrophy (uptake of bacteria and other cells) (Becker, 1994).
- **Obligate heterotrophic algae** primarily behave heterotrophically, but can sustain themselves by phototrophy.
- **Facultative mixotrophic algae or amphitrophic algae** are capable of growth either by phototrophy or heterotrophy. The preferred pathway depends on the availability of light energy and organic compounds.
- Lastly, **obligate mixotrophic algae** only use heterotrophy to provide essential substances for growth. This strategy is for example necessary for photoauxotrophic microalgae, which are not capable of synthesizing essential components such as certain vitamins or fatty acids themselves.

Moreover, many microalgae are capable of metabolic shifts in response to the environment. The model species *Chlorella vulgaris* and *Scenedesmus sp.* are examples of algal species capable of growing under photoautotrophic, heterotrophic and mixotrophic conditions (Barsanti and Gualtieri, 2006, Larsdotter, 2006).
Chapter I

1.7.6 Growth factors

Next to light energy, autotrophic microalgae need sufficient CO₂, water, nutrients and trace elements. The Redfield-ratio gives an indication of the amount of macronutrients needed for optimal activity. The ratio of C:N:P is stated to be 106:16:1, but can vary with different species and growth conditions (Redfield, 1958). Phosphorus is in most natural environments the growth limiting macronutrient (Klausmeier et al., 2008).

The most common C source for algae is CO₂. However, when CO₂ dissolves in water, it will be hydrolyzed and depending on the pH of the medium, the equilibrium will shift to CO₃²⁻, HCO₃⁻ or H₂CO₃. Although free CO₂ is commonly the preferred C source, certain algae are able to utilize also these mentioned C species. Some cyanobacteria have an increased photosynthetic efficiency when grown on HCO₃⁻, while a higher maximal biomass concentration was found for Chlorella vulgaris when carbon was amended as CO₃²⁻ (Yeh et al., 2010). This C species is however taken up less efficiently by most algae, and can even become toxic (Khalil et al., 2010, Lehman, 1978). Although many algae are negatively influenced by CO₂ concentrations above 5% (v/v), some types are able to grow at concentrations of 70 and even 100% CO₂ (Carlsson et al., 2007, Olaizola, 2003).

Algae can utilize different N species. Often NH₄⁺-N is preferred, followed by NO₃⁻-N (Bhaya et al., 2000). Also organic forms like urea and small amounts of NO₂⁻ can be used (Lourenco et al., 1998). When applying equal amounts of NH₄⁺, NO₃⁻ and urea (CO(NH₂)₂) as N source to a Scenedesmus sp. culture, specific growth rates of 0.82 d⁻¹, 0.54 d⁻¹ and 0.75 d⁻¹ were found, respectively, indicating that NH₄⁺ is the preferred N source (Hamilton et al., 2001, Li et al., 2010a). The pH is of high importance when NH₄⁺-N is amended, as the equilibrium shifts quickly from NH₄⁺ to NH₃ when the pH increases above 8. Not only does the NH₃ escape from the medium, it also exhibits a higher toxicity, as it decouples the electron transport of PSII and competes with the oxidation of H₂O (Becker, 1994, Munoz and Guieysse, 2006). As microorganisms typically use NH₄⁺ as building blocks for their cell structures, nitrite- and nitrate reductase is expressed when NO₃⁻-N or NO₂⁻-N are applied, leading to a pH increase and consumption of 8 mol electrons mol⁻¹ reduced NO₃⁻-N.
Introduction

The uptake of \(\text{NH}_4^+\)-N on the other hand leads to a pH decrease, as protons are released during assimilation (Molinauo-Salces et al., 2010). \(\text{NO}_2^-\) is more toxic for cyanobacteria than the eukaryotic algae, and a concentration of 14 mg \(\text{NO}_2^-\cdot\text{N L}^{-1}\) (pH 6) can already inhibit carbon uptake (Wodzinski et al., 1978). Some algae are able to utilize NO radicals as N source (Richmond, 2004). The latter is an intermediate in the nitrification process, which some algae are able to perform and can result in the production of the strong GHG \(\text{N}_2\text{O}\). Lastly, nitrogen fixation is only observed with some cyanobacteria (Barsanti and Gualtieri, 2006).

About 1% of algal CDW consists of phosphorus, which they preferentially take up as \(\text{PO}_4^{3-}\) (Barsanti and Gualtieri, 2006). Algae and cyanobacteria often perform so called luxury uptake, whereby a surplus of phosphorus is stored in polyphosphate bodies (Oliver and Ganf, 2000). This approach allows the algae to use these storage compounds in times that phosphorus becomes limiting (Richmond, 2004). Lastly, some micro-nutrients are essential for most microalgae, i.e. S, Na, K, Fe, Mg, Ca, B, Cu, Mn, Mo, Co, V, Se and Si (Richmond, 2004).

I.8 Biotechnological potential of algae

I.8.1 Wastewater treatment

Microalgae are successfully applied for wastewater treatment. Wastewater Stabilization Ponds (WSP) are in general cheap and simple constructions for wastewater treatment in developing countries (Hill et al., 2006, Johnson and Wen, 2010, Mara, 2004). They function particularly well in warmer regions, where enough light and heat is present (Mara, 1992). Generally, these WSP exist out of a facultative pond, wherein wastewater is pumped to the bottom. Under anaerobic conditions, methanogens will convert the biodegradable fraction to biogas, which escapes to the atmosphere or is contained in an anaerobic digester (Mara, 2005). At the surface of the facultative pond, algae can provide \(\text{O}_2\), which allows aerobic bacteria to oxidize the rest of the biological oxygen demand (BOD) in the wastewater (Pearson et al., 1987). The facultative pond effluent can then be directed towards High Rate Algal Ponds (HRAP), where the wastewater is polished by suspended
algae. Nitrogen and phosphorus are hereby removed, therefore decreasing the risk of eutrophication (Figure I-10) (Craggs et al., 2012, Garcia et al., 2000). At the same time, organic contaminants, heavy metals and pathogens are partly removed due to the algal metabolism and additionally, the resulting high pH above 9 (Elhamouri et al., 1994, Toumi et al., 2003). The algal biomass can sometimes be harvested and used as low-cost fertilizer or animal feed (Mata et al., 2010, Munoz and Guieysse, 2006).

Figure I-10. Diagram of top and side views of an experimental HRAP and clarifier (Garcia et al., 2000).

I.8.2 Biofuels

Our current society relies heavily on fossil fuels. This energy source is however non-renewable and contributes to the global warming phenomena, due to the emissions of greenhouse gases. Biofuels are generated out of crops and therefore evaluated as renewable, GHG-neutral and a good alternative for fossil fuels (Hill et al., 2006). Currently the market is in transition, whereby second and third generation biofuels are - or should be - produced from non-food feedstocks such as algal biomass (Johnson and Wen, 2010, Mata et al., 2010, Singh and Bhaduri, 2010). Even under normal growth conditions, 0.22 g lipids g\(^{-1}\) CDW are detected in *Chlorella vulgaris*, next to about 0.55 g proteins, 0.15 g carbohydrates and about 5% nucleic acids (Singh and Bhaduri, 2010). Moreover, the lipid
content of algae can be increased considerably under certain inducing conditions. The potential oil productivity of microalgae therefore exceeds the productivity from oilseed crops (Metting, 1996). The harvesting and post-processing is however a point of concern as the current processes are very energy-demanding (Mata et al., 2010, Singh and Bhaduri, 2010). Therefore, optimization of the algae cultivation, lipid production and harvesting processes are needed before the ultimate goal is achieved: the development of algae farms in order to lower the need for agricultural land with an ever growing population. It is however possible to combine the production of algal biomass with other biotechnological processes like sequestration of greenhouse gases, wastewater treatment or fish-farms. As such, the production of biofuels with algae could be integrated in a biorefinery concept.

I.8.3 Production of added value compounds

Microalgae have the capacity to synthesize all amino acids, including the essential ones for humans and animals. At the same time, proteins can represent up to 60% of their CDW, which is more than vegetable sources. Therefore, they are considered a valuable protein source (Delanoue and Depauw, 1988). They are also valuable sources of essential vitamins and polyunsaturated fatty acids (PUFA’s) of which the omega-3 and omega-6 types are the most known and valuable representatives (Ahlgren et al., 1992). Moreover, they are often rich in valuable pigments such as chlorophyll, phycobiliproteins and carotenoids like astaxanthin (Cardozo et al., 2007). Many of the fine chemicals and bioactive compounds present in algae are beneficial for human health. Consequently, more than 70 companies are cultivating the model organism Chlorella sp. to take benefit of its health promoting effects (Spolaore et al., 2006).

Microalgal cells and extracts are also of interest as feed component for a range of animals. For example for rearing larvae and molluscs, crustaceans, fish and pets (De Schryver et al., 2008). Microalgae can also be added to cattle feed in order to reduce the CH_4 production during rumen fermentation. The PUFA are inhibitors for the methanogenic activity in the rumen and an 80% reduction of CH_4 emission by cows has been observed (Fievez et al.,
2007). Screening is however a necessity, as the nutritional value should be high enough, in order to assure that the price of investment can be paid back. Lastly, when used for any commercial purpose, an extended quality control is needed, as some microalgae are known to take up toxins and heavy metals (Munoz and Guieysse, 2006) or produce toxins (Singh et al., 2005).

1.9 Rationale and objectives of this study

Little is known about methanotrophic microbiomes, i.e. entire microbial communities directly or indirectly depending on CH$_4$ for their growth and activity. In this dissertation, two factors were examined that are important for utilizing these communities for applications in environmental biotechnology. The first factor concerns external parameters that influence the activity and structure of such communities (Chapter III & IV). The other factor relates to the interactions taking place within the methanotrophic microbiome. The latter includes both the interaction between MOB and the associated heterotrophic community (Chapter V and VI), as well as the specific interaction between MOB and microalgae, defined as the methalgae interaction (Chapter VII, VIII and IX).

Firstly, a high-throughput method will be developed to isolate MOB with specific characteristics, in order to facilitate these examinations (Chapter II). Thereafter, the effects of certain growth parameters on methanotrophic communities are investigated (Chapter III and IV). In Chapter III, the focus lies mostly on the influence of Cu$^{2+}$ concentration on the resilience towards salt additions. In Chapter IV, the emphasis lies on the influence of NH$_4^+$-N. Further chapters focus on the interactions within the methanotrophic microbiome. Firstly, interactions between MOB and heterotrophs are evaluated at different Cu$^{2+}$ concentrations (Chapter V). Thereafter, the occurrence of carbon fluxes in the methanotrophic microbiome will be studied (Chapter VI). Lastly, symbiotic effects between MOB and algae are investigated, with a focus on biotechnological applications (Chapters VI, VII and VIII).
In **Chapter II**, an optimized and miniaturized extinction culturing method is presented and compared with conventional dilution plating. A better isolation efficiency is hereby achieved, allowing to isolate and characterize certain MOB with desired characteristics.

In **Chapter III**, the effects of certain growth parameters like the salt concentration, the N source and the addition of Cu\(^{2+}\) are investigated. The study shows that higher Cu\(^{2+}\) concentrations increase the methane oxidizing activity and salt resistance significantly.

In **Chapter IV**, the adaptation capacity of methanotrophic communities is tested towards high loads of NH\(_4^+\). It shows that if enough adaptation time is given, methanotrophic communities can adapt to high loads of NH\(_4^+\).

In **Chapter V**, the focus lies on the microbial methanotrophic food web that forms under different Cu\(^{2+}\) concentrations. Proof is given of metabolic networking, whereby MOB provide heterotrophic bacteria of a carbon source.

In **Chapter VI**, a closer look is taken on the methanotrophic-heterotrophic interactions. By means of stable isotope probing, the flux of CH\(_4\) derived C within the methanotrophic microbiome is evaluated. Moreover, the concept of metabolic networking was tested by coculturing an MOB strain with a methylotrophic yeast strain, relying on CH\(_4\) as sole carbon source.

In **Chapter VII**, insights are provided about the interactions between MOB and microalgae. Algae hereby provide MOB *in situ* of O\(_2\), allowing MOB to be active in anoxic environments.

In **Chapter VIII**, the symbiotic interaction between MOB and algae is identified in a facultative pond. It was observed that algae have an essential supportive role in the methane oxidation processes of such ponds.

In **Chapter IX**, the interaction between algae and MOB will be exploited to develop a new microbial sink for biogas by converting it into valuable biomass.

Finally, a general discussion on the obtained results is provided in **Chapter X**, presenting future perspectives and possible applications.
CHAPTER II

MINIATURIZED ISOLATION OF METHANE OXIDIZING BACTERIA

Methanotrophic communities, LabMET
I am among those who think that science has great beauty. A scientist in his laboratory is not only a technician: he is also a child placed before natural phenomena which impress him like a fairy tale.

Marie Curie
Chapter II. Miniaturized isolation of methane oxidizing bacteria

Abstract

Methane oxidizing bacteria (MOB) have an important potential as a microbial sink for the greenhouse gas methane as well as for biotechnological purposes. However, their application in biotechnology has so far been hampered, in part due to the relative slow growth rate of the available strains. To enable the availability of novel strains, this study compares the isolation of MOB by conventional dilution plating with miniaturized extinction culturing, both performed after an initial enrichment step. The extinction approach rendered 22 MOB isolates from four environmental samples, while no MOB could be isolated by plating. In most cases, extinction culturing immediately yielded MOB monocultures making laborious purification redundant. Both type I (*Methylomonas* spp.) and type II (*Methylosinus* sp.) MOB were isolated. The isolated methanotrophic diversity represented at least 11 different strains and several novel species based on 16S rRNA gene sequence dissimilarity. These strains possessed the particulate (100%) and soluble (64%) methane monooxygenase gene. Also, 73% of the strains could be related to a highly active fast-growing methanotrophic community. In conclusion, miniaturized extinction culturing was more efficient in rapidly isolating numerous MOB requiring little effort and fewer materials, compared with the more widely applied plating procedure. This miniaturized approach allowed straightforward isolation and could be very useful for subsequent screening of desired characteristics, in view of their future biotechnological potential.

Redrafted after:

II.1 Introduction

Despite the multifunctional potential of MOB, there are still several factors limiting large-scale applicability in industrial processes, which are mostly related to the MOB themselves, i.e. slow growth rates and low substrate affinity (Jiang et al., 2010b). In order to achieve the full potential of MOB and communities for such biotechnological applications, a straightforward isolation technique is of high value, as it allows the optimization of the growth conditions of the MOB of interest. However, their cultivation is still laborious (Bowman, 2006). To date, only few MOB have been studied and examined thoroughly for further biotechnological applications (Jiang et al., 2010b). The examined cultures were often not selected for their optimal use in these bioprocesses but were just the only available methanotrophic cultures at the time.

It was not until 1970 that Whittenbury and co-workers established a successful procedure to isolate and characterize methane oxidizing bacteria by plating on Nitrate- or Ammonium Mineral Salts (NMS/AMS) medium (Whittenbury et al., 1970). Since then, novel research on MOB mainly encompassed exploring new environments and using cultivation conditions adapted to the corresponding environment (Bussmann et al., 2004, Dedysh et al., 1998b, Svenning et al., 2003, Wise et al., 1999b). Most of the methanotrophic diversity thus obtained could be phylogenetically positioned within the classes of the Alpha-proteobacteria (such as Methylosinus (type II)) and the Gamma-proteobacteria (such as Methylomonas (type Ia) and Methylococcus (type Ib)) (Dedysh, 2009). Since the recognition of “The Great Plate Count Anomaly” (Staley and Konopka, 1985), alternative ways to increase the general cultivability of the microbial diversity were explored, for example by application of growth conditions that closely mimic the natural environment (Dedysh et al., 1998b), prolonged incubation at low temperatures (Song et al., 2009) or the use of alternative gelling agents replacing agar (Dedysh et al., 2007a, Janssen et al., 2002, Stott et al., 2008, Tamaki et al., 2009). Another approach was extinction culturing by diluting a sample to the point of extinction and thereby purifying to a less complex sample containing only one or a few organisms (Button et al., 1993b, Schut
et al., 1993), which was further optimized by the development of high-throughput culturing methods (Connon and Giovannoni, 2002a, Rappe et al., 2002, Stingl et al., 2007).

To date, MOB are still mostly isolated via plate methods, whereby liquid enrichment steps are followed by a serial dilution onto plates (Dedysh et al., 2004, Dunfield et al., 2003, Heyer et al., 2005, Tsubota et al., 2005a, 2005b, Wartiainen et al., 2006). However, these procedures are very laborious and almost always require elaborate purification.

The main objective of this study was to combine and optimize several of the mentioned cultivation approaches for the specific isolation of MOB, and to compare the isolation efficiency of the resulting two-step liquid isolation procedure, consisting of an initial prolonged enrichment and subsequent miniaturized extinction culturing, with conventional dilution plating. Initial enrichment followed by extinction culturing greatly simplified purification procedures and easily rendered novel MOB strains, which were further characterized by sequence analysis of the 16S rRNA gene, repetitive element sequence based PCR fingerprinting (rep-PCR), pmoA and mmoX gene amplification (encoding for pMMO and sMMO, respectively) and sMMO activity assays. Most of the strains were traced back to highly active and fast-growing methanotrophic communities through denaturing gradient gel electrophoresis (DGGE) targeting the pmoA gene.

II.2 Experimental section

II.2.1 Characterization of the sampling sites

Samples were taken from (i) the top layer of a denitrification tank of a wastewater treatment plant (WWTP, Ossemeersen, Gent, Belgium), (ii) a covered but aerobic slurry pit of a cow stable (Melle, Belgium), (iii) the top litter layer of a wetland (Bourgoyen, Gent, Belgium) and (iv) the biofilter of an anaerobic digester (DRANCO, Brecht, Belgium). The concentrations of the most important macro- and micronutrients were determined for all four samples and are represented in Table II.1. The ammonium concentration was determined by steam distillation, according to Greenberg et al. (1992). Filtered samples (0.45 µm filter, Millipore, Brussels, Belgium) were analyzed for Cl⁻, NO₃⁻, NO₂⁻, SO₄²⁻ and
PO₄³⁻ by means of an 761 Compact Ion Chromatograph, equipped with a conductivity detector (Metrohm, Zofingen, Switzerland). The Fe- and Cu-concentrations were analyzed using ICP-OES spectrometry (Vista MPX, Varian, St-Katelijne Waver, Belgium).

Table II-1. The concentration (mg L⁻¹) of NH₄⁺-N, NO₃⁻-N, NO₂⁻-N, PO₄³⁻-P, SO₄²⁻, Cl⁻, Cu and Fe in the samples from the WWTP, slurry pit and wetland, respectively. For the biofilter sample, concentrations are expressed as mg kg⁻¹ biofilter material. Therefore 10 g of sample was diluted in 100 ml distilled water and shaken for 2h (120 rpm) according to Alexander et al. (2004). The liquid phase was analyzed similarly to the other samples.

<table>
<thead>
<tr>
<th></th>
<th>WWTP</th>
<th>Slurry pit</th>
<th>Wetland</th>
<th>Biofilter</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄⁺-N</td>
<td>7.17</td>
<td>462</td>
<td>2.75</td>
<td>1034</td>
</tr>
<tr>
<td>NO₃⁻-N</td>
<td>0.19±0.01</td>
<td>0.68±0.00</td>
<td>0.13±0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>NO₂⁻-N</td>
<td>0.12±0.09</td>
<td>1.34±0.09</td>
<td>0.09±0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>PO₄³⁻-P</td>
<td>13.0±0.2</td>
<td>78.9±0.7</td>
<td>19.0±0.2</td>
<td>1135±5</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>0.06±0.03</td>
<td><0.01</td>
<td>0.17±0.12</td>
<td>3.80±1.56</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>65.4±1.8</td>
<td>449±3</td>
<td>59.1±3.5</td>
<td>997±4</td>
</tr>
<tr>
<td>Cu</td>
<td>0.34</td>
<td>0.38</td>
<td>0.87</td>
<td>1.02</td>
</tr>
<tr>
<td>Fe</td>
<td>2.45</td>
<td>7.12</td>
<td>4.20</td>
<td>49.2</td>
</tr>
</tbody>
</table>

II.2.2 Isolation of methane oxidizing bacteria

On the day of sampling, 3 g of each sample was homogenized in 27 mL of a 5 times diluted Nitrate Mineral Salts (dNMS) medium (Dunfield et al., 2003), with a 2 mM Na₂HPO₄/KH₂PO₄ buffer and a modified copper concentration of 0.8 µM (50 µg Cu²⁺ L⁻¹). The pH of the medium was adjusted to the pH of each sample (biofilter material: pH 7.8; other samples: pH 6.8). Dilution series of samples (10⁻² up to 10⁻¹¹) were prepared in dNMS medium in triplicate. The resulting 120 vials were sealed and 20% (v/v) CH₄ was added to the headspace. The cultures were incubated for five weeks at 20°C while shaken (90 rpm). Weekly, concentrations of CH₄, O₂, CO₂ and N₂O in the headspace were analyzed.
with a Compact GC (Global Analyser Solutions, Belgium). Dilutions were considered positive for methanotrophic growth when CH$_4$ and O$_2$ were consumed (drop below initial average subtracted by five times the standard deviation), with subsequent rise in CO$_2$ levels, and observation of turbidity. This information was used to estimate the abundance of cultivable MOB using Most Probable Number (MPN) tables (USDA-FSIS, 2008). To retrieve MOB from the enrichment cultures showing methanotrophic activity, dilution plating and extinction culturing were carried out in parallel. A schematic overview of the followed methodology is shown in Figure II-1.

Dilution plating was performed by inoculation of the enrichment cultures (10^{-2}, 10^{-4} & 10^{-6}; 100 µL plate$^{-1}$) on dNMS medium with 0.9% gellan gum and 1% MgSO$_4$.7H$_2$O. After incubation for 2 weeks at 20°C in gas-tight jars under a CH$_4$:air (1:1) atmosphere, 200 colonies were randomly selected and subcultured to purity. The isolates were checked for methanotrophy by (i) growth on solid dNMS with CH$_4$ in the headspace, (ii) absence of growth on solid dNMS under air and (iii) absence of growth on 1/10 Trypticase Soy Agar (TSA) under air.

Extinction culturing was performed in duplicate by serially diluting the enrichment cultures (10^{-2} to 10^{-9}) with liquid dNMS medium (dilution-to-extinction) in sterile 96-well microtiter plates. After incubation for two weeks at 20°C under a CH$_4$:air (1:1) atmosphere, turbidity indicative of growth was checked visually and by measuring the optical density at 600 nm. For each dilution series, the highest dilution showing growth was (i) confirmed for CH$_4$ oxidation by GC analysis (see above), (ii) plated on solid dNMS medium (with gellan gum) and subcultured to purity if necessary. MOB purity was evaluated by (i) colony morphology, (ii) phase contrast microscopy and (iii) absence of growth on 1/10 TSA and dNMS plates supplemented with 0.1% glucose, 0.1% fructose and 0.1% yeast extract under air. The isolates were confirmed for CH$_4$ oxidation by GC analysis.
Chapter II

Figure II-1. Flow chart of the followed enrichment and isolation strategies.

II.2.3 Methane oxidation rate of sequence batch enrichments

In parallel with the dilution series enrichments used for MOB isolation, sequence batch enrichments using the same cultivation conditions were set-up in triplicate on the day of sampling for each of the four original samples, allowing the estimation of methane oxidation rates (MOR) of the methanotrophic communities cultivable under set conditions. Gastight Schott-bottles with a total volume of 1150 mL were filled with 200 mL dNMS medium. Inoculation was performed with 2 mL of the original sample. For the sample of biofilter material, 0.5 g of inoculum was added. After sealing the reactors, 20% (v/v) CH₄ was added to the headspace (950 mL). The cultures were placed on a shaker (100 rpm) at 20°C and GC analysis of the headspace was performed daily. When the activity dropped to
almost zero, reactors were opened under non-sterile conditions after which 160 mL of liquid phase was removed for physico-chemical analysis or stored at -20°C for pmoA gene DGGE analysis (see further). The remainder of the liquid phase (40 mL) of the triplicate sequence batch enrichments was merged together and subsequently distributed equally over the three reactors. Freshly made dNMS medium was added to a total volume of 200 mL after which 20% (v/v) CH₄ was again added to the headspace. In total, this cycle was repeated two times. The hydraulic retention time (HRT) and sludge retention time (SRT) for each cycle were 90h.

II.2.4 Identification and characterization of MOB isolates

Dereplication of all isolates was performed to assess genetic heterogeneity and group isolates with identical genomic fingerprints, further referred to as strains. Rep-PCR was performed as described by Ghyselinck et al. (2011) with a (GTG)₅-primer (Versalovic et al., 1994). The clustering method was supported by visual inspection: isolates were considered as genomically identical when they demonstrated identical fingerprints, which led to a cut-off value of 93%. For each group, a representative strain was selected randomly and deposited in the BCCM/LMG Culture Collection (LMG 26258-26263 & LMG 26612-26616).

Each strain was identified to the genus level through 16S rRNA gene sequence analysis. PCR amplification and sequencing of the 16S rRNA gene was performed as described by Heyrman and Swings (2001). The sequences were analyzed using a 3130 XL Genetic Analyzer (Applied Biosystems, USA) and assembled with BioNumerics 5.1 software (Applied Maths, Belgium). A reliable genus identification was obtained in two steps: (i) query in the “Classifier” program of the Ribosomal Database Project II (Cole et al., 2005) of the 16S rRNA gene sequence of each new strain, (ii) all type strains of all species of all genera mentioned in the Classifier report were compared in an exhaustive pair wise manner with the query sequence of each new strain in BioNumerics 5.1. Strains were
provisionally assigned to the genus of their closest type strain based on the obtained 16S rRNA gene sequence.

A slightly modified version of the naphthalene oxidation assay of Brusseau et al. (1990) was used to measure sMMO activity of the MOB strains. A crystal of naphthalene was added to 5 mL freshly grown culture, in dNMS without copper addition, and incubated at 28°C on a shaker (150 rpm) for 2h. After incubation, 20 μL of freshly prepared tetrazotized-o-dianisidine solution (2.68 g L⁻¹) was added to 180 μL of each cell suspension in duplicate in microtiter plates, and the formation of a colored diazo-dye was immediately monitored by recording the absorbance at a wavelength of 525 nm via spectrophotometry. The assay was validated using four MOB reference type strains that possess sMMO (DSM 17706ᵀ, DSM 15673ᵀ, DSM 18500ᵀ, NCIMB 11131ᵀ) and four that only possess pMMO (DSM 13736ᵀ, DSM 17261ᵀ, NCIMB 11914ᵀ, NCIMB 11130ᵀ). Primers described in literature for amplification of the mmoX gene were also tested using these type strains. Primers described by Hutchens et al. (2004) were selected for mmoX gene amplification of the isolates positive for the sMMO activity assay. Amplification was confirmed by subsequent sequencing of the mmoX gene.

II.2.5 pmoA gene DGGE analysis

Primers described in literature were tested for suitability for DGGE analysis targeting either 16S rRNA or pmoA, since most known MOB, except for members of Methylocella and Methyloferula (Dedysh et al., 2005, Vorobev et al., 2011), as well as all novel strains from this study contained pmoA. Thirteen type strains (six type I and seven type II MOB) were used as positive controls for the evaluation. The PCR mix and temperature-time profiles from the original description were tested, as well as the PCR mix used for 16S rRNA gene amplification (Heyrman and Swings, 2001). Only one pmoA primer set (A189f/mb661r) could correctly detect the pMMO gene in all tested strains. The 16S rRNA gene could be amplified in all strains with both the type IF/type IR and type IIF/type IIR sets of Chen et al. (2007), however, amplicons were too long for DGGE analysis. The pmoA set A189f/mb661r (Costello and Lidstrom, 1999) with GC clamp 5′-
CGCCCGCCGCGGCGGGCGGGCGGGGCACGGGGG-3’ was selected for further DGGE analysis.

The DNA extraction procedure was adapted from Gevers et al. (2001) and El Fantroussi et al. (1999). DGGE analysis of the PCR amplicons was performed with an INGENY phorU2X2 DGGE-system (Goes, The Netherlands). A 6.5% (w/v) polyacrylamide gel with a 30 to 80% denaturing gradient (a 100% denaturant solution contains 7 M urea and 40% (w/v) formamide) was applied. Gels were run in 1x TAE buffer for 16h at 150 V and stained afterwards with SYBR Green I nucleic acid gel stain. The resulting DGGE patterns were processed using BioNumerics 5.1. Band position analysis was used to track the obtained isolates back to the sequence batch cultures and the dilution series enrichments used for MOB isolation and was performed by visual comparison of band location in the gel.

II.2.6 Nucleotide sequence accession numbers

The 16S rRNA gene sequence data generated in this study has been deposited in GenBank/EMBL/DDBJ with accession numbers FR798952 to FR798973.

II.3 Results

II.3.1 Isolation of fast-growing MOB

Four environmental samples (wastewater treatment plant, wetland, biofilter and slurry pit) were serially diluted and enriched, while monitoring CH₄ and O₂ consumption and CO₂ production, respectively. During the first four weeks, higher dilutions were gradually found positive with each subsequent measurement, stabilizing by the fifth week (Figure II-2).
Figure II-2. Average methane (A, C, E, G) and oxygen (B, D, F, H) levels (%) during 5 weeks incubation in dNMS at 20°C (90 rpm) under a CH$_4$:air (1:4) atmosphere for the WWTP (A, B) slurry pit (D, E), wetland (G, H) and biofilter sample (J, K) for the dilution series 10^{-2} (white square), 10^{-3} (white triangle), 10^{-4} (black triangle) 10^{-5} (black square) and 10^{-6} (black diamond) in triplicate (error bars not shown for clarity).
The extinction culturing procedure was performed in duplicate to isolate MOB from these enrichment cultures, resulting in 46 extinction series, of which only four did not show growth after two weeks of incubation. The highest dilutions of the remaining 42 series were transferred to gas-tight vials and dNMS medium solidified with gellan gum for confirmation of CH₄ consumption and purity check, respectively. Methane oxidation was observed in 27 series, of which 14 were immediately monocultures. Seven CH₄ oxidizing cultures consisted of an MOB in coculture with a non-methanotrophic bacterium (identified as a member of Nocardioides with 16S rRNA gene sequence analysis) forming a distinct colony morphology surrounding the methanotrophic colonies. From the remaining six CH₄ oxidizing cultures, several different colony morphologies were found upon plating. Subsequent purification of these MOB was achieved after a maximum of 3 sub-cultivation steps. One dilution series resulted in a monoculture (identified as Ancyllobacter with 16S rRNA gene sequence analysis), but did not oxidize CH₄. Fourteen dilutions were discarded since these were not able to oxidize CH₄ and did not result in a pure culture upon plating.

Dilution plating was performed in parallel. The 23 initial CH₄ oxidizing enrichments were diluted, plated on dNMS (solidified with gellan gum) and incubated under atmospheric conditions supplemented with CH₄. Randomly, 200 colonies were picked up and purified. Almost all purified isolates (197 out of 200) showed heterotrophic growth on diluted TSA without CH₄ and were not considered as potential MOB. The three remaining isolates, not able to grow on diluted TSA, also failed to grow on dNMS with or without CH₄ added to the headspace. To confirm these results, eight randomly selected isolates obtained via dilution plating, were identified to the genus level through 16S rRNA gene sequence analysis and were affiliated with Nocardioides, Zoogloea, Rhizobium, Pseudomonas, Polaromonas, Rhodobacter and Enterobacter genera, not harboring known MOB.

II.3.2 Identification and characterization of MOB isolates

In total, 22 purified MOB isolates were retrieved from four different samples (Table II-2). Dereplication with rep-PCR fingerprint analysis grouped the isolates into 11 distinct clusters, representing 11 unique strains (Figure II-3).
Table II-2. Genus assignment of 11 representative MOB strains (rep-PCR; Figure II-3) based on 16S rRNA gene sequence analysis (> 1,400 bp). Similarity values of 16S rRNA gene sequence to closest type strain, origin of the strains and results of naphthalene oxidation assay and mmoX gene amplification are given.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Representative Strain</th>
<th>sMMO & mmoX</th>
<th>Genus identification</th>
<th>Type strain with highest 16S rRNA gene sequence similarity to query sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Species name</td>
<td>Strain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWTP</td>
<td>D1</td>
<td>Yes</td>
<td>Methylomonas</td>
<td>Methylomonas methanica NCIMB 11130$^\mathrm{T}$</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>Yes</td>
<td>Methylomonas</td>
<td>Methylomonas methanica NCIMB 11130$^\mathrm{T}$</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>Yes</td>
<td>Methylomonas</td>
<td>Methylomonas methanica NCIMB 11130$^\mathrm{T}$</td>
</tr>
<tr>
<td></td>
<td>E1</td>
<td>Yes</td>
<td>Methylomonas</td>
<td>Methylomonas methanica NCIMB 11130$^\mathrm{T}$</td>
</tr>
<tr>
<td></td>
<td>H1</td>
<td>Yes</td>
<td>Methylomonas</td>
<td>Methylomonas methanica NCIMB 11130$^\mathrm{T}$</td>
</tr>
<tr>
<td></td>
<td>K1</td>
<td>Yes</td>
<td>Methylomonas</td>
<td>Methylomonas methanica NCIMB 11130$^\mathrm{T}$</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>No</td>
<td>Methylomonas</td>
<td>Methylomonas Scandinavica SRS$^\mathrm{T}$</td>
</tr>
<tr>
<td>Slurry</td>
<td>I1</td>
<td>No</td>
<td>Methylomonas</td>
<td>Methylomonas Scandinavica SRS$^\mathrm{T}$</td>
</tr>
<tr>
<td>Wetland</td>
<td>A6*</td>
<td>No</td>
<td>Methylomonas</td>
<td>Methylomonas fodinarum ACM 3268$^\mathrm{T}$</td>
</tr>
<tr>
<td></td>
<td>J1</td>
<td>No</td>
<td>Methylomonas</td>
<td>Methylomonas fodinarum ACM 3268$^\mathrm{T}$</td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>Yes</td>
<td>Methylosinus</td>
<td>Methylosinus sporium NCIMB 11126$^\mathrm{T}$</td>
</tr>
<tr>
<td>Biofilter</td>
<td>A6*</td>
<td>No</td>
<td>Methylomonas</td>
<td>Methylomonas fodinarum ACM 3268$^\mathrm{T}$</td>
</tr>
</tbody>
</table>

*Five wetland and two biofilter isolates clustered together according to rep-PCR, wetland isolate A6 was randomly selected as representative strain.
Figure II-3. GTG₅ rep-PCR fingerprinting using Pearson product moment correlation coefficient and UPGMA. Five isolates showed unique profiles (B1, D1, E1, H1 and I2) and 6 groups of isolates (1-6) showed identical profiles. F1 and F2 isolates belonged to the genus Methylosinus, all the other isolates were identified as Methylomonas spp. (Table II-2).

Randomly chosen representatives of each strain were further identified to the genus level with 16S rRNA gene sequence analysis. Ten out of eleven methanotrophic strains were assigned to the gamma-proteobacterial genus Methylomonas, while the remaining strain was assigned to the alpha-proteobacterial genus Methylosinus (Table II-2). Pairwise comparisons of the 16S rRNA gene sequences of the 10 newly isolated strains with the type strains of all species of Methylomonas suggested that representatives of potentially novel Methylomonas species were isolated from all four environments, with 16S rRNA
gene sequence similarities below 98% (Stackebrandt and Ebers, 2006). The eleven reference strains contained the \textit{pmoA} gene, seven of which also harbored the \textit{mmoX} gene and showed sMMO activity (Table II-2): six \textit{Methylomonas} strains isolated from the WWTP sample as well as the \textit{Methylosinus} sp. strain.

\textbf{II.3.3 Detection of the isolated MOB in fast-growing methanotrophic communities}

Sequence batch enrichments from the original samples were set up in parallel with the dilution series enrichments used for MOB isolation, with the same cultivation conditions.

To evaluate the presence of the isolates, under conditions selecting for highly active fast-growing MOB in a mixed community, a sequence batch set-up with a relatively low sludge retention time of 90 h was chosen. All sequence batch enrichments showed CH$_4$ oxidation activity, although the moment that a significant CH$_4$ oxidation (a drop below the initial average CH$_4$ concentration subtracted by five times the standard deviation) was observed differed between samples: 72h for the WWTP cultures, 96h for the wetland cultures and 144h for the cultures inoculated with samples from the slurry pit or the biofilter material (Figure II-4).
A steep rise in the methane oxidation rate over time was observed, with a maximum after 144 h of 169±28 mg CH₄ L⁻¹ day⁻¹ and 184±24 mg CH₄ L⁻¹ day⁻¹ for the WWTP and wetland cultures, respectively. The maximal methane oxidation rate (MOR) was lower for the two other cultures, with 83±3 mg CH₄ L⁻¹ day⁻¹ after 192 h and 39±45 mg CH₄ L⁻¹ day⁻¹ after 216 h for the slurry pit cultures and the biofilter cultures, respectively. When the O₂ concentration in the reactors became limiting, a decrease in the MOR was observed and a second cycle was started. The observed daily MOR for the second cycle was of the same order for all four inocula with a minimum of 108±16 (biofilter) and a maximum of 266±7 (wetland) mg CH₄ L⁻¹ day⁻¹ (Table II-3).
Table II-3. Overview of activity parameters of enriched cultures during the second cycle in sequence batch reactors: the methane oxidation rate (mg CH$_4$ L$^{-1}$ liquid day$^{-1}$) during the first and second day of the second cycle for the four samples, the ratio of produced CO$_2$ over consumed CH$_4$ (mg CO$_2$-C mg$^{-1}$ CH$_4$-C), the ratio of produced volatile suspended solids over consumed CH$_4$ (mg VSS mg$^{-1}$ CH$_4$-C) and the ratio of consumed CH$_4$ over consumed NO$_3^-$ (mg CH$_4$-C mg$^{-1}$ NO$_3^-$-N).

<table>
<thead>
<tr>
<th></th>
<th>WWTP</th>
<th>Slurry pit</th>
<th>Wetland</th>
<th>Biofilter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOR$_{day1}$</td>
<td>182±29</td>
<td>203±20</td>
<td>266±7</td>
<td>108±16</td>
</tr>
<tr>
<td>MOR$_{day2}$</td>
<td>165±25</td>
<td>91±18</td>
<td>110±10</td>
<td>194±10</td>
</tr>
<tr>
<td>CO$_2$-C:CH$_4$-C ratio</td>
<td>0.56±0.02</td>
<td>0.53±0.04</td>
<td>0.55±0.02</td>
<td>0.51±0.03</td>
</tr>
<tr>
<td>VSS:CH$_4$-C ratio</td>
<td>0.60±0.09</td>
<td>0.77±0.19</td>
<td>0.68±0.12</td>
<td>0.79±0.14</td>
</tr>
<tr>
<td>CH$_4$-C:NO$_3^-$-N ratio</td>
<td>15.7±1.3</td>
<td>13.0±3.3</td>
<td>15.6±2.4</td>
<td>16.5±3.5</td>
</tr>
</tbody>
</table>

Furthermore, pmoA DGGE analyses (Figure II-5) were performed on the eleven representative strains selected, following rep-PCR fingerprinting (Figure II-3) and SBR enrichments after the first cycle of each environmental sample. DGGE profiles of the WWTP and wetland enrichments were more diverse than those of the biofilter and slurry pit. From the seven *Methylomonas* strains isolated from the WWTP only one (represented by isolate K1) could not be traced back to the complete profile of the SBR enrichment, while this was the case for the other six strains, suggesting that these were dominantly present. It is however clear that different strains (isolates C1, D1, G1, E1 and H1) as proven by rep analysis, did show a pmoA band at a similar height, indicating that one band of the complete profile from the SBR enrichment covered a diversity of different methanotrophic strains. From the wetland enrichment, the two retrieved *Methylomonas* strains (represented by isolate A6 and J1) could be traced back to the SBR enrichment, while this was not the case for the single *Methylosinus* strain (isolate F1).
Figure II-5. DGGE analysis, based on the pmoA primer set A189fGC/mb661r for type I and type II MOB, respectively. The community in the active enrichment from one sequence batch reactor is shown after the first cycle for each of the four samples, i.e. a sample from the wastewater treatment plant (WWTP), a slurry pit, biofilter material and a wetland. The 11 representative strains selected based on rep-PCR fingerprinting (Figure II-3) are shown in relation to their corresponding active enrichment. Strains NCIMB11130$^\top$ (*Methylomonas methanica*, band indicated by arrow) and DSM17706$^\top$ (*Methylosinus sporium*) are shown as reference. Based on the band position of the strains, eight out of eleven representative strains could be linked to their active community, demonstrating the abundance of these strains in a mixed community selecting for fast-growing methane oxidizing bacteria.
The two isolates retrieved from the biofilter formed a single stable rep cluster with isolates from wetland, represented by isolate A6. The \textit{pmoA} band of this strain was also observed in the DGGE profile of the biofilter, again suggesting the dominant presence in the SBR enrichment of this sample. From the slurry pit, only one strain was isolated for which the matching \textit{pmoA} band could not be observed in the DGGE profile of the SBR enrichment. However, the \textit{pmoA} band of this strain had a similar GC content as isolate B1 from WWTP, of which rep analysis already showed that they represented different strains.

II.4 Discussion

Methane oxidizing bacteria can serve as important sinks for the greenhouse gas \textit{CH}_4 or as key players in different biotechnological industries (Semrau et al., 2010). Currently, their applicability is limited by the number of suitable strains readily available, which were not specifically isolated for this purpose, and the lack of the necessary properties for efficient use in large-scale industrial applications (Jiang et al., 2010a). Therefore, novel methanotrophic strains need to be easily obtained in culture and characterized. However, the isolation of MOB with the conventional plating approach is laborious and time consuming, requiring one or more liquid enrichment steps followed by serial dilution plating and extensive purification (Bodrossy et al., 1995, Bowman et al., 1993, Dedysh et al., 1998a, Iguchi, 2010, Whittenbury et al., 1970). Therefore, in this study, a simple and miniaturized isolation protocol was applied to efficiently isolate MOB by a combination of several recently developed cultivation procedures: a prolonged initial enrichment at low temperatures (Song et al., 2009) and adaptation of incubation conditions for desired MOB (Dedysh et al., 1998b), followed by high-throughput extinction culturing (Bodelier et al., 2005, Button et al., 1993a, Connon and Giovannoni, 2002b, Wise et al., 1999a) and subsequent purification using gellan gum plates (Dedysh et al., 2007b, Janssen et al., 2002). Other high-throughput culturing approaches were designed to favor the isolation of abundant bacteria \textit{in situ} (Connon and Giovannoni, 2002b, Rappe et al., 2002, Song et al., 2009, Stingl et al., 2007), while our protocol specifically targeted a certain sub-
population of a specific functional group with a custom-made prolonged enrichment. This made the organisms of interest, in this case fast-growing MOB, abundant ex situ before extinction culturing. This approach resulted in immediate pure cultures, avoiding elaborate purification, which is known to be problematic for the isolation of MOB (Bowman, 2006). Without this approach, no immediate MOB pure culture would be obtained since heterotrophic bacteria are more abundantly present in environmental samples (Wise et al., 1999b). In perspective of biotechnological applications, varying the cultivation parameters of the initial enrichment in combination with miniaturization in 96-well plates has the potential to select for MOB with specific desired characteristics. As such, these wanted MOB can become abundant, even if non-abundant in situ, and can then be rapidly isolated via miniaturized extinction culturing. For example, the cultivation conditions chosen in this study, a diluted NMS medium under a high concentration of CH\textsubscript{4} and a relatively low hydraulic retention time, are known to select for highly active fast-growing MOB, a characteristic which is important for industrial use of bacteria (Begonja and Hrsak, 2001, Schrader et al., 2009, Wendlandt et al., 2010). Indeed, the mixed SBR communities showed a high CH\textsubscript{4} removal rate from 108±16 to 266±7 mg CH\textsubscript{4} L-1 day-1 respectively, which is in the range of reported highly active CH\textsubscript{4} oxidizing communities (Gebert and Grongroft, 2006, Melse and Van der Werf, 2005, Nikiema et al., 2005, Scheutz et al., 2009). By band position analysis of pmoA-targeted DGGE, most isolated MOB could be traced back to this active community, demonstrating that the isolated strains were able to rapidly oxidize CH\textsubscript{4} and grow to higher densities in a competitive setting. Most isolated MOB were indeed closely related to Methylomonas (type Ia), known to harbor fast-growing MOB with a short generation time of 3.5 h (Whittenbury et al., 1970). Fast-growing type Ib MOB (f.e. Methylococcus) with similar doubling times (Whittenbury et al., 1970) were not expected to be retrieved because they require higher isolation temperatures, while type II MOB are generally known to grow slower, with generation times ranging from 5h up to several days (Dedysh et al., 2002, Dedysh et al., 2000, Vorobev et al., 2011, Whittenbury et al., 1970). Since DGGE patterns mainly represent the major constituents of a community (Muyzer and Smalla, 1998), the few strains that could not be traced back by band position analysis probably
were expected to have longer generation times and as such were not abundantly present in the highly-active CH$_4$ oxidizing communities. Not all pmoA bands in the mixed communities had isolated representatives, therefore an up-scaling of the isolation campaign, with more extinction cultures per enrichment, would detect more novel MOB cultivable under the set conditions. This was confirmed as extinction series from initial enrichments did lead to the isolation of two different MOB strains (strains E1 & H1 and strains B1 & D1).

In total, 22 MOB isolates belonging to eleven distinct strains were obtained, which is a relatively high number compared to other studies (Auman et al., 2000, Bussmann et al., 2004, Dianou and Adachi, 1999, Miller et al., 2004). Members of *Methylomonas* (type I MOB) were isolated from all four samples, while *Methylosinus* representatives (type II MOB) were only obtained from the wetland sample. Despite that isolates were assigned to known genera, they represented at least 10 different *Methylomonas* strains, several of which belonging to novel species within the genus based on 16S rRNA gene sequence dissimilarity with *Methylomonas* type strains. Currently, four species have been validly described, although only the type strain of *Methylomonas methanica* (NCIMB 11130$^\text{T}$) is still accessible for the scientific community. This issue on availability of fastidious microorganisms such as MOB is a widely recognized problem and greatly hampers the in-depth investigation of their biotechnological potential, especially because properties such as substrate affinity, growth rate, substrate range or degradation of xenobiotics are strain-dependent features. For example, six different *Methylomonas* strains isolated in this study possessed sMMO, in addition to pMMO, while the type strain of the genus does not possess sMMO (Koh et al., 1993). Both sMMO and pMMO are known to degrade pollutants, such as chlorinated hydrocarbons (Bowman et al., 1993, Jiang et al., 2010b): sMMO has a broader substrate range and is known to rapidly degrade pollutants, pMMO degrades compounds at slower rates but over an extended time frame (Semrau et al., 2010). While common in type II & Ib MOB (Hanson and Hanson, 1996), few type Ia MOB such as *Methylomonas* contain sMMO, although it has been reported (Auman et al., 2000, Bussmann et al., 2006, Koh et al., 1993, Shen et al., 1997). Since type I MOB have a
higher efficiency in carbon conversion (Scheutz et al., 2009), these *Methylophonas*
isolates, which possess both sMMO and pMMO, could particularly be of interest to
screen for degradation of recalcitrant compounds.

In this study, the isolation efficiency for the retrieval of fast-growing MOB between
miniaturized extinction culturing and conventional dilution plating was compared. To our
knowledge, such a comparison has not been previously reported. The plating approach,
which is the most applied method for isolation of MOB (Dedysh et al., 2004, Dunfield et
al., 2003, Heyer et al., 2005, Tsubota et al., 2005b, Wartiainen et al., 2006), did not
render any MOB in this study when performed in parallel with extinction culturing from
the same initial enrichments. However, the applied methodology should allow their
isolation since MOB isolates obtained from extinction culturing and reference strains
from public bacteria collections were cultivated successfully on solid medium in the same
manner. Therefore, it is likely that additional plating trials investigating more colonies
would allow the isolation of MOB. However, even then, miniaturized extinction culturing
from initial enrichments will be more time and labour efficient than conventional plating
in retrieving numerous methane oxidizing bacteria with specific desired characteristics.

Acknowledgements

DVDHA, SH, NB and KH designed the experiments. DVDHA and SH performed the
experiments, analyzed the data and wrote the paper. DVDHA was the main responsible
for the PCR-DGGE and activity tests. SH was the main responsible for the miniaturized
extinction culturing and isolation. KH, NB and PDV commented on the manuscript. This
work was funded by the Geconcerteerde Onderzoeksactie (GOA) of Ghent University
(BOF09/GOA/005) and a PhD grant for David van der Ha from the Institute for the
Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen,
SB-83259). The authors gratefully thank Willy Verstraete, Suzanne Read and Jonas
Ghyselinck for proof reading the manuscript. Tim Lacoere and Joke Buyse are greatly
acknowledged for their help with the molecular analyses.
CHAPTER III

COPPER ENHANCES THE ACTIVITY AND SALT RESISTANCE OF METHANE OXIDIZING COMMUNITIES

Molecular work, LabMET
When the heart speaks, the mind finds it indecent to object.

Milan Kundera
Chapter III. Copper enhances the activity and salt resistance of methane oxidizing communities

Abstract

Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane oxidizing communities could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L$^{-1}$ NH$_4^+$-N had no significant influence on the activity, nor did a temperature increase from 28$^\circ$C to 35$^\circ$C. On the other hand, an addition of 10 µM Cu$^{2+}$ increased the methane removal rate by a factor of 1.5 to 1.7, since the activity of particulate methane monooxygenase (MMO) was enhanced. The effect of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L$^{-1}$. At a concentration of 11 g NaCl L$^{-1}$, almost no methane oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. Soluble methane monooxygenase (sMMO) was inhibited by copper, suggesting that the pMMO was the active enzyme and thus more salt-resistant. The results obtained demonstrate that the treatment of methane saturated effluents, even those with increased ammonium (up to 140 mg L$^{-1}$ NH$_4^+$-N) and salt levels, can be mitigated by implementation of methane oxidizing microbial consortia.

Redrafted after:

III.1 Introduction

Effluents of anaerobic digester installations are often oversaturated with methane (CH₄) (Hartley and Lant, 2006). When treating low strength wastewaters, up to 25% of the produced CH₄ is lost in the effluent (Cakir and Stenstrom, 2005, Hartley and Lant, 2006). It is important to control these CH₄ emissions, as this greenhouse gas is 25 times more effective at trapping heat than carbon dioxide (CO₂) (Boucher et al., 2009). Methane oxidizing communities could be used to mitigate CH₄ saturated effluents. Growth factors such as micro- and macronutrients, gas concentrations and physical parameters have an important influence on the activity and growth rate of MOB (Begonja and Hrsak, 2001, Bender and Conrad, 1995, Scheutz et al., 2009a). Generally, MOB have the highest activity in a pH range between 6 to 7 and a temperature range between 25 to 35°C (Hanson and Hanson, 1996, Scheutz et al., 2009a, Whittenbury et al., 1970b). Although nitrate is commonly used as N source in growth media for methanotrophs, ammonium can be an alternative. However, it is still unclear which concentrations of ammonium have a stimulating or inhibitory effect on the activity (Bodelier and Laanbroek, 2004).

MOB possess two CH₄ oxidizing enzyme systems: the particulate methane monooxygenase (pMMO), present in most MOB, and the soluble methane monooxygenase (sMMO), mostly present in alpha-proteobacterial MOB (Dalton, 2005, Hanson and Hanson, 1996). The similarity between those methane oxidizing enzyme systems is low, although they perform the same task, i.e. oxidizing CH₄ (Dalton, 2005). The soluble form, sMMO has a non-heme diiron active site (Merkx et al., 2001). This cytoplasmic enzyme is mostly found in alpha-proteobacterial MOB under copper-limiting growth concentrations up to 1 µM Cu²⁺ (Jahng and Wood, 1996, Koh et al., 1993). The pMMO, which has only been studied to a limited extent, has a copper active site (Balasubramanian and Rosenzweig, 2008, Dalton, 2005). pMMO is often the only active methane monooxygenase above a concentration of 8 µM Cu²⁺ (Hakemian and Rosenzweig, 2007). In between these values, a gradual switch between both enzymes is observed (Hakemian and Rosenzweig, 2007, Shah et al., 1992). The differential expression of both
Copper enhances the activity and salt resistance of methane oxidizing communities

enzyme systems is thus controlled by the Cu$^{2+}$ concentration. However, the exact mechanism of this ‘copper switch’ is still not known (Begonja and Hrsak, 2001, Hakemian and Rosenzweig, 2007).

The responses to elevated salt concentrations remain subject of discussion. Gulledge and Schimel (1998) and Whalen (2000) came to the conclusion that the inhibitory effect of ammonium on CH$_4$ oxidation was due to Cl$^-$, the counter ion of NH$_4^+$. De Visscher and Van Cleemput (2003) observed a high chloride sensitivity for alpha-proteobacterial MOB in soils. Other authors found no growth inhibition for 135 methanotrophic strains in a medium with 10 g NaCl L$^{-1}$ (Bowman et al., 1993b).

Most research in the field of MOB focuses on soil processes. Up till now, tests with bioreactors were mostly performed with axenic cultures. Yet, methanotrophs are more active when grown in communities together with other bacteria (Begonja and Hrsak, 2001, Helm et al., 2006). The aim of this study was to examine the influence of copper and salt addition on the CH$_4$ oxidation activity in mixed communities. Moreover, the effect of temperature and N source was investigated. The outcomes of this study provide a first attempt towards process development for a CH$_4$ oxidizing bioreactor.

III.2 Experimental section

III.2.1 Sampling and enrichment

As sources for MOB, samples were taken on sites expected to contain an active and abundant methanotrophic community: an anaerobic sludge effluent tank, an open pig manure container, the top of a composting heap, an effluent vessel of an anaerobic digester, a water sample out of a vessel with rotting plant material and a soil sample. MOB were enriched in each sample: they were inoculated separately in nitrate mineral salts medium (NMS), without Cu$^{2+}$ addition (Whittenbury et al., 1970b). The enrichment cultures were placed on a shaker (120 rpm) during 10 days under standard conditions (28°C, pH 7, 20% (v/v) CH$_4$ in air). Therefore airtight bottles, with a volume of 1150 mL
were used (Schott AG, Mainz, Germany), which were closed with a rubber butyl stopper (Ochs GmbH, Bovenden, Germany).

III.2.2 Experimental set-up to assess the influence of temperature, nitrogen source and copper addition (test 1)

All the enriched cultures were merged together in equal volumes (1% in total) to four identical airtight bottles of 1150 mL. The latter were filled with NMS-medium up to a volume of 400 mL and were placed on a shaker at 120 rpm (28°C, pH 7, 20% (v/v) CH₄ in air). However, one parameter was altered for each reactor. Reactor A was kept under the standard conditions as mentioned before. Reactor B was placed at a higher temperature of 35±1°C. In reactor C, the nitrate was replaced by ammonium (140 mg NH₄⁺-N L⁻¹), which can be used as alternative N source for methanotrophs. To reactor D, 10 µM Cu²⁺ was added as CuSO₄, as this can be assumed to stimulate the expression of pMMO (Shah et al., 1992).

After each cycle of 70h, half of the well-mixed liquid phase was replenished with freshly made medium. Hence, the hydraulic retention time (HRT) and sludge retention time (SRT) were both 140h. The addition of new medium was performed under non-sterile conditions. The reactors were open for at least 30 minutes, which allowed the gas phase to equilibrate with the outside air. A volume of 150 mL of CH₄ (99.95% pure, Air Liquide, Luik, Belgium) was then added to the closed reactors. During the whole test, the pH of all reactors remained in the range of 6 to 7, which is optimal for most MOB (Hanson and Hanson, 1996).

III.2.3 Experimental set-up to assess the influence of a higher copper concentration (test 2)

Enrichment and inoculation was identical to test 1. Six reactors were placed under the standard conditions of test 1 (28°C, shaker at 120 rpm, NMS-medium without copper addition). However, to three of them, 10 µM Cu²⁺ was added. Half of the medium was replenished after 46h (one cycle), unless there was still more than 4% (v/v) oxygen present.
Copper enhances the activity and salt resistance of methane oxidizing communities in the reactor. This gives a HRT and SRT of 92h. From cycle 7 on, NaCl (Normapur, VWR, Leuven, Belgium) was added to the reactors at different concentrations. As a control, reactors without salt addition were maintained as in the previous cycles. After 16 cycles, half of the medium of each reactor was replaced as mentioned before. Then, they were autoclaved (20 min, 121°C, 1 bar). The airtight bottles were cooled down to room temperature and placed on a shaker, while new CH$_4$ was added. The CH$_4$ oxidation rate was followed up during 9 days.

III.2.4 Gas composition analyses

For every cycle, a gas sample was taken right after the addition of CH$_4$ after 1 day and at the end of each cycle, by use of a gastight syringe (Hamilton, Sigma Aldrich, Bornem, Belgium). Samples were stored in vacutainers, under atmospheric pressure (Labco limited, Buckinghamshire, UK). Gas phase analyses were performed with a Finnigan Trace GC Ultra (Thermo Fisher Scientific, Zellik, Belgium). CH$_4$ concentrations were measured with a Flame Ionisation Detector (FID), while CO$_2$ and O$_2$ were measured with a Thermal Conductivity Detector (TCD). The methane oxidation rate (MOR) was expressed as the chemical oxygen demand of methane (CH$_4$-COD) over time. The COD-value of CH$_4$ is 4 mg COD mg$^{-1}$ CH$_4$.

III.2.5 Anion concentrations and pH

At the end of each cycle, samples were taken for further analysis. Filtered samples (0.45 μm filter, Millipore, Brussels, Belgium) were analyzed for Cl$^-$, NO$_3^-$, NO$_2^-$, SO$_4^{2-}$ and PO$_4^{3-}$, by means of an 761 Compact Ion Chromatograph, equipped with a conductivity detector (Metrohm, Zofingen, Switzerland). Ammonium concentrations were determined by means of steam distillation, according to Greenberg et al. (1992). The pH was determined with an SP10B pH electrode, connected to a CS32 multimeter analyzer (Consort, Turnhout, Belgium).
III.2.6 Biomass assessment

To correlate the CH_4 oxidation with the biomass growth, the latter was followed up by measuring the COD content in the water phase at the beginning and end of each cycle, according to Bullock et al. (1996). This analysis was performed with a kit, based on spectrophotometry (Hanna Instruments type HI 93754B-25 MR, Temse, Belgium). In test 2, cell dry weight (CDW) was assessed based on a determination of total solids and volatile solids according to Greenberg et al. (1992). To correlate both methods, simultaneous tests were done on all types of the ongoing reactors.

III.2.7 Naphtalene oxidation assay

A slightly modified version of the naphthalene oxidation assay of Brusseau et al. (1990) was used to quantitatively measure the sMMO activity. A crystal of naphthalene was added to 25 mL cell suspension and incubated at 28°C on a shaker for 2h. After incubation, 250 μL of freshly prepared tetrazotized-o-dianisidine solution (1.0 g L$^{-1}$) was added to each test tube, and the formation of a colored diazo-dye was immediately monitored by recording the absorbance at a wavelength of 525 nm via spectrophotometry; as described by Koh et al. (1993). The protein content of the cell suspension was determined by the total protein kit of Sigma-Aldrich (Bornem, Belgium) after lysis of the cells. The specific activity of sMMO is expressed as nanomoles of naphthol formed, per milligram of cell protein per hour.

III.2.8 Statistical analyses

Statistical analysis was performed with SPSS for Windows, version 15 (SPSS Inc., Chicago, USA). Linear regression and ANOVA were performed, after tests for homogeneity and normal distribution. A significance level of 0.05 was used (LSD).
III.2.9 DNA extraction, polymerase chain reaction (PCR) amplification and DGGE analysis

In test 2, samples were taken from the reactors, respectively after 1, 6 (just before salt addition) and 15 cycles, and stored at -20°C. DNA-extraction was performed according to Boon et al. (2000). Gel electrophoresis was performed to check if DNA was present. As gamma-proteobacterial MOB were not assumed to play an important role in the total activity (Henckel et al., 2000), primers specific for the alpha-proteobacterial MOB were chosen (Bodelier et al., 2005). These primers target a large part of the type II MOB diversity and allow detection of Methylosinus and Methylocystis species. Fragments of the 16S rRNA gene fragment were amplified using nested polymerase chain reaction (PCR), according to Bodelier et al (2005). The total amount of cycles was lowered to 15 and 25, respectively for the first and second round. An INGENY phorU2X2 DGGE-system (Goes, The Netherlands) was used for running 8% (w/v) polyacrylamide DGGE gels with a denaturating gradient ranging from 40% to 60% (Bodelier et al., 2005). The obtained DGGE patterns were subsequently processed, using Bionumerics software version 5.1 (Applied Maths, Sint-Martens-Latem, Belgium).

III.3 Results

III.3.1 Effect of temperature, ammonium and copper on the methane oxidation activity

In test 1, four reactors with the same inoculum were incubated under different conditions: (A) a control reactor at 28°C, (B) a reactor at an elevated temperature (35°C), (C) a reactor with ammonium as N source (28°C) and (D) a reactor with Cu²⁺ addition (10 µM Cu²⁺, 28°C). For reactors A, B and D, nitrate mineral salts (NMS) medium was used. In reactor C, NO₃⁻-N was replaced by the same concentration of NH₄⁺-N (140 mg L⁻¹).

There was no significant difference in CH₄ oxidation activity observed between the reactors under the different conditions of N source or temperature (reactors A, B and C). From cycle four on, the average methane oxidation rate (MOR) of these three reactors
Chapter III

was 393±109 mg CH₄-COD L⁻¹ d⁻¹ (Table III-1). This was observed for eleven consecutive cycles. The average biomass growth, expressed as cell dry weight (CDW), also stabilized from the fourth cycle on, with an average value of 162±17 mg CDW-COD L⁻¹ cycle⁻¹. The average growth yield of these reactors was 0.25±0.04 g CDW-COD g⁻¹ CH₄-COD. The pH-value over the whole test period was 6.4±0.2 for all three reactors. The average nitrogen consumption of the three reactors was 18±4 mg N L⁻¹ per cycle (70h). In most cases, the nitrite concentration was lower than 2 mg NO₂⁻ N L⁻¹. In the reactor with NH₄⁺ as N donor, NO₃⁻ N and NO₂⁻ N concentrations stayed below the detection limit (1 mg NO₂⁻ N L⁻¹).

Table III-1. Influence of the addition of 10 µM Cu²⁺ on the average and maximum MOR (mg CH₄-COD L⁻¹ d⁻¹) during the first day of each cycle, the biomass growth (mg CDW-COD L⁻¹ cycle⁻¹), the growth yield (mg CDW-COD g⁻¹ CH₄-COD) and pH during test 1, over 11 consecutive cycles. For the reactors without copper, the average values of reactors A (control), B (35°C) and C (NH₄⁺-N) are given.

<table>
<thead>
<tr>
<th></th>
<th>no Cu²⁺</th>
<th>with Cu²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average CH₄ oxidizing activity</td>
<td>393±109</td>
<td>582±109</td>
</tr>
<tr>
<td>Maximum CH₄ oxidizing activity</td>
<td>703±89</td>
<td>1053</td>
</tr>
<tr>
<td>Biomass growth</td>
<td>162±17</td>
<td>225±23</td>
</tr>
<tr>
<td>Growth yield</td>
<td>0.25±0.04</td>
<td>0.26±0.03</td>
</tr>
<tr>
<td>pH</td>
<td>6.4±0.2</td>
<td>6.3±0.2</td>
</tr>
</tbody>
</table>

In reactor D, the CH₄ oxidizing activity was significantly influenced by a Cu²⁺ addition of 10 µM Cu²⁺ (p≤0.001). The average oxidation rate of 582±109 mg CH₄-COD L⁻¹ d⁻¹ was a factor of 1.5 higher than the average of the other three reactors. Nevertheless, this higher activity had no significant effect on the biomass growth, nor growth yield (Table III-1). The final gas concentration at the end of each cycle did not differ significantly between the four tested reactors. At the end of each cycle, O₂ levels dropped to values lower than 1% (v/v). The gas phase concentration of CH₄ and CO₂ at the end of each cycle was 4.2±1.1 and 5.3±1.2% (v/v) respectively. During a cycle of 70h, on average 861±144 mg CH₄-COD L⁻¹ was oxidized.
III.3.2 Effect of copper on the methane oxidation activity and the microbial community

To confirm the influence of Cu\(^{2+}\) addition on the CH\(_4\) oxidation activity, a new test was performed. In test 2, six reactors were set-up as before. In three of them, 10 \(\mu\)M Cu\(^{2+}\) was supplemented; the other three reactors served as controls without Cu\(^{2+}\) addition. During the first 96h after inoculation, the biomass concentration increased from less than 22 to 231\(\pm\)45 mg CDW-COD L\(^{-1}\), without significant differences between the reactors (\(p<0.05\)). From the second cycle on, the average biomass growth was stable, with average values of 200\(\pm\)9 and 237\(\pm\)42 mg CDW-COD L\(^{-1}\) cycle\(^{-1}\) for the reactors without and with Cu\(^{2+}\) respectively (Table 2). There was no significant difference in growth yield, nor C:N ratio, between the reactors with and without Cu\(^{2+}\) addition (Table 2). The activity was a factor of 1.7 higher in the reactors with Cu\(^{2+}\) addition. An average oxidation rate of respectively 452\(\pm\)79 (without Cu\(^{2+}\)) and 755\(\pm\)40 (with Cu\(^{2+}\)) mg CH\(_4\)-COD L\(^{-1}\) d\(^{-1}\) was found over the last five cycles (Table 2). The CH\(_4\) concentration after 46h was generally around 3.5% (v/v) for the reactors with Cu\(^{2+}\) addition, while the O\(_2\) level dropped below 0.5% (v/v). The reactors without Cu\(^{2+}\) addition did not reach these low levels after 46h. There was still about 2% (v/v) O\(_2\) and 5% (v/v) of CH\(_4\) present in the gas phase.

No sMMO was detected in the reactors with Cu\(^{2+}\) addition. For the reactors without Cu\(^{2+}\) addition, a naphthalene oxidation rate of 121\(\pm\)26 nmol mg\(^{-1}\) protein h\(^{-1}\) was observed.

Changes in the alpha-proteobacterial MOB composition of the reactors were evaluated by means of DGGE analysis. After six cycles, different CH\(_4\) oxidizing species became dominant in the reactors with and without Cu\(^{2+}\) respectively, which is reflected in a low Pearson correlation of less than 60%. The communities in the reactors with the same treatment were similar to a high extent, with a Pearson correlation in all cases higher than 80%.
Chapter III

Table III-2. Influence of the addition of 11.2 g NaCl L⁻¹ salts on the average (cycle 11 to 16) and maximum MOR (mg CH₄-COD L⁻¹ d⁻¹), the biomass growth (mg CDW-COD L⁻¹ cycle⁻¹), the C/N ratio (mg NO₃-N mg⁻¹ CDW-COD) and the sMMO activity (nmol mg⁻¹ proteine h⁻¹), for the reactors with and without 10 µM Cu²⁺ during test 2.

<table>
<thead>
<tr>
<th></th>
<th>no NaCl</th>
<th>with NaCl</th>
<th>no NaCl</th>
<th>with NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average CH₄ oxidizing activity</td>
<td>452±79</td>
<td>177±111</td>
<td>755±40</td>
<td>396±95</td>
</tr>
<tr>
<td>Maximum CH₄ oxidizing activity</td>
<td>549±46</td>
<td>439±114</td>
<td>1147±19</td>
<td>474±61</td>
</tr>
<tr>
<td>Biomass growth</td>
<td>134±9</td>
<td>122±13</td>
<td>159±28</td>
<td>162±10</td>
</tr>
<tr>
<td>C/N-ratio</td>
<td>20±4</td>
<td>17±5</td>
<td>17±4</td>
<td>17±4</td>
</tr>
<tr>
<td>sMMO</td>
<td>120</td>
<td>111</td>
<td>not</td>
<td>not</td>
</tr>
</tbody>
</table>

III.3.3 Effect of salt addition on the methane oxidation activity and the microbial community

An addition of 7 g NaCl L⁻¹ to the reactors of test 1, did not result in a significant decrease of activity (p<0.05). However, an addition of 8.5 g NaCl L⁻¹ resulted in a decreased MOR in all four reactors. The activity decreased with a factor four in the reactors without Cu²⁺ addition, where it lowered only with a factor two in the reactor with Cu²⁺ addition. This salt concentration was also tested in the reactors of test 2. Addition of 8.5 g NaCl L⁻¹ lowered the MOR to the same extent as in test 1 (Figure III-1). From the eight cycle on, the sodium chloride concentration was increased again, to a final value of 11.2±0.5 g NaCl L⁻¹. This led to a decrease in activity in all the reactors. The highest decrease was observed in the reactors without Cu²⁺ addition. The activity of the latter was a factor 10 lower, with an average MOR of 39±12 mg CH₄-COD L⁻¹ d⁻¹, immediately after the salt addition. The MOR was lower than 60 mg CH₄-COD L⁻¹ d⁻¹ during the first ten days following the salt addition. Moreover, one of the reactors did not show any oxidation during those ten days. After this period, these reactors showed an increasing performance with a maximum oxidation rate of 439±59 mg CH₄-COD L⁻¹ d⁻¹. However, their activity showed a large variation.
Copper enhances the activity and salt resistance of methane oxidizing communities

Figure III-1. The influence of salt addition on the methane oxidation rate of reactors without (black circle) and with (white circle) Cu\(^{2+}\) addition (10 µM) during test 2. The average MOR (mg CH\(_4\)-COD L\(^{-1}\) d\(^{-1}\)) and the standard error were calculated for the first day of each cycle. During the seventh cycle, the concentration of NaCl was 8.5 g L\(^{-1}\). From cycle 8 on, the NaCl concentration was 11.2 L\(^{-1}\).

The decrease in activity was less in the reactors with Cu\(^{2+}\) addition. The MOR decreased 41%, from 715±11 to 422±180 mg CH\(_4\)-COD L\(^{-1}\) d\(^{-1}\) when 8.5 g NaCl L\(^{-1}\) was added (cycle 8). In the next cycle (cycle 9), the MOR dropped to 241±168 mg CH\(_4\)-COD L\(^{-1}\) d\(^{-1}\) (Figure III-1). However, in the following cycles, these reactors showed a stable performance between 325 and 475 mg CH\(_4\)-COD L\(^{-1}\) d\(^{-1}\), with a maximum of 474±61 mg CH\(_4\)-COD L\(^{-1}\) d\(^{-1}\) in the eight cycle after the first salt addition (cycle 14) (Figure III-1).
Chapter III

The salt addition had no influence on the N demand. However, in the reactors with Cu\(^{2+}\) addition, nitrite concentrations up to 40 mg NO\(_2\)-N L\(^{-1}\) were detected. The increase of the nitrite concentration corresponded with the decrease in the nitrate level.

The salt addition altered all alpha-proteobacterial MOB communities to a large extent. In all reactors, expression of new DGGE bands was observed. The dominant alpha-proteobacterial MOB species before salt addition were less abundant after 9 cycles of higher salt concentrations, while other alpha-proteobacterial MOB species became dominant (Figure III-2).

Figure III-2. Changes in DGGE patterns of the alpha-proteobacterial MOB community, in the different reactors of test 2, resulting from the addition of Cu\(^{2+}\) and/or salts. DGGE clustering was performed, based on the Pearson correlation (given as a percentage). The reactor samples are labelled as follows: inoculum (in triplicate), without Cu\(^{2+}\) (O1 to O3) and with Cu\(^{2+}\) (C1 to C3), after 1 cycle without salt (cyc1), after 6 cycles without salt (cyc6) and 15 cycles (9 cycles with salt addition) (cyc15).
Copper enhances the activity and salt resistance of methane oxidizing communities

There was no significant difference in biomass growth between the reactors with and without salt addition nor between the reactors with and without Cu$^{2+}$ (Table III-2). When the cell dry weight was compared with COD measurements, a ratio of 1.49±0.12 mg COD mg$^{-1}$ CDW was found for samples with, as well as without salt addition. The growth yield was independent of the Cu$^{2+}$ and salt concentration, and was on average 0.22 mg CDW-COD mg$^{-1}$ CH$_4$-COD.

From cycle 17 on, the concentration of salt was adjusted to 30 g NaCl L$^{-1}$. During the test period of ten days, the MOR were in all reactors below 50 mg CH$_4$-COD L$^{-1}$ d$^{-1}$. No CH$_4$ oxidation could be detected after heat killing the active communities.

III.4 Discussion

In this study efforts are made to identify important parameters that affect CH$_4$ oxidizing microbial systems, applicable for the treatment of CH$_4$ containing effluents. It was found that the MOR was not influenced by either increased temperature, or by the presence of exogenous ammonium supplementation. The addition of Cu$^{2+}$ or NaCl, however, had a significant influence on the MOR.

III.4.1 The effect of temperature and ammonium

A temperature increase from 28° to 35°C did not significantly affect the activity or growth rate of the MOB. It has been reported that most MOB have an optimal temperature of 30°C, which explains why an increase to 35°C was not accompanied by a higher activity (Park et al., 2005, Scheutz and Kjeldsen, 2004). Consequently, treatment of effluents in the range between 28°C and 35°C should not give problems.

Changing the N source from nitrate to ammonium also had no significant influence on the MOR. This result contrasts with those reported by other research groups, who observed inhibition of CH$_4$ oxidation at ammonium levels of 140 mg N L$^{-1}$ (Begonja and Hrsak, 2001, Dalton, 2005, Hanson and Hanson, 1996, King and Schnell, 1998, Nyerges and Stein, 2009). These conflicting observations suggest that more insight is needed into the specific effects
that ammonium has on the microbial CH₄ oxidation process, especially in mixed culture conditions.

The communities in the different reactors behaved similarly under the different environmental conditions. Hence, stable CH₄ oxidizing communities were present. This was confirmed by DGGE analysis and the presence of active sMMO (Figure III-2). These communities reached a stable MOR after a start-up period of less than 72h (Table III-1). The observed activity, growth yield and nitrogen consumption were similar to previously described methanotrophic-heterotrophic communities, and confirm the presence of high methanotrophic activity in mixed communities (Helm et al., 2006, Hrsak and Begonja, 2000, Melse and Van der Werf, 2005). The used semi-continuous model system seems a good model for CH₄ oxidizing bioreactors, since the removal rates were similar (Melse and Van der Werf, 2005). Fluorescent in situ hybridisation revealed that only a small amount of alpha-proteobacterial MOB was present in the microbial community (data not shown). The CH₄ concentration at the end of each cycle was, in agreement with the results of all tested reactors, never lower than 3.5% (v/v). It seems that the observed O₂ concentration of 0.5% (v/v) at the end of most cycles, was the lowest O₂ level that allowed CH₄ oxidation. This is in agreement with other authors, who found maximum rates of CH₄ oxidation in a range of 0.45 to 20% (v/v) O₂ (Henckel et al., 2000, Wilshusen et al., 2004).

III.4.2 The effect of copper

Copper had a significant positive effect on the MOR. The addition of 10 µM Cu²⁺ increased the average oxidation rate in test 2 by a factor of 1.7 to 755±40 mg CH₄-COD L⁻¹ d⁻¹ (Table 2). This is slightly more than reported in studies with axenic methanotrophic cultures, where a factor of 1.2 to 1.5 has been found (Begonja and Hrsak, 2001, Joergensen and Degn, 1987). Oxygen became a limiting factor for growth before the end of each cycle. Therefore, the higher methane oxidation rate after Cu²⁺ addition did not lead to a significantly higher biomass concentration at the end of each cycle. However, no conclusions can be made about the specific growth yield of the MOB, as only the biomass growth of the whole bacterial community was measured.
The addition of Cu$^{2+}$ had a distinct effect on the alpha-proteobacterial MOB community. DGGE analyses of test 2 revealed that the profiles of replicate treatments were very similar throughout the entire test period, although there was no direct cross-inoculation (Fig. 2). In contrast, Cu$^{2+}$ addition had a distinctive selective power, as it shifted the alpha-proteobacterial MOB community to an important extent. Moreover, the Cu$^{2+}$ addition had an influence on the MMO-enzymes. No sMMO activity was detected in the reactors with Cu$^{2+}$ addition. The latter is in agreement with former observations, where a concentration of 10 µM Cu$^{2+}$ had an inhibitory effect on sMMO expression, while stimulating the pMMO expression (Hakemian and Rosenzweig, 2007, Jahng and Wood, 1996, Shah et al., 1992).

III.4.3 The effect of salt addition

The addition of NaCl up to a concentration of 7 g NaCl L$^{-1}$ had no significant influence on the MOR. However, a concentration of 8.5 g NaCl L$^{-1}$ led to a decrease in CH$_4$ oxidizing activity in all reactors. Immediately after the addition of 11.2 g NaCl L$^{-1}$, the reactors without Cu$^{2+}$ showed almost no activity (< 50 mg CH$_4$-COD L$^{-1}$ d$^{-1}$) for ten days (Figure III-1). These results are in agreement with Schnell & King (1996), who found a 35% lower CH$_4$ oxidation when a salt concentration of 10 g NaCl L$^{-1}$ was amended to the alphaproteobacterial *M. trichosporium* OB3b, although these results contrast with the results of Bowman et al. (1993b), who did not observe a high sensitivity for NaCl.

Interestingly, the MOR remained above 250 mg CH$_4$-COD L$^{-1}$ d$^{-1}$ in the reactors which received both Cu$^{2+}$ and NaCl (11.2±0.5 g L$^{-1}$). The different response to increased salt concentrations could be a result of either community and/or enzyme level effects. At the community level, a population shift was seen during the cycles without salt addition. It is possible that a fortuitously selection took place towards more salt tolerant species. This, however, appears unlikely, as the dominant alpha-proteobacterial MOB species before and after salt addition were completely different (Figure III-2). Moreover, since no significant activity was seen at a concentration of 30 g NaCl L$^{-1}$, it is clear that truly halophilic methanotrophs were not present in considerable amounts. However, over time,
the fact that the MOR recovered partly in all reactors (Figure III-1) suggests that salt tolerant species were enriched and became more abundant, as shown by DGGE analysis.

The fast decrease in activity after salt addition is probably due to differences at the enzymatic level. The immediate effect of the salt addition clearly depended on the Cu$^{2+}$ concentration (Table 2). As copper is the key element in the expression of both sMMO and pMMO, the differential effect of salt on reactor performance could be related to the type of methane monooxygenases present in the different reactors: the reactors without Cu$^{2+}$ were enriched with methanotrophs that showed sMMO activity, whereas the reactors with added Cu$^{2+}$ addition did not show any sMMO activity. As the only other enzyme in MOB known to oxidize CH$_4$ with such a high rate is pMMO, the MOB in these reactors appear to have pMMO as the active methane monooxygenase (Begonja and Hrsak, 2001, Hakemian and Rosenzweig, 2007, Shah et al., 1992). This suggests that sMMO and pMMO possess different sensitivities towards NaCl. To our knowledge, these findings have not previously been reported and need to be confirmed by means of pMMO and sMMO expression assays. However, they are consistent with the work of Trotsenko and Khmelenina (2002), who found that only 2 of the 30 salt-resistant methanotrophs they analyzed produced sMMO. This difference in sensitivity can also be due to the different locations of the monooxygenase enzymes in the bacterial cells, rather than the intrinsic tolerance of the enzyme itself. pMMOs are embedded in intraplasmatic membranes, which might offer protection against the increased salt concentrations, where sMMOs have less osmotic protection in the cytoplasm (Colby et al., 1977, Dalton, 2005). If location is more important than enzyme structure itself, then the difference in sensitivity might also extend to other types of salts or solutes.

After ten cycles with salt addition, the MOR were still a factor of two lower than the controls. It has been reported that bacteria use additional energy to regulate their metabolism under hyperosmotic conditions (Csonka, 1989). That could lead to a lower bacterial activity. The formation of nitrite could also be a reason for the lower activity. Nitrite concentrations up to 40 mg NO$_2$^-N L$^{-1}$ were observed in the reactors where Cu$^{2+}$ and salt were amended. Although the reason for the high nitrite concentration is unknown,
Copper enhances the activity and salt resistance of methane oxidizing communities

similar levels of nitrite have been shown to reduce the CH₄ oxidation activity of at least three axenic MOB strains (Nyerges and Stein, 2009).

The findings of this work provide a first attempt for optimizing microbial CH₄ removal systems. The maximum MOR achieved was 280 mg CH₄ L⁻¹ reactor d⁻¹. As the maximum solubility of CH₄ in water is 26 mg CH₄ L⁻¹ (22°C) (Melse and Van der Werf, 2005), a hydraulic retention time of 2.2 h would be required to treat CH₄ saturated effluents. Because of the low solubility of both CH₄ and O₂, treatment of the aerated water phase as such would be necessary. Since the MOR is comparable at temperatures of 28°C and 35°C, good CH₄ removal can be achieved at lower temperatures. In situations where increased Cu²⁺ concentrations are acceptable, addition of Cu²⁺ to methanotrophic bioreactors should be considered, as this increased the MOR by more than 50%. Anaerobic effluents can contain salt concentrations of up to 10 g NaCl L⁻¹ (Gourdon et al., 1989, Ismail et al., 2008). As concentrations of up to 7 g NaCl L⁻¹ and 140 mg NH₄⁺-N L⁻¹ did not seem to have a negative influence on the MOR, treatment of CH₄ saturated effluents, rich in salts and high in ammonium should be possible.

Acknowledgements

DVDHA, WV and NB designed the experiment. DVDHA performed the experiments, analyzed the data and wrote the manuscript. PB gave input on the experimental design, helped with the gas analyses and commented on the manuscript. SH maintained the MOB cultures. SH, WV and NB commented on the manuscript. This work was supported by a Ph.D. grant (no. 83259) from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen), a research grant from the Flemish Fund for Scientific Research (FWO-Vlaanderen, 3G070010) and by the Geconcerteerde Onderzoeksactie (GOA) of Ghent University (BOF09/GOA/005). Tim Lacoere is greatly acknowledged for the help with the molecular analyses. Also thanks to Jan Vermeulen and Samuel Bodé for their support with GC-analyses and Vicky D’havé for her assistance. Furthermore, Anthony Hay, Joachim Desloover, Yu Zhang and Willem De Muynck are gratefully appreciated for critically reading the manuscript.
CHAPTER IV

SELECTION OF A METHANE OXIDIZING CONSORTIUM RESISTANT TO HIGH AMMONIUM LOADS

Microsensor setup, DTU, Copenhagen
De wereld is verdergegaan.

Roland Deschain
Chapter IV. Selection of a methane oxidizing consortium resistant to high ammonium loads

Abstract

Methane oxidizing bacteria (MOB) form a biological methane sink, thereby providing a key ecosystem service of global importance. Their resilience to ammonium amendments has been examined repeatedly, but it is unclear if the variation in response of methanotrophic communities to increased ammonium concentrations is mainly due to the community structure or due to adaptation at a physiological level. Here, the activity and composition of a methanotrophic community was assessed over time, in order to compare the influence of a sudden and a gradual increase of the ammonium concentration, respectively. In contrast to a sudden increase, MOB showed remarkable resilience to gradually increasing ammonium loads. For the first time, substantial methane oxidation activity was observed for a methanotrophic culture exposed to ammonium loads up to 2500 mg NH₄⁺-N L⁻¹. Analyses based on the 16S rRNA gene diversity by denaturing gradient gel electrophoresis and a pmoA-based microarray showed that the composition of the methanotrophic community was affected by high ammonium amendments, favoring type Ia Methylosarcina-like MOB. The ability of a methanotrophic community to withstand a gradual increase of the ammonium concentration is important with regard to fertilizing programs in agriculture; a gradual increase of ammonium levels allows the MOB to adapt and could help to preserve the methane sink in agricultural soils.

Redrafted after:
Chapter IV

IV.1 Introduction

Proteobacterial methane oxidizing bacteria (MOB) are one of few bacterial groups that are able to use CH₄ as sole carbon and energy source and are therefore key players in mitigation strategies for this greenhouse gas (Denman et al., 2007). These MOB, allocated within the class of the *Gamma-proteobacteria* (type Ia/Ib MOB) and the *Alpha-proteobacteria* (type II MOB) are together with the Verrucomicrobia the best known aerobic methane oxidizing species. The MOB possess methane monooxygenase enzymes (MMO), existing in a soluble and particulate form, allowing them to oxidize CH₄ (Dalton, 2005). These enzymes have a low specificity for CH₄, resulting into co-metabolic oxidation of NH₃ among other chemicals (Dalton, 1977; Jiang et al., 2010). However, the NH₃ oxidation products hydroxylamine and nitrite can constrain the MOB, while at the same time a competitive inhibitory effect occurs (King and Schnell, 1994; Nyerges and Stein, 2009). Then again, NH₃/NH₄⁺ can stimulate the activity and growth of MOB, as the bacteria use the N as building block for their cell structures (Anthony, 1982; Bodelier and Laanbroek, 2004). Therefore, ammonium amendments can lead to a decrease as well as increase of the methane oxidation, depending on the applied concentration, the duration and other affecting factors (De Visscher and Van Cleemput, 2003; Stein and Klotz, 2011). One example is the effect of the prevailing pH on the inhibitory effect; as NH₃ is more toxic than NH₄⁺ towards MOB (pKa = 9.23), an increased inhibition occurs at higher pH values (O’Neill and Wilkinson, 1977).

Amendments of NH₃/NH₄⁺ also influence the community structure, as MOB show differences in their resilience, resulting into selection for NH₃/NH₄⁺-tolerant strains (Nyerges and Stein, 2009). These strain-specific characteristics also explain partly why test results with axenic cultures do not correlate well with these of mixed cultures in natural environments (Nyerges et al., 2010). While some MOB, often type II species, are known to be highly sensitive to NH₄⁺ loads of only 125 mg NH₄⁺-N L⁻¹, others do not experience any inhibitory effect with such concentrations (Begonja and Hrsak, 2001; Nyerges and Stein, 2009; Veillette et al., 2011). Various reasons have been put forward to explain these at
first sight contradictory results: (i) physiological differences without taxonomic correlation (Nyerges and Stein, 2009), (ii) ratio of applied NH₄⁺ over available CH₄ (King and Schnell, 1994; Bodelier et al., 2000), (iii) osmotic effects of salts (King and Schnell, 1998), (iv) physiological mechanisms regulating the NO₂⁻-production (King and Schnell, 1994), (v) presence of N-fixing MOB or nitrifying bacteria in the community (Bodelier and Laanbroek, 2004; Noll et al., 2008) or (vi) N limited growth conditions (Bodelier and Laanbroek, 2004). However, as all these mechanisms occur simultaneously, it is difficult to differentiate among the various effects.

The main goal of the present study is to determine the capacity of a methanotrophic community to adapt to increasing NH₄⁺-N loads. Therefore, sequential enrichments were performed with increasing NH₄⁺-N loads up to a concentration of 2500 mg NH₄⁺-N L⁻¹. Changes in methanotrophic activity and community composition were determined using methane measurements and molecular techniques, respectively. This approach allowed to evaluate the adaptation capacity of a methanotrophic community and to identify NH₄⁺ tolerant species.

IV.2 Experimental section

IV.2.1 Inoculation and cultivation of methanotrophic communities

To achieve a high methanotrophic diversity, the starting inoculum was assembled by merging samples from a compost heap, top soil with leaf litter, anaerobic sludge and the top layer of a denitrification tank of a wastewater treatment plant (Ossemeersen, Gent, Belgium), all enriched for 72h with 20% (v/v) CH₄ in air. Ammonium mineral salts medium (AMS) containing 125 mg NH₄⁺-N L⁻¹, amended with a buffer of 2 mM Na₂HPO₄.12H₂O and 2 mM KH₂PO₄ was used as growth medium (10 times dilution of original samples). Then, 5 mL of each sample was merged and enriched in 100 mL AMS for another 72h in order to have an adapted mixed community.
This inoculum was then diluted in AMS medium (85 mg COD L\(^{-1}\)) and subjected to three different treatments (Figure IV-1). During the first cycle, the starting inoculum was suddenly exposed to different \(\text{NH}_4^+\)-N concentrations, varying from 125 to 2000 mg \(\text{NH}_4^+\)-N L\(^{-1}\). During nine more cycles, the three evolved cultures with 125 mg \(\text{NH}_4^+\)-N L\(^{-1}\) (AMS medium) were used as controls whereby the \(\text{NH}_4^+\) concentration was kept at that level. The incubations with 250 mg \(\text{NH}_4^+\)-N L\(^{-1}\) were used to evaluate the influence of a gradually increasing N concentration. All tests were performed in 595 mL Schott bottles filled with 100 mL AMS and 20% CH\(_4\) (v/v) in air, shaken (120 rpm) in the dark at 28°C. During all cycles, the activity was followed up by measuring the CH\(_4\) and O\(_2\) consumption by means of GC analyses (van der Ha et al., 2011) and compared to the control bottles. A cycle was stopped when the concentration of O\(_2\) in the gas phase dropped below 5% (v/v). In the incubations with a gradual \(\text{NH}_4^+\)-N increase, the \(\text{NH}_4^+\) concentration was increased each cycle with 250 mg \(\text{NH}_4^+\)-N L\(^{-1}\) up to a value of 2500 mg \(\text{NH}_4^+\)-N L\(^{-1}\).

![Figure IV-1. Schematic overview of the inoculation strategy and the three applied treatments.](image-url)
In all tests, standardization of the starting concentration of bacterial mass occurred (85±13 mg COD L\(^{-1}\)) by means of chemical oxygen demand (COD) measurements, as this allowed to analyze in a quick and accurate way the amount of present biomass. Simultaneous cell dry weight (CDW) measurements (Greenberg et al., 1992) showed that these values correlated with 43±10 mg CDW. The starting pH was between 6.2 and 6.8, depending on the NH\(_4\)Cl-amendment.

IV.2.2 Physico-chemical analyses

The start concentrations of NH\(_4^+\)-N were followed up in 96 well plates by means of a colorimetric method (Taylor et al., 1974). The NH\(_4^+\)-N consumption was less than the error on the analysis (5% of value) and could therefore not be evaluated. The concentrations of dissolved NO\(_3^-\) and NO\(_2^-\) were followed up by ion chromatography (van der Ha et al., 2011), but were for all cycles and treatments lower than 2 mg NO\(_3^-\)-N or NO\(_2^-\)-N. All results were statistically analyzed by an independent two-sample Student t test with equal variance and at a significance level of 95%.

IV.2.3 Molecular techniques

DNA was extracted by means of a FastDNA SPIN kit for soil (MP Biomedicals, USA) and PCR products were obtained by means of the specific MOB primer set A189f/mb661r, targetting the pmoA gene (Costello and Lindstrom, 1999), in accordance with van der Ha et al. (2012). DGGE was performed with an INGENY phorU2x2 System (Goes, Nederland) and analyzed by means of BioNumerics software version 5.10 (Applied Maths, Belgium) (van der Ha et al., 2012).

The microarray analysis was performed with minor modifications as described before (Bodrossy et al., 2003, Ho et al., 2011), using the A189f/T7-A682r primer combination. Hybridization signal was summed up, and the mean of the triplicates was used for standardization. Analysis of the standardized microarray data was performed in R ver.2.10.0 (Oksanen et al., 2010) and implemented in heatmap 2 in gplots ver.2.7.4. The
microarray has a wide probe coverage targeting known type I and type II MOB (Bodrossy et al., 2003). Probes grouped as ‘Others’ consist of amoA (a gene encoding for ammonia monoxygenase), pmoA2 (an isozyme of the pmo; Baani and Liesack (2008)); Verrucomicrobial methanotrophs, and other environmental clusters without a defined function (methane or ammonium oxidizers).

IV.3 Results

IV.3.1 Influence of increasing NH$_4^+$ amendments on the methanotrophic activity

A methanotrophic starting inoculum was incubated under three different conditions (Figure IV.1). The first set of conditions concerned a sudden increase of the NH$_4^+$ concentration from initially 125 mg NH$_4^+$-N L$^{-1}$, as typically applied in methanotrophic growth medium (AMS), up to a concentration of 2000 mg NH$_4^+$-N L$^{-1}$. Sudden increases up to concentrations of 500 mg NH$_4^+$-N L$^{-1}$ did not result in an extended lag phase or a significant decrease of the methane oxidation rate (MOR) (Figure 1). However, from a concentration of 1000 mg NH$_4^+$-N L$^{-1}$ onwards, significantly lower MOR were observed ($p<0.05$, $n=3$), and the variance between triplicates increased with higher NH$_4^+$ concentrations. At the same time, higher concentrations led to extended lag phases (Figure IV-2).
Figure IV-2. Cumulative methane consumption (mg CH$_4$ g$^{-1}$ chemical oxygen demand or COD) after a sudden increase in NH$_4^+$ concentration from 125 (control, filled circle) to 250 (empty circle), 500 (filled triangle), 1000 (empty triangle), 1500 (filled square) and 2000 (empty square) mg NH$_4^+$-N L$^{-1}$, respectively (n=3). For clarity, each curve was shifted 3h.

After this first cycle, the two other conditions were tested. For ten cycles, the NH$_4^+$-N concentration of control incubations was kept at 125 mg NH$_4^+$-N L$^{-1}$. In parallel, a sequential incubation with a gradually increasing NH$_4^+$ concentration was applied. Therefore, the NH$_4^+$-N concentration was increased from 250 mg NH$_4^+$-N L$^{-1}$ up to 2500 mg NH$_4^+$-N L$^{-1}$, in steps of 250 mg NH$_4^+$-N L$^{-1}$ cycle$^{-1}$. During these series of incubation cycles, no significant difference in MOR (after 48h) was observed between the control treatment and the gradually increasing treatment, up to a concentration of 2000 mg NH$_4^+$-N L$^{-1}$ (Figure IV-3). Above this concentration, one of the triplicates showed a low activity, leading to a high variance between the triplicates and a significantly lower methane MOR compared with the controls ($p<0.05$).
Figure IV-3. Cumulative methane consumption (mg CH$_4$ g $^{-1}$ COD) during nine incubation cycles, with a gradual increase of the NH$_4^+$ concentration (empty circles) from 250 to 2250 mg NH$_4^+$-N L$^{-1}$ (n=3, steps of 250 mg NH$_4^+$-N L$^{-1}$ per cycle). Due to technical issues, no daily measurements could be completed during the 10th cycle with 2500 mg NH$_4^+$-N L$^{-1}$. The average MOR was however not significantly different in comparison with the former cycle with 2250 NH$_4^+$-N L$^{-1}$. In the control bottles (n=3, filled circles), the concentration of NH$_4^+$ was kept at 125±14 mg NH$_4^+$-N L$^{-1}$.

In a final attempt to investigate the effect NH$_4^+$-N L$^{-1}$ concentration, the control bottles were also shock loaded with 2250 mg NH$_4^+$-N L$^{-1}$ after the tenth cycle. On average 706 mg CH$_4$ was removed g $^{-1}$ COD d$^{-1}$ (n=3) after 48h, significantly less than the 1468 mg CH$_4$ g $^{-1}$ COD d$^{-1}$ observed for the gradually adapted communities at that concentration. Nevertheless, NH$_4^+$ resilient MOB were still present, as a significant MOR was observed and the lag phase was shorter than 24h.
IV.3.2 Effect of increasing NH$_4^+$ amendments on the methanotrophic community

Specific PCR-DGGE and a diagnostic microarray analysis targeting the *pmoA* gene were used to characterize the methanotrophic community. For all treatments, a high similarity in composition was observed between communities undergoing identical conditions, even if they differed significantly in activity. DGGE analysis revealed a temporal shift in the MOB community of the control incubations, leading to the dominance of three bands on the DGGE profile; two of these already dominantly present in the starting inoculum (Figure IV-4). In contrast, both the sudden and gradual NH$_4^+$ increase resulted into dominance of one specific band, also present in the DGGE profiles of the starting inoculum and the control incubations.

Figure IV-4. *pmoA*-based DGGE analyses revealed clustering of the MOB in the cultures undergoing a sudden (indicated by ‘S’) and gradual (G) increase of the NH$_4^+$ concentration, respectively, while the starting inoculum (I) and control cultures (C) clustered separately.
The pmoA-based microarray analysis allowed identification of dominant genera in the different MOB communities (Figure IV-5). Even after ten cycles, the MOB community in the control incubations were similar to the starting inoculum, and dominated by type II MOB. In contrast, the community shifted towards type I MOB when the NH$_4^+$-N load was gradually increased. With these samples, the dominant probes (Mmb304, P_Mmb259, Mmb303, O_Mmb562) were indicative for *Methylosarcina*-like MOB belonging to the type Ia subgroup, although type Ia MOB only represented a minority in the starting inoculum.

![Probes](image)

Figure IV-5. Diagnostic microarray analysis based on the pmoA gene showing the response of the methanotrophic community to ammonium amendments. Red and blue in the color key denote high, and no signal intensities, respectively.

IV.4 Discussion

When exposing the methanotrophic community without prior adaptation to high NH$_4^+$-N concentrations, no significant decrease in methanotrophic activity was observed up to a concentration of 500 mg NH$_4^+$-N L$^{-1}$. Above this concentration, a significant decrease in methane oxidizing activity was detected. At the same time, higher concentrations led to
Selection of a methane oxidizing consortium resistant to high ammonium loads

extended lag phases (Figure IV-2); a phenomenon also observed by Park et al. (2005) and Yang et al. (2011), who applied high doses of 1000 mg NH$_4^+$-N kg$^{-1}$ soil. Still, even with a concentration of 2000 mg NH$_4^+$-N L$^{-1}$, a substantial MOR was observed, indicating that the starting inoculum contained MOB able to maintain their metabolic activity while exposed to such high NH$_4^+$ concentrations.

When a gradual increase of the NH$_4^+$-N concentration was applied, the methanotrophic community was able to maintain its full methanotrophic activity up to concentrations of 2000 mg NH$_4^+$-N L$^{-1}$. In contrast with the experiments with a sudden NH$_4^+$-increase, no loss of methanotrophic activity nor an extended lag phase was observed when then NH$_4^+$ concentration was increased gradually, showing that some members of the methanotrophic community could adapt to concentrations of 2000 mg NH$_4^+$-N L$^{-1}$ without MOR reduction. Thus, in order to allow the MOB to adapt to increased NH$_4^+$-concentrations and/or to allow shifts in the community towards more resilient species, it is important that an increase of NH$_4^+$ loads occurs gradually. Other research groups (Nyerges et al., 2010, Veillette et al., 2011, Yang et al., 2011) also investigated the effect of high NH$_4^+$ concentrations (up to 700 mg NH$_4^+$-N L$^{-1}$) on methanotrophic communities, but a non-inhibiting NH$_4^+$ concentration of 2000 mg NH$_4^+$-N L$^{-1}$ is the highest reported so far. At such high NH$_4^+$ concentrations, the ratio of dissolved NH$_4^+$:dissolved CH$_4$ is 256, while the amount of dissolved NH$_3$ and CH$_4$ is of the same order. This indicates that at neutral pH, direct inhibition of MMO by NH$_4^+$/NH$_3$ is not the main reason for the often-observed steep decrease in methane oxidation. The decrease of methanotrophic activity observed above 2000 mg NH$_4^+$-N L$^{-1}$ is possibly due to osmotic effects as stated by King & Schnell (1998). Indeed, 2250 mg NH$_4^+$-N L$^{-1}$ correlates with 160 mM Cl$^-$, a concentration that resulted in decreased MOR for mixed methanotrophic communities under similar conditions (van der Ha et al., 2010).

While the methanotrophic community stayed relatively stable in controls with 125 mg NH$_4^+$-N L$^{-1}$, clear community shifts occurred at concentrations of 1000 mg NH$_4^+$-N L$^{-1}$ and more, no matter how the NH$_4^+$ increase was applied. With concentrations of 1000 mg
NH$_4^+$-N L$^{-1}$ and more, one specific MOB became dominant. This MOB was also present in the DGGE profiles of the starting inoculum and the control incubations. The latter indicates that this MOB is not restricted to high NH$_4^+$ environments, but rather exhibits a stronger adaptive capacity than the other MOB (Nyerges and Stein, 2009). The presence of this resilient MOB in the starting inoculum could explain why a lag phase occurred after the sudden NH$_4^+$ amendments with concentrations above 1000 mg NH$_4^+$-N L$^{-1}$, as it takes a few reproduction cycles before the community is able to shift to more NH$_4^+$ resilient species. Indeed, that particular band became also more dominant in the DGGE profiles of the incubations with a sudden increase of the NH$_4^+$ concentration to 1000 and - more distinct - 2000 mg NH$_4^+$-N L$^{-1}$.

The microarray analysis showed that with high NH$_4^+$ concentrations, a Methylosarcina-like MOB became dominant, even though the relative abundance of type I MOB was very low in the starting inoculum. These results confirm observations of previous studies, where this subgroup also showed a higher tolerance for NH$_4^+$-N, and was even sometimes stimulated by it (Noll et al., 2008, Yang et al., 2011). Possibly, the different responses of MOB subgroups to ammonium loads reflect on their adaptable life strategies (Ho et al., 2012). Conclusively, these highly resilient MOB create opportunities for CH$_4$ mitigation in environments where NH$_4^+$ and CH$_4$ co-occur.

Acknowledgements

DVDHA, AH and NB designed the experiments. DVDHA and DG performed the experiments and analyzed the data. DVDHA wrote the manuscript. AH and BS performed and analyzed the micro-arrays. SH assisted with the experiments. SH, AH, NB and PV commented on the manuscript. This research was possible via financial support of the Geconcerteerde Onderzoeksactie (GOA) of Ghent University (BOF09/GOA/005) and a PhD grant to David van der Ha from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen, SB-83259). We thank Tim Lacoere for excellent technical assistance and Frederiek-Maarten Kerckhof for practical help.
CHAPTER V

SELECTION OF ASSOCIATED HETEROTROPHS BY MOB

AT DIFFERENT COPPER CONCENTRATIONS

Flow regulators, soil remediation plant, Geneva
Everybody knows that books are better than life. That’s why they’re books.

Pursy Will
Chapter V. Selection of associated heterotrophs by MOB at different copper concentrations

Abstract

Due to the increasing atmospheric methane concentration, more knowledge is needed on the management of methanotrophic communities. While most studies focused on the characteristics of the methane oxidizing bacteria (MOB), less is known about their interactions with associated heterotrophs. Interpretative tools based on DGGE allowed to evaluate the influence of copper – an important enzymatic regulator for MOB – on the activity and composition of the bacterial community. Over 30 days, enrichments with 0.1, 1.0 and 10 µM Cu^{2+} respectively, showed comparable methane oxidation activities. The different copper concentrations did not create major shifts in the methanotrophic communities, as a Methylomonas sp. was able to establish dominance at all different copper concentrations by switching between both known methane monooxygenases. The associated heterotrophic communities showed continuous shifts, but over time, all cultures evolved to a comparable composition, independent of the copper concentration. This indicates that the MOB selected for certain heterotrophs, possibly fulfilling vital processes like removal of toxic compounds. The presence of a large heterotrophic food web indirectly depending on methane as sole carbon and energy source was confirmed by a clone library wherein MOB only formed a minority of the identified species.

Redrafted after:

V.1 Introduction

Most of the aerobic methanotrophic diversity thus far obtained can be phylogenetically positioned within the classes of the *Gamma-proteobacteria* (often referred to as type Ia/ib MOB) and the *Alpha-proteobacteria* (type II MOB) (Dedysh, 2009), although several non-proteobacterial MOB have been recently described (Ettwig et al., 2010, Op den Camp et al., 2009). Type Ia/ib and type II MOB show distinct differences in their carbon assimilation pathway, cellular ultrastructures and other physiological and biochemical characteristics (Hanson and Hanson, 1996, Ward et al., 2004). Also the form of MMO that can be expressed differs: while many type Ia/ib MOB can only express the particulate form (pMMO), most type II MOB are also capable of expressing the soluble form (sMMO) (Dalton, 2005). The pMMO has a copper active site and is only expressed when the copper-to-biomass ratio is high enough (Balasubramanian and Rosenzweig, 2008, Dalton, 2005). The sMMO on the other hand contains a non-heme diiron active site and starts to become inhibited typically at concentrations of about 0.8 µM Cu^{2+} in liquid enrichments of MOB (Hakemian and Rosenzweig, 2007, Koh et al., 1993). Therefore, the copper-to-biomass ratio is a major steering parameter towards the expression of both enzymes, hence indirectly influencing the methanotrophic activity and community structure (Semrau et al., 2010, van der Ha et al., 2010).

In nature, MOB are not only important in the global methane cycle, but they also form the base of a microbial food chain by supplying by-products and metabolites of the CH$_4$ oxidation processes to other microorganisms. Therefore, in the absence of other organic C sources, MOB perform a major ecological role as the accompanying heterotrophic bacteria completely rely on the activity of MOB for their carbon and energy needs (Hrsak and Begonja, 2000, Modin et al., 2010). The CH$_4$ oxidizing activity is likewise influenced by accompanying heterotrophic bacteria that either remove metabolites, which can inhibit MOB or produce metabolites that stimulate MOB activity and/or growth (Hesselsoe et al., 2005, Hrsak and Begonja, 2000, Jiang et al., 2010). Recent research suggested cobalamin produced by rhizobial strains strongly stimulated the growth and CH$_4$ oxidation of several
MOB (Iguchi et al., 2011). Other research groups also reported higher activity and/or growth of MOB in mixed cultures compared to monocultures (Hrsak and Begonja, 2000). It is however not elucidated if there is a selection of cooperative heterotrophs by the MOB or not since most research to date merely focussed solely on the MOB. Consequently, it is imperative to better understand the interrelationships between the MOB and the associated bacteria, and to investigate the influence of different environmental parameters on the microbial community composition and dynamics in order to gain more insights into the biogeochemical methane cycle and to steer methanotrophic communities in CH₄ mitigating strategies. Culture-independent techniques have been developed to explore the microbial community composition and Microbial Resource Management (MRM) comprehends necessary tools to better understand the diversity and dynamics as well as interrelationships of different microorganisms in order to adjust, control and/or steer microbial communities (Marzorati et al., 2008, Read et al., 2011, Wittebolle et al., 2008).

In this study, the activity and composition of a CH₄ oxidizing community was evaluated in relation to different copper concentrations (0.1, 1.0 and 10 µM Cu²⁺). The mentioned parameters and a clone library created more insight on the interactions between this selective pressure, the MOB and the associated heterotrophic community.

V.2 Experimental section

V.2.1 Inoculation and cultivation of methanotrophic communities

All tests were performed in sterile, gastight Schott bottles (AG, Germany) sealed with butyl rubber stoppers (Ochs GmbH, Germany) and filled with 20 vol% CH₄ in air. The cultures were grown on dilute Nitrate Mineral Salts medium (dNMS) with 0.1% (v/v) of trace solution, according to Dunfield et al. (2003) and van der Ha et al. (2010). A methanotrophic community was assembled by mixing natural samples from a wetland (Bourgoyen, Ghent) and the top layer of an anaerobic tank of a wastewater treatment plant (WWTP Ossemeersen, Ghent, Belgium) and was enriched under 20% (v/v) CH₄ with a
copper concentration of 10 µM Cu\(^{2+}\) (2.5 mg L\(^{-1}\) CuSO\(_4\).5H\(_2\)O). This enrichment was used as inoculum (10%) to create two subcultures only differing in their final copper concentration: 1.0 µM Cu\(^{2+}\) (0.25 mg L\(^{-1}\) CuSO\(_4\).5H\(_2\)O) and 10 µM Cu\(^{2+}\) (2.5 mg L\(^{-1}\) CuSO\(_4\).5H\(_2\)O), respectively. After three days of incubation, the resulting enrichments were used as inoculation cultures for the actual experiment.

V.2.2 Experimental design

Three types of sequence batch reactors (595 mL) were prepared in triplicate, each containing 95 mL dNMS and 20 % (v/v) CH\(_4\) in air. The only difference between the reactors was the applied Cu\(^{2+}\)-concentration. Three copper concentrations commonly used in literature were tested, being 0.1 µM Cu\(^{2+}\) L\(^{-1}\), 1.0 µM Cu\(^{2+}\) and 10 µM Cu\(^{2+}\). The inoculation culture grown on 1 µM Cu\(^{2+}\) was used to inoculate the reactors with 0.1 and 1.0 µM Cu\(^{2+}\), respectively (5% inoculation, n=3) while the inoculation culture grown on 10 µM Cu\(^{2+}\) was used as inoculant for the reactors with 10 µM Cu\(^{2+}\) (5% inoculation, n=3, Figure V-1). The reactors were placed on a shaker (100 rpm, INNOVA 4080, New Brunswick Scientific, Belgium) at 22°C (comparable to the initial inoculum temperature) for 10 cycles of 72h, and daily GC measurements were performed to observe the CH\(_4\) oxidation activity during cycles 1, 2, 3, 4, 7 and 10. After each cycle of three days the reactors were opened, samples were taken for DNA-extraction and physico-chemical analyses, and 4/5\(^{th}\) of the liquid phase was taken out and replaced with fresh medium. The reactors were left open to the atmosphere to allow equilibration with the air phase, after which 20 % (v/v) CH\(_4\) was added again to the headspace. The hydraulic retention time and sludge retention time for each cycle were both 90 ± 2h and the reactors were maintained for 10 cycles (30 days).
Selection of associated heterotrophs by MOB at different copper concentrations

Figure V.1. Experimental set-up. A mother culture from the lab, grown on dNMS with 10 μM Cu²⁺, was used to inoculate two inoculation cultures (10% inoculation) both grown on dNMS, one with 1.0 μM Cu²⁺ and one with 10 μM Cu²⁺. These inoculation cultures were grown for three days and then used as starting point for the actual experiment. The culture grown on 1.0 μM Cu²⁺ was used to inoculate the reactors with 0.1 μM Cu²⁺ and 1.0 μM Cu²⁺, and the culture grown on 10 μM Cu²⁺ was used to inoculate the reactor with 10 μM Cu²⁺ (5% inoculation, in triplicate). The reactors were refreshed every 3 days and were maintained for 10 cycles (30 days).

V.2.3 Growth and activity measurements

The CH₄, O₂ and CO₂ contents in the headspace were simultaneously determined with a Compact GC (Global Analyzer Solutions, Louvain-la-Neuve, Belgium), equipped with two channels, which were both connected to a thermal conductivity detector. The gas pressure in the bottles was measured with an Infield 7 pressure meter (UMS, München) to compensate for over- or under pressure. The methane oxidation rate (MOR) was
calculated and expressed as mg CH₄-COD L⁻¹ d⁻¹ by using a conversion factor of 4 mg COD (chemical oxygen demand) mg⁻¹ CH₄. Results were statistically analyzed via an independent two-sample student t-test with equal variance and at a significance level of 99% (n results, p<0.01).

To verify sMMO expression, a modified version of the naphthalene oxidation assay of (Brusseau et al., 1990) was used. A crystal of naphthalene was added to 2 mL actively growing MOB culture and incubated on a shaker (120 rpm) at 28°C for 2h. A tetrazotized-o-dianisidine solution (2.68 mg L⁻¹) was freshly made and 200 µL was added to the MOB culture after incubation. The formation of a colored diazo-dye was monitored visually (Brusseau et al., 1990).

V.2.4 Physico-chemical analysis

The total chemical oxygen demand (COD) was measured after cycles 1, 2, 3, 4, 7 and 10 (n=3) using manual COD kits in the range of 15-160 mg L⁻¹ or 100-1500 mg L⁻¹ (Nanocolor® COD test kit, Macherey-Nagel, UK). The resulting color change was measured with a Nanocolor 500D Photometer (Macherey-Nagel, UK).

V.2.5 Molecular techniques

DNA extractions were performed using a FastDNA® Spin kit for Soil (Q-BIO gene, Belgium) and were executed according to a slightly modified version of the manufacturer’s instructions: depending on the amount of bacterial growth, 2-10 mL of the cell culture was centrifuged (Micro 2416 microcentrifuge, VWR™, USA) at 13,000 x g to obtain a pellet which was then transferred to the lysis tube.

Polymerase Chain Reaction (PCR) amplification was performed by using the general bacterial primer set P63F/P1378r which targets the 16S rRNA gene (Ovreas et al., 1997) while the specific primer set A189f/mb661r, targeting the pmoA gene (Costello and Lidstrom, 1999), was chosen for MOB detection. The selected MOB specific primers exclude MOB only capable of sMMO expression, such as Methylocella spp. and
Selection of associated heterotrophs by MOB at different copper concentrations

Methyloferula spp. (Dedysh, 2009), but clone library results showed that these species were not dominant in the reactors. PCR amplification was performed with a Gene Amp® PCR System 2700 or 2720 Thermal Cycler (Applied Biosystems, USA). Fermentas products (Germany) were used for the 16S rRNA gene PCR mixtures containing 19.3 µL PCR water, 2.5 µL dNTP’s (10 nmol µL⁻¹), 1.5 µL 10x Taq buffer + KCl - MgCl₂, 0.5 µL MgCl₂, 0.5 µL of each primer (10 pmol µL⁻¹), 0.0625 µL Bovine serum albumin, 0.125 µL Taq Polymerase and 1 µL template DNA. The mixtures of the *pmoA* PCR contained 13.8 µL PCR water, 2.5 µL dNTP’s (2 nmol µL⁻¹), 2.5 µL 10x Taq buffer + MgCl₂, 0.825 µL of each primer (10 pmol µL⁻¹), 2.075 Taq polymerase and 2.5 µL template DNA, and were made with products from Applied Biosystems (USA).

Denaturing gradient gel electrophoresis analysis (DGGE) was performed according to Ovreas *et al.* (1997) and Hoefman *et al.* (2012a) on one of the triplicates of all three reactor types during cycles 1, 2, 3, 4, 7 and 10. The resulting DGGE patterns were further processed using BioNumerics software version 5.10 (Applied Maths, Belgium). Analysis of the DGGE patterns was performed using the MRM approach, i.e. calculating the Gini coefficient (measure of evenness), community organization (indirect measure of evenness), dynamics and richness (measure of diversity), according to Boon *et al.* (2011), Marzorati *et al.* (2008) and Read *et al.* (2011). BioNumerics was also used to perform Principal Component Analysis (PCA), a mathematical procedure used to convert a set of possibly correlated variables into uncorrelated variables, called principal components. The different parameters (variables) were obtained by performing bandmatching on the DGGE profiles.

To identify the most important bands in all the different DGGE profiles, a bacterial 16S rRNA gene clone library was constructed based on a sample after 10 cycles of cultivation at 1.0 µM Cu²⁺ and a sample after 7 cycles of incubation at 10 µM Cu²⁺. The combined DGGE profile of these two samples represented best the total number of visible bands for all samples. The clone library was constructed according to the manufacturer’s instructions (Topo-TA cloning kit, Invitrogen, Carlsbad, CA). Bacterial 16S rRNA gene primers P63F and P1378r were used and the 16S rRNA gene PCR was performed according
to Ovreas et al. (1997) with the PCR mix (Fermentas products) mentioned previously. 16S rRNA-DGGE was performed on the different isolated clones together with the original samples allowing band matching for all samples based on the position on the gel and of the 49 positive clones, 20 unique band positions were found. Then, insert sequencing at AGOWA (Germany) was performed on these clones with primer 63F. The retrieved sequences were analyzed with 4Peaks software version 1.7.2 (Macintosh) and aligned with the SINA online aligner (SILVA, Belgium).

V.3 Results

V.3.1 Activity and growth characteristics of the methanotrophic community

Firstly, the influence of the three different tested copper concentrations (0.1, 1.0 and 10 µM Cu$^{2+}$) on the activity of the methanotrophic community was evaluated. The activity is represented in Figure V-2 by the methane oxidation rate (MOR). No significant differences in CH$_4$ oxidizing activity were observed ($n=18$, $p<0.01$).

![Figure V-2](image)

Figure V-2. Average methane oxidation rate (MOR) ($n=3$) in function of time for the reactors with 0.1 µM Cu$^{2+}$ (open circle), 1.0 µM Cu$^{2+}$ (diamond) and 10 µM Cu$^{2+}$ (triangle).
As no other C source but CH$_4$ was added to the medium, chemical oxygen demand (COD) was a good proxy to measure the increase in biomass concentration. The COD content of the cultures amended with 0.1 µM Cu$^{2+}$ increased from 135 ± 113 mg L$^{-1}$ after the first cycle to 540 ± 50 mg L$^{-1}$ at the end of the test period of ten cycles. The cultures with 1.0 µM Cu$^{2+}$ showed an increase in COD content from 353 ± 235 mg L$^{-1}$ to 485 ± 52 mg L$^{-1}$ and the COD concentration of the cultures with 10 µM Cu$^{2+}$ increased from 216 ± 116 mg L$^{-1}$ to 499 ± 64 mg L$^{-1}$ after cycle 10. The average COD concentration over the whole period was 383 ± 155 mg L$^{-1}$ for the cultures with the lowest copper concentration, 429 ± 115 mg L$^{-1}$ for the cultures with 1.0 µM Cu$^{2+}$ and 438 ± 132 mg L$^{-1}$ for the cultures with the highest copper concentration of 10 µM Cu$^{2+}$. Comparable to the MOR, the average COD values did not differ significantly between the reactor types (n=18; $p<0.01$).

The naphthalene oxidation assay indicated that sMMO expression only occurred in the reactors with the lowest copper concentrations of 0.1 µM Cu$^{2+}$.

V.3.2 Community organization and dynamics of the methanotrophic communities

The influence of the different copper concentrations on the methanotrophic community was evaluated with an MOB specific PCR reaction targeting the *pmoA* gene, followed by DGGE (Figure V-3). Three major bands (I, II and III) containing the dominant MOB could be detected in all reactor types. All three bands were present throughout the test period, but their dominance differed and fluctuated with time. From the seventh cycle on, two extra faint bands (IV & V) were observed in the DGGE profile of the reactors with 1.0 and 10 µM Cu$^{2+}$. The dynamics of the MOB communities were assessed by applying the similarity matrix for the densiometric curves of banding patterns. This matrix was used to perform moving window analysis, comparing the similarity (%) of the community fingerprints at two successive time points at an interval of 9 days (3 cycles). The average rate of change was respectively 10 ± 6% for the reactors with 0.1 µM Cu$^{2+}$, 9 ± 4% for the reactors with 1.0 µM Cu$^{2+}$ and 16 ± 11% for the reactors with 10 µM Cu$^{2+}$, indicating relatively stable methanotrophic communities.
Chapter V

Figure V-3. (a) MOB specific (pmoA gene) DGGE fingerprint pattern of triplicates n° 3 from all reactor types (0.1 µM Cu$^{2+}$, 1.0 µM Cu$^{2+}$ and 10 µM Cu$^{2+}$) and for all cycles. Three major bands (I, II and III) could be recognized containing the dominant MOB in all three treatments. Towards the end, two extra bands (IV and V) appeared in the reactors with 1.0 and 10 µM Cu$^{2+}$. (b) Graph representing the average rate of change (%) for the triplicates n° 3 of all reactor types, based on the matrix of similarities for the densiometric curves of the MOB specific DGGE band patterns.

V.3.3 Community organization and dynamics of the total bacterial communities

By pre-cultivating the cultures with 0.1 and 1 µM Cu$^{2+}$ for three days on 1.0 µM Cu$^{2+}$, adaptation to lower copper concentrations could take place without important changes in the diversity, as almost similar DGGE profiles were observed for the start points of all three cultures (Figure V-4). Over the test period of 30 days, the major factors influencing the total bacterial community organization were evaluated via principle component analysis (PCA) based on band matching (Figure V-5) for all the reactor types, triplicates and cycles.
Selection of associated heterotrophs by MOB at different copper concentrations

Figure V-4. 16S rRNA gene DGGE fingerprint pattern for all triplicates and cycles of the reactors with 0.1 µM Cu^{2+}, 1.0 µM Cu^{2+} and 10 µM Cu^{2+} (a). Clone library/sequencing results based on a sample taken from a reactor amended with 10 µM Cu^{2+} after cycle 7 (b) and a reactor with 1.0 µM Cu^{2+} after cycle 10 (c). The species in bold represent the MOB. The graph (d) shows the relative abundance of the genus, family or order to which the sequenced species belong, calculated by determining the percentage of clones in which a specific gene had been incorporated.

The largest variation for all three treatments is represented along the x-axis due to the influence of time, with the biggest shift occurring between cycles 7-10. Along the y-axis a smaller distinction can be made between reactor types, with the biggest difference occurring between the reactors with 0.1 and 1.0 µM Cu^{2+} and the reactors with 10 µM Cu^{2+}. The PCA also showed that the variability between reactor types increased in time, with maximal variability during the tenth cycle. This correlates to results obtained with cluster analysis, based on Pearson product-moment correlation coefficients, which
indicated that time (cycle) and not the Cu$^{2+}$-concentration was the most influencing factor on the total bacterial community composition, especially towards the end. At the same time, cluster analysis showed that the triplicates of each reactor type clustering together during each separate cycle.

Figure V-5. 2D representation of the principle component analysis based on the 16S rRNA gene DGGE band matching, representing 24% of the total variance. The different shapes represent the reactor types (triangle: 0.1 µM Cu$^{2+}$, circle: 1.0 µM Cu$^{2+}$ and square: 10 µM Cu$^{2+}$) and the shades of color indicate the different cycles. The crosses represent the starting points and the overarching circles indicate the main trends.

The dynamics of the total bacterial community was assessed in the same way as with the MOB community above (Figure V-6). The similarity, based on the banding patterns, was high (80-100%) during all cycles for the reactors with 0.1 µM Cu$^{2+}$, but decreased sharply after cycle 7 from 92 ± 3% to 73 ± 6% for the reactors with 1.0 µM Cu$^{2+}$ and from 95 ± 2% to 65 ± 26% for the reactors with 10 µM Cu$^{2+}$. The average rate of change was 9 ± 5%, 14 ± 11% and 16 ± 16% for the reactors with 0.1, 1 and 10 µM Cu$^{2+}$, respectively.
Selection of associated heterotrophs by MOB at different copper concentrations

Figure V-6. Based on the matrix of similarities for the densiometric curves of the 16S rRNA gene DGGE band patterns for the reactors with 0.1 μM Cu²⁺ (open circle), 1.0 μM Cu²⁺ (diamond) and 10 μM Cu²⁺ (triangle), moving windows analysis was performed (a) which allowed to calculate the average rate of change (b). The amount of bands on the DGGE fingerprint allowed to determine the richness of the community (c). The community organization (d) was calculated using the evenness, which in turn is based on the Gini coefficient. These parameters were calculated for the 1ˢᵗ, 2ⁿᵈ, 3ʳᵈ, 4ᵗʰ, 7ᵗʰ and 1⁰ᵗᶜ’h cycle of each three days.

The evenness is quantified by the Gini coefficient and is based on the Pareto-Lorenz distribution curves which represent the cumulative proportion of abundance in relation to the cumulative proportion of species (Boon et al., 2011). The Gini coefficient was further
used to calculate the total bacterial community organization (Co) (Figure V-6). The communities showed high Co values (60-100) at the beginning, indicating low evenness. The Co-value of the cultures grown in dNMS with 0.1 µM Cu$^{2+}$ increased from 68 ± 5 to 78 ± 1 after cycle 1 and then gradually decreased to 60 ± 3 after 30 days. The community organization of the cultures grown in the presence of 1.0 and 10 µM Cu$^{2+}$ showed a slight increase respectively from 70 ± 3 to 72 ± 4 and from 62 ± 2 to 67 ± 5 between day 0 and day 6 (cycle 2). Then the Co gradually decreased to 59 ± 2 for the reactors with 1.0 µM Cu$^{2+}$ and to 57 ± 3 for the reactors with 10 µM Cu$^{2+}$ after cycle 10.

The richness (R) of the communities was determined by the number of bands on the fingerprint profiles (Figure V-6). The richness decreased between start-up and cycle 2 from 16 ± 0 to 13 ± 2 for the reactors with 0.1 µM Cu$^{2+}$, from 16 ± 0 to 13 ± 3 for the reactors with 1.0 µM Cu$^{2+}$, and from 18 ± 0 to 14 ± 1 for the reactors with 10 µM Cu$^{2+}$. From the seventh cycle on, the average number of bands increased again to 21 ± 3 for the reactors with 0.1 and 1 µM Cu$^{2+}$, and to 18 ± 3 for the reactors with 10 µM Cu$^{2+}$.

V.3.4 Changes in species composition of the total bacterial community

The obtained fingerprint patterns were combined with the results from a clone library, allowing identification of dominant bands in the DGGE profiles and visualization of community shifts (Figure V-4). All DGGE profiles contained a band of the methanotrophic *Methylomonas* sp., next to *Flavobacterium* sp. and the methylotrophic *Methylophilus* sp. Another identified MOB was *Methylobacter* sp., but due to the close position of *Methylophilus* sp. in the DGGE profile, no conclusive trend could be observed. A member of the *Bacteroidales* order was the single identified species that was correlated to a specific copper concentration, i.e. 10 µM Cu$^{2+}$. While all communities were relatively similar and stable up to the fourth cycle, important shifts were observed in the total bacterial community of all cultures from the seventh cycle on, as of then the heterotrophic species *Sediminibacterium* sp., *Flavobacterium* sp., *Ideonella* sp. and a new species from the *Methylophilaceae* family emerged in cultures of all three treatments. Moreover, two extra bands of *Methylomonas* sp. appeared in the reactors with 1.0 and 10
Selection of associated heterotrophs by MOB at different copper concentrations

µM Cu\(^{2+}\), coinciding with the appearance of two new faint bands for these samples in the MOB specific DGGE profiles.

Estimation of the relative abundance of the most dominant species was based on the percentage of clones in which a specific gene had been incorporated (Figure V-4). Although no organic C source was added, only 18% of clones were MOB (one *Methylobacter* sp. clone and seven *Methylomonas* sp. clones out of a total of 49). The *Methylomonas* clones were present at three different positions on the DGGE fingerprint pattern, indicating that it concerned different species. Two of them only appeared from the seventh cycle on, which coincided with the appearance of two extra bands in the MOB specific DGGE profiles for those samples. *Flavobacterium* sp. was the most dominant heterotroph with 29% of clones, while 26% of clones were member of the methylotrophic *Methylophilaceae* family. Furthermore, 10% of clones were related to *Sediminibacterium* sp., 6% were related to the order *Bacteroidales*, 4% were related to *Curvibacter* sp., another 4% were related to the family *Chitinophagaceae* and the remaining 2% were related to *Ideonella* sp.

V.4 Discussion

V.4.1 The methanotrophic communities evolved in the same direction

After adaptation during the first two cycles, the CH\(_4\) oxidation rates increased during cycle 3 and were similar over time for all reactor types during the subsequent seven cycles. The observed MOR ranged between 150 and 620 mg CH\(_4\)-COD L\(^{-1}\) d\(^{-1}\) and corresponded to those found in previous reports, such as MOR ranging between 24 - 216 mg CH\(_4\) L\(^{-1}\) d\(^{-1}\) (96 - 864 mg CH\(_4\)-COD L\(^{-1}\) d\(^{-1}\)) in a continuous reactor set-up (Melse and Van der Werf, 2005). The minor difference in MOR of the various reactors types was not significant (p > 0.01), showing that the copper concentration had no substantial influence on the CH\(_4\) oxidizing activity of the MOB communities. Conversely, under comparable conditions, an increase in MOR of 50-70% was observed between additions of 0.1 and 10 µM Cu\(^{2+}\) (van der Ha et al., 2010), which was much higher than the non-significant 10% increase observed here. The
naphthalene oxidation assay showed that with the lowest copper concentrations of 0.1 µM Cu$^{2+}$ sMMO expression occurred, while the presence of 1.0 µM Cu$^{2+}$ was enough to favor pMMO expression over sMMO expression. This corresponds to previous enrichment reports saying copper concentrations of at least 50 µg Cu$^{2+}$ L$^{-1}$ are needed for pMMO expression (Hakemian and Rosenzweig, 2007).

Although cultures treated with different copper concentrations evolved independent from each other, the same three dominant MOB bands were always observed. Only from the seventh cycle on, when higher dynamics were observed, two new bands appeared in the MOB specific DGGE profiles of treatments with 1.0 and 10 µM Cu$^{2+}$, coinciding with the appearance of two identified bands of *Methylomonas* sp. in the 16S rRNA gene DGGE profiles of the same samples. These bands were additional to another identified *Methylomonas* sp., which was present in the samples of all treatments and was retrieved in the clone library. Depending on the imposed copper concentration, this omnipresent MOB expressed either sMMO or pMMO, a known characteristic of several members of the *Methylomonas* genus (Hoefman et al., 2012a). The sMMO/pMMO flexibility of this dominant MOB species may explain why the different copper concentrations did not drastically change the methanotrophic activity and community composition, indicating the importance of community characterization to understand the difference in behavior between mixed cultures.

V.4.2 Time was the dominant influence on the total bacterial community

Processing of the DGGE patterns was performed based on three levels of analysis, i.e. dynamics, community organization and richness (Marzorati et al., 2008). These parameters allow a visual ecological interpretation of raw fingerprinting patterns. Although DNA based, the presented approach allowed to evaluate shifts in the active part of the community since three cycles of growth and dilution occurred between subsequent sampling. That way only active and abundant species were detected by DGGE since non-active species were likely washed out or present in very low abundance, thus no longer visible on the DGGE profile. Both principle component analysis based on 16S rRNA gene
DGGE band matching and cluster analysis indicated that not the copper concentration but time influenced the community composition the most. For all three treatments, medium dynamics was observed, indicating that shifts in relative abundance of species were able to occur (Marzorati et al., 2008). This was confirmed by the cluster analysis where the communities after cycle 7 were scattered through the cluster, indicating that a shift in the community composition had taken place. Indeed, the increase in richness (R value) of the communities indicated that several species emerged, which also resulted in an increase of the community evenness. This shift turned the skewed communities (Marzorati et al., 2008) specialized in CH$_4$ oxidation into more even and ecological niche-oriented communities.

V.4.3 MOB provide metabolites for a specific associated heterotrophic community

Linking the clone library to the DGGE profiles allowed to identify the majority of dominant bands as 96% of the cloned species were also represented on the 16S rRNA gene DGGE gel. Towards the end of the cultivation period, only 18% of clones possessed a methanotrophic gene, with 16% of the sequenced species related to *Methyloponas* sp. and 2% to *Methyllobacter* sp. Hoefman and colleagues previously found *Methyloponas* sp. to be the dominant isolate when enriching environmental samples in dNMS and 20% (v/v) CH$_4$, indicating that *Methyloponas* spp. can easily come to dominance under the applied cultivation conditions (Hoefman et al., 2012a). Interestingly, the majority of the bacterial community had a heterotrophic nature, although there was no direct organic C source present. Therefore, the abundant heterotrophs depended on the primary conversion of CH$_4$ to organic compounds by the MOB. The obtained DGGE fingerprint patterns in combination with the results from the clone library indicate that the bacterial community dynamics were not high and a selection for certain heterotrophs by the MOB occurred. The cultures with different copper concentrations also seemed to evolve in the same direction, although there was often a time lag. For example, members of *Sediminibacterium* sp., *Flavobacterium* sp. and *Ideonella* sp. became visible on different
DGGE profiles at different moments between the fourth and the tenth cycle. Only a single member of the Bacteroidales order was observed in reactors with just one specific copper concentration. Others like *Curvibacter* sp. appeared in the DGGE profiles of the reactors with the lowest and highest copper concentration, emphasizing that the copper concentration only had a minor effect on the heterotrophic community. It could be hypothesized that this was due to the presence of a shared dominant *Methylophils* sp. closely interacting with these heterotrophs.

Based on the clone library results, the most abundant non-methanotrophic species were organisms that metabolize small organic molecules, i.e. *Flavobacterium* sp., aerobic bacteria capable of growing on several polysaccharides such as glucose, lactose and sucrose (Bernardet and Bowman, 2007) and *Methylophilus* sp., aerobic obligate methylotrophic bacteria capable of growing on C1-compounds such as methanol (Schrader et al., 2009). The latter shows that methanol as first intermediate of CH$_4$ oxidation could be an important C source for methylotrophic heterotrophs (Bowman, 2006). These results support the hypothesis that a large heterotrophic community is supported by MOB as in this study CH$_4$ was the sole externally provided carbon and energy source. Moreover, the previously mentioned non-methanotrophic species were dominantly present throughout the entire 30-day cultivation period, indicating that these species were best capable of utilizing the metabolites produced by the MOB and may fulfil a crucial role within the CH$_4$ oxidizing community. The removal of toxic intermediates such as formaldehyde could be an important biological process for the stabilisation of CH$_4$ oxidizing communities. A selection for associated heterotrophs by the MOB can be assumed as all three bacterial communities evolved over time to a similar composition despite the observed dynamics and meaningful community shifts. In the investigated methanotrophic communities wherein an MOB was dominantly present with the ability to switch between sMMO and pMMO, no major shifts in the methanotrophic communities occurred and therefore no indirect effect of the copper concentrations on the total bacterial community was observed.
Considering the large amount and diversity of heterotrophs in such cultures, a better understanding of the interactions between MOB and these heterotrophs is required to get an idea of the importance of these interactions and to allow management of these communities for eventual applications.

Acknowledgements

DVDHA, IV and NB designed the experiment. DVDHA and IV performed the experiments, analyzed the data and wrote the manuscript. SH gave support for the experiments. SH, PDV and NB commented on the manuscript. The authors like to thank Tim Lacoere for his assistance during the analyses. This research was funded by a PhD grant for David van der Ha from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen, SB-83259) and research grants from the Geconcerteerde Onderzoeksactie (GOA) of Ghent University (BOF09/GOA/005) and from the Flemish Fund for Scientific Research (FWO-Vlaanderen, 3G070010).
CHAPTER VI

METABOLIC NETWORKING WITHIN THE METHANOTROPHIC MICROBIOME

DNA samples, LabMET
Weggaan. En terugkomen.

Dromen. En niet meer dromen.

En niet meer weggaan.

En echte weemoed, niet om hoe het vroeger was,

Maar om hoe het ook vroeger nooit is geweest.

Een ziekte die je nooit had,

Waarvan je nooit geneest,

Of zo. En alles wordt bedachtzamer.

Je bent in mij als schemer in een kamer

Herman De Coninck
Chapter VI. **Metabolic networking within the methanotrophic microbiome**

Abstract

Methane oxidizing bacteria (MOB) form the base of certain microbial food webs, as carbon fluxes occur between MOB and associated microorganisms. In this work, an assessment was made of the metabolite production of MOB when CH$_4$ is the sole carbon source present. It was observed that about 25% of the produced organic matter was present in the culture medium. Stable isotope probing showed that after 96h, up to 100% of bands observed in the 16S rRNA gene DGGE profiles of three different methanotrophic communities were also present in the 13C gradient fractions. This provided evidence that the associated community rapidly incorporated 13C-compounds, originating from CH$_4$ oxidation processes by MOB. A possible application of CH$_4$ based food chains was investigated, whereby CH$_4$ was provided as sole energy and carbon source to cocultures of the MOB *Methylocystis parvus* and the methylotrophic yeast *Pichia pastoris* GS115, capable of producing valuable products. The maximum growth rate of *Pichia pastoris* GS115 was significantly higher when cocultured with an active MOB strain, compared to cases with an MOB monoculture or in coculture with a low-active MOB. These results demonstrate that metabolic networking takes place within the methanotrophic microbiome, creating CH$_4$ derived food webs of which some may have possible industrial potential.

Redrafted after:

VI.1 Introduction

Methane oxidizing bacteria (MOB) are aerobic bacteria able to acquire their energy and carbon needs solely from CH₄ (Hanson and Hanson, 1996, Semrau et al., 2010). Consequently, they are able to be part of ecosystems lacking organic C sources. Moreover, MOB are known to initiate interactions with other micro- and macroorganisms. Several examples are known, such as the symbiotic association between MOB and marine invertebrates, thereby allowing higher organisms to live indirectly from CH₄ (Dalton, 2005, Petersen and Dubilier, 2009, Semrau et al., 2010). The host hereby provides the MOB of an adequate position in the water column while the MOB provide the host with carbon-rich metabolites. Another example is the interaction with mosses. Peat bogs store up to one third of all terrestrial carbon on Earth and large quantities of CH₄ can be produced by anaerobic digestion of organic matter. However, a large fraction of this CH₄ is consumed through symbiosis of Sphagnum mosses with partly endophytic methanotrophs, which is why only a relatively small part of CH₄ is released into the atmosphere (Kip et al., 2012, Kip et al., 2010, Raghoebarsing et al., 2005).

Methane oxidizing bacteria also form the base of microbial food webs driven by CH₄ derived carbon. Hereby, they metabolize CH₄ and supply metabolites to associated bacteria present in the methanotrophic community (Murrell and Jetten, 2009, Schrader et al., 2009). This indicates that the methanotrophic microbiome is rich in opportunities for interaction and cooperation, resulting in the emergence of new trophic strategies by combining metabolic and behavioural capabilities (Petersen and Dubilier, 2009, Semrau et al., 2010, Wintemute and Silver, 2010). However, there are still many questions to be answered about the metabolism of CH₄ and its derived compounds. Also, more knowledge is needed about the interactions within methanotrophic microbiomes, in order to further elucidate the consequences of metabolic networking within these microbial microbiomes. For example, it has been observed that MOB seem to grow better when cocultured with heterotrophs (Hrsak and Begonja, 2000). This finding gave rise to the hypothesis that cooperative bacteria either remove metabolites, which can inhibit MOB, and/or produce...
metabolites, which can stimulate methanotrophic activity and growth (Hesselsoe et al., 2005, Hrsak and Begonja, 1998, Iguchi et al., 2011, Modin et al., 2007).

Therefore, this study focussed on metabolic networking between MOB and the associated community, capable of utilizing CH₄ derived metabolites. Firstly, an estimation was made of the amount and identity of organic compounds available to the associated members. Thereafter, stable isotope probing (SIP) was used to evaluate the rate whereby the whole bacterial community receives and incorporates CH₄ derived carbon. Lastly, a possible application of this CH₄ based food chain was explored in which a methylotrophic yeast, capable of producing valuable products, was grown in coculture with an axenic MOB strain.

VI.2 Experimental section

VI.2.1 Assessment of metabolite production

To assess the metabolites produced by MOB, 11 MOB isolates (Hoefman et al., 2012a) and 2 MOB reference strains (Methylosinus sp.; DSM 17706T and Methylomonas sp.; NCIMB 11130T) were incubated in sterile, gastight Schott bottles (AG, Germany) filled for 20% with dilute Nitrate Mineral Salts medium (dNMS; 10 µM Cu²⁺) (Dunfield et al., 2003). After sealing the reactors, 20% (v/v) CH₄ was added to the headspace. The bottles were then placed on an incubator shaker (120 rpm, INNOVA 4080, New Brunswick Scientific, Belgium). After one week of incubation at 20°C, the metabolites of the isolates and reference strains were characterized by measuring the concentration (mg L⁻¹) of cell dry weight, (soluble) chemical oxygen demand, (soluble) total organic carbon, soluble sugars, short chain fatty acids and formaldehyde, respectively (see further).

VI.2.2 Carbon flux assessment with Stable Isotope Probing

To evaluate carbon fluxes in the methanotrophic microbiome, three methanotrophic consortia were used. Samples were taken from the denitrification tank of a WWTP (Ossemeersen, Ghent) and from a swamp (Bourgoyen, Ghent). Reactors (500 mL) were prepared containing 95 mL dNMS medium, 5 mL sample (5% inoculation) and 20% (v/v)

\(^{12}\text{C-CH}_4\) in the headspace. Daily GC measurements were performed to observe methane oxidation activity, while the samples were enriched for 8 days. Thereafter, SIP reactors (1 L) were prepared containing 160 mL dNMS and 20\% (v/v) \(^{13}\text{C-CH}_4\) (Figure VI-1) in order to investigate the metabolic networking between MOB and the associated heterotrophic community. One reactor was inoculated with 20\% WWTP sample (A), one with 25\% swamp sample (B) (due to the lower CH\(_4\) oxidation activity during enrichment) and one with 20\% sample of a lab reactor (C) containing an active methanotrophic community growing on dNMS. For each SIP-reactor, a control reactor was prepared containing the same amounts of medium and sample, but with unlabelled \(^{12}\text{C-CH}_4\). A time course of the metabolic networking was made by sampling for further DNA-extraction after the following time intervals: \(t_0\) (before inoculation), \(t_1 = 1\) h, \(t_2 = 4\) h, \(t_3 = 24\) h, \(t_4 = 48\) h, \(t_5 = 72\) h and \(t_6 = 96\) h. However, since the reactor containing swamp sample showed lower activity, no sample was taken at \(t_1 = 1\) h but an extra sampling time was included at the end (120 h).

\begin{figure}
\centering
\begin{overpic}[width=\textwidth]{figure_VI_1.png}
\end{overpic}
\caption{Enrichment of two natural samples and the subsequent Stable Isotope Probing experiment. Samples for DNA extraction and SIP analysis were taken at different time intervals to monitor the distribution of \(^{13}\text{C}\) metabolites within the community by means of a CH\(_4\) based food chain.}
\end{figure}
VI.2.3 Metabolic networking

An axenic MOB culture of *Methylocystis parvus* NCIMB 11129\(^T\) was grown in combination with the heterotrophic bacterium *Escherichia coli* K12 and the methylotrophic yeast *Pichia pastoris* GS115. The latter were inoculated from plates into sterile 12 mL tubes (Greiner Bio-One, Belgium) filled with nutrient broth (NB) medium containing 3.0 g L\(^{-1}\) beef extract and 5.0 g L\(^{-1}\) peptone. The tubes were placed on an incubator shaker (120 rpm) at 37°C under sterile conditions. After one or two days of growth, the bacterial and yeast cultures were centrifuged at 4000 g for 5 min after which the supernatant was removed and the pellet was washed with dNMS medium. This process was repeated and the resuspended cells were then added to the methanotrophic monocultures.

The *Escherichia coli* or *Pichia pastoris* strains were added to separate MOB monocultures (1% inoculation) at a 1/1000 lower cell density, to prevent heterotrophic dominance. Daily, GC measurements were performed to determine the methane oxidation rate (MOR). In parallel, the MOB were grown in monoculture to monitor the possibly inhibitory effect of coculturing with *Escherichia coli* or *Pichia pastoris* on the CH\(_4\) oxidation activity. Mono- and cocultures with *Methylocystis parvus* were incubated for three days. In parallel, the non-methanotrophic strains were grown in monoculture to evaluate whether they were capable of growing on dNMS with CH\(_4\) as sole carbon source. After the cultivation period, MPN series were conducted on NB medium at 28°C to determine the amount of viable *Escherichia coli* and *Pichia pastoris* cells as described by Hoefman et al. (2012).

Since the initial cell concentration of these cultures was unknown, the increase in cell density following cultivation could not be determined. Therefore, an additional test was conducted with *Pichia pastoris* GS115 in monoculture and in coculture with *Methylocystis parvus* (in triplicate), while flow cytometry with live/dead staining was used to quantify *Pichia pastoris* growth.
VI.2.4 PCR-DGGE

DNA extractions were performed using a FastDNA® Spin kit for Soil (MP Biomedicals, USA) in accordance with van der Ha et al. (2012). Polymerase Chain Reaction (PCR) amplification was performed with general bacterial primers (P63F/P1378r), which target the 16S rRNA gene (Ovreas et al., 1997) as described by van der Ha et al. (2012). Thereafter, Denaturing Gradient Gel Electrophoresis (DGGE) was performed using an INGENY phorU2x2 System (Goes, The Netherlands) and the resulting DGGE patterns were further processed using BioNumerics software version 5.10 (Applied Maths, Belgium).

VI.2.5 Flow cytometry

Cell densities were measured by means of flow cytometry (Cyan™ ADP Analyzer with Summit 4.3 software, DakoCytomation, The Netherlands). Samples were initially diluted at a dilution ratio of 1:2, 1:5 or 1:100, respectively, depending on the turbidity of the sample. For the dilution ratio of 1:2, 500 µL sample was added to 470 µL filtered Evian mineral water, which was used because of its stable chemical composition and microbial community, and low background noise (Berney et al., 2008). Ten µL of CountBright absolute counting beads (Dako Cytocount Catn° S2366) were added to each sample to quantify the amount of cells detected. Live/Dead staining was performed to measure the percentage of living cells. Therefore, 10 µL Na2EDTA (500 mM, pH 8) and 10 µL Live/Dead stain (1mL Live/Dead stain contained 10 µL SYBR green, 20 µL propidium iodide and 990 µL filtered dimethyl sulfoxide) was added to each sample and the solutions were then placed in the dark for ± 15 min. Data are shown as two parameter correlated plots, called cytograms, and are presented as a dot plot in which each cell is represented by a single dot.

VI.2.6 Stable Isotope Probing (SIP)

DNA based stable isotope probing (DNA-SIP) was performed according to a slightly modified version of Neufeld et al. (2007). The different steps of the DNA-SIP protocol are
presented in (Figure VI-2). Samples were first incubated with a 13C labelled substrate (13C-CH$_4$, 99 atom% 12C, Campro Scientific GmbH, Belgium) and DNA was extracted by using a FastDNA® Spin kit as mentioned previously. The ultracentrifugation protocol used a gradient medium without EtBr and the DNA was subsequently retrieved by fractionation. Ultracentrifugation and subsequent fractionation was performed to separate the ‘heavy’ 13C labelled DNA from the ‘light’ 12C labelled DNA. In a sterile 12 mL tube, 4.5 mL of the CsCl stock solution (density 1.88 g mL$^{-1}$) was added to 80 µL of DNA solution and 980 µL Gradient Buffer to obtain a desired final CsCl density of 1.725 g mL$^{-1}$ (Neufeld et al., 2007). The tubes were mixed by gentle inversion and the solution was transferred to a ultracentrifugation tube (4.9 mL tubes, Beckman Optiseal, USA) with a syringe and needle. Ultracentrifugation conditions were 43,000 rpm in a Vti 65 rotor (Beckmann L7-55 Ultracentrifuge, USA) with vacuum at 20°C for 40-44h. After the spin, the DNA was retrieved by gradient fractionation (12 fractions of ± 400 µL each) and the subsequent DNA precipitation was performed according to Neufeld et al. (2007). The DNA was stored at -20°C and 16S rRNA gene PCR/DGGE was performed as mentioned previously.

Figure VI-2. Stable Isotope Probing analysis. Two reactors were set up, one with 13C labelled CH$_4$ and one control reactor with 12C-CH$_4$. After incubation, DNA was extracted and density gradient ultracentrifugation using CsCl was performed to separate 13C labelled DNA from 12C labelled DNA. Fractionation and subsequent precipitation was performed to retrieve the DNA, which was then subject to PCR and DGGE analysis.
VI.2.7 Physico-chemical analyses

Microbiological growth resulted in visual turbidity, measured by the optical density (OD) at 600 nm using an ISIS 9000 MDA Photometer (DR Lange, Belgium). The total chemical oxygen demand (COD) was measured using manual COD kits (Nanocolor® COD test kit, Macherey-Nagel, UK). The chemical oxidation reaction resulted in a color change, which was measured with a Nanocolor 500D Photometer (Macherey-Nagel, UK). To determine soluble COD (sCOD), samples were first centrifuged (SORVALL RC 5C plus, Sysmex, The Netherlands) for 10 min at 10,000 g and the supernatant analyzed. Total organic carbon (TOC) analysis was performed by means of the Hach Lange difference method (cuvette test LCK381, Hach Lange, Germany) with a measuring range of 60-735 mg TOC L⁻¹. The concentration was assessed after 2 h of digestion using a Xion 500 model LPG-385 spectrophotometer (Hach Lange, Germany). To determine the amount of soluble TOC (sTOC), the samples were also centrifuged. Then, the supernatant was analyzed with the Hach Lange difference method (cuvette test LCK380) with a measuring range of 2-65 mg TOC L⁻¹. The amount of total suspended solids (TSS) was determined according to Greenberg et al. (1992). The SO₄²⁻, PO₄³⁻, CHOO⁻, Cl⁻, NO₃⁻ and NO₂⁻ concentrations were measured with a Dionex Ion chromatograph (IC 761 Compact, Metrohm, Switzerland) described by van der Ha et al. (2011), while short chain fatty acids (SCFA) extractions and analyses were performed according to Rabaey et al. (2005). The amount of formaldehyde in the supernatant was measured with a semi-quantitative colorimetric method using a color card and sliding comparator (Aquamerck®, Merck chemicals, Germany). Soluble sugar analysis of the supernatant was done by means of a phenol-sulphuric acid method based on absorbance measurements (Masuko et al., 2004).

GC analysis was used to determine the CH₄, O₂ and CO₂ content (% v/v) in the headspace by means of a Compact GC (Global Analyzer Solutions, Louvain-la-Neuve, Belgium), equipped with two channels, both with a thermal conductivity detector (van der Ha et al., 2011). Gas pressure measurements were performed using an Infield 7 pressure meter (UMS, München) indicating the relative pressure in hPa. The methane oxidation rate
(MOR) was calculated and expressed as mg CH₄-COD L⁻¹ d⁻¹ using a conversion factor of 4 mg COD mg⁻¹ CH₄. Results were statistically analyzed with an independent two-sample student t-test with equal variance and a significance level of 99% (n results, p<0.01).

VI.3 Results

VI.3.1 Metabolite production by MOB

In order to evaluate possible carbon fluxes from MOB towards the associated community, biomass related parameters were analyzed (Table VI-1). The results obtained in these tests indicated that 24.83 ± 7.95% (n=11) of the organic matter was present in the culture liquid phase. No formaldehyde or SCFA were detected; yet, soluble sugars were detected with on average 0.72±0.33 mg sugars mg⁻¹ sCOD. Values and ratios of the measured parameters differed considerably, even between different Methylomonas sp. strains.

VI.3.2 Carbon fluxes in the methanotrophic microbiome

Three methanotrophic communities were incubated with ^13C-CH₄, allowing to observe fluxes of labelled carbon from the metabolized CH₄ to the MOB and the associated heterotrophic community by means of SIP. During the 8-day enrichment step, an average daily MOR of 199 mg CH₄-COD L⁻¹ d⁻¹ was observed for the culture taken from a WWTP and 42 mg CH₄-COD L⁻¹ d⁻¹ for the culture taken from the swamp. Although GC measurements were not performed during the SIP experiment to avoid disturbance of the communities, the decrease in pressure from 1.25 atm to less than 0.1 atm indicated that a methanotrophic community was active.
Table VI-1. The concentration (mg L\(^{-1}\)) of CDW, (s)COD, (s)TOC and soluble sugars for the medium, 11 isolates and 2 reference strains. Not determined values are indicated by “-“.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genus ID</th>
<th>CDW (mg L(^{-1}))</th>
<th>COD (mg L(^{-1}))</th>
<th>TOC (mg L(^{-1}))</th>
<th>Soluble sugars (mg L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>total</td>
<td>soluble</td>
<td>total</td>
<td>soluble</td>
</tr>
<tr>
<td>dNMS</td>
<td>-</td>
<td>15</td>
<td>< 15</td>
<td>< 15</td>
<td>< 10</td>
</tr>
<tr>
<td>R - 45362</td>
<td>Methylomonas sp.</td>
<td>255</td>
<td>190</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>R - 45363</td>
<td>Methylomonas sp.</td>
<td>248</td>
<td>212</td>
<td>44</td>
<td>59</td>
</tr>
<tr>
<td>R - 45364</td>
<td>Methylomonas sp.</td>
<td>273</td>
<td>200</td>
<td>39</td>
<td>77</td>
</tr>
<tr>
<td>R - 45370</td>
<td>Methylomonas sp.</td>
<td>265</td>
<td>216</td>
<td>57</td>
<td>83</td>
</tr>
<tr>
<td>R - 45371</td>
<td>Methylomonas sp.</td>
<td>270</td>
<td>261</td>
<td>42</td>
<td>51</td>
</tr>
<tr>
<td>R - 45372</td>
<td>Methylomonas sp.</td>
<td>250</td>
<td>271</td>
<td>53</td>
<td>75</td>
</tr>
<tr>
<td>R - 45374</td>
<td>Methylomonas sp.</td>
<td>233</td>
<td>183</td>
<td>39</td>
<td>69</td>
</tr>
<tr>
<td>R - 45377</td>
<td>Methylomonas sp.</td>
<td>109</td>
<td>29</td>
<td>< 15</td>
<td>< 10</td>
</tr>
<tr>
<td>R - 45378</td>
<td>Methylomonas sp.</td>
<td>237</td>
<td>298</td>
<td>90</td>
<td>111</td>
</tr>
<tr>
<td>R - 45379</td>
<td>Methylosinus sp.</td>
<td>146</td>
<td>54</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>R - 45383</td>
<td>Methylomonas sp.</td>
<td>240</td>
<td>251</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>DSM 17706(^T)</td>
<td>Methylosinus sp.</td>
<td>232</td>
<td>198</td>
<td>40</td>
<td>71</td>
</tr>
<tr>
<td>NCIMB 11130(^T)</td>
<td>Methylomonas sp.</td>
<td>229</td>
<td>251</td>
<td>58</td>
<td>101</td>
</tr>
</tbody>
</table>

\[134\]
The flux of 13C-labeled methanotrophic metabolites towards the whole methanotrophic community was followed up by means of DGGE. The 16S rRNA gene DGGE profiles were analyzed over time, thereby dividing the number of bands in the ‘heavy’ 13C labelled DNA fraction (fraction 4) of each sample by the maximum total number of bands visible in the same sample. The latter varied between 9 and 12 for SIP run A - WWTP, between 15 and 17 for SIP run B - swamp, and between 6 and 14 for SIP run C - lab reactor. The percentage of bands in the 13C gradient fractions increased from 22% after 1 hour to 100% after 96 hours for the WWTP sample (Figure VI-3), from 38% after 4 hours to 59% after 120 hours for the sample taken from a swamp (Figure VI-4), and from 0% after 1 hour to 50% after 96 hours for the sample taken from a lab reactor (Figure VI-4). These percentages increased to values over 70% in case fraction 5 was also included.

Figure VI-3. DGGE fingerprint pattern (top) of SIP run A (WWTP) representing gradient fractions 4 (‘heavy’ 13C-DNA) to 9 (‘light’ 12C-DNA) at different time points, and gradient fraction 8 (12C-DNA) of the control. The bottom graph shows the % bands in the 13C-DNA fraction (fraction 4) relative to the maximum total number of bands for that time point.
The number of bands in the 13C DNA fraction (fraction 4) of each sample was also divided by the number of bands in the light 12C DNA fraction (fraction 8) of the same sample. These results showed an analogous pattern and the percentages increased from 22% after 1 hour to 125% after 96 hours for the WWTP sample, from 40% after 4 hours to 59% after 120 hours for the swamp sample, and from 0% after 1 hour to 67% after 96 hours for the sample taken from a lab reactor. Percentages of more than 100% were obtained as progressively less 12C and more 13C was incorporated into the DNA. This caused the bands on the fingerprint pattern to gradually disappear from the 12C-fraction whilst emerging in the 13C-fraction during incubation. This occurred within the monitored time frame for SIP run A (fractions 4&5, after 48 h) and SIP run C (fraction 5, after 96 h). Considering increasingly more 13C was incorporated into the bacterial DNA, DGGE bands in the 13C fraction did not merely appear but also increased in intensity (expressed as height of the densiometric curve) with time. In addition, the maximum band intensity gradually shifted from fractions 8-9 (12C) to fractions 4-5 (13C). To investigate this effect, the band intensity was determined for one of the most dominating bands of each SIP run (Figure VI-5). For one of the most dominating bands of SIP run A, the band height in fraction 5 increased from 2.7×10^3 after 1h to 45.0×10^3 after 48 hours, and its maximum intensity shifted gradually from fraction 9 to fraction 5. The band height in fraction 4 increased from 3.3×10^3 to 38.5×10^3 after 96 hours.
10³ after 4h to 44.6 x 10³ after 120h for the most dominating band of SIP run B, and its maximum intensity gradually shifted from fraction 8 to fraction 5. For the most dominating band of SIP run C, the band height in fraction 5 increased from 3.8 * 10³ after 1h to 56.4 x 10³ after 96h, and its maximum intensity shifted from fraction 8 to fraction 5.

Figure VI-5. Part of the DGGE fingerprint pattern visualizing some of the most dominating bands, for gradient fractions 9 (‘light’ ¹²C-DNA) to 4 (‘heavy’ ¹³C-DNA) at different points in time (left). Per SIP run (A: WWTP, B: swamp, C: lab reactors), one of the most dominating bands, as indicated by the arrows, was selected for further analysis of the band intensity. The graphs on the right show the evolution of the investigated band intensity, represented by the height of the densiometric curve, for gradient fractions 9 (¹²C) to 4 (¹³C) at different points in time.
VI.3.3 Metabolic networking

In order to evaluate potential applications based on metabolic networking, the mutual influence of an MOB and a heterotrophic *Escherichia coli* or a methylotrophic *Pichia pastoris* yeast, respectively, on each others growth and activity was investigated. To evaluate the influence of the non-methanotrophs on the methanotrophic activity, the MOR was compared. This was 468 mg CH₄-COD L⁻¹ d⁻¹ for the *Methylocystis parvus* monoculture, 496 mg CH₄-COD L⁻¹ d⁻¹ in coculture with *Pichia pastoris* and 507 mg CH₄-COD L⁻¹ d⁻¹ in coculture with *Escherichia coli*. These results indicated that coculturing did not have a significant effect (p<0.05) on the methanotrophic activity. There was no CH₄ removal when *Escherichia coli* or *Pichia pastoris* was grown in monoculture on dNMS.

A second experiment was conducted in order to better quantify the carbon flux processes. Three cocultures of *Methylocystis parvus* and *Pichia pastoris* and one *Methylocystis parvus* monoculture were incubated with 20% CH₄ (v/v). The average MOR was 45 mg CH₄-COD L⁻¹ d⁻¹ for coculture n° 1, 440 mg CH₄-COD L⁻¹ d⁻¹ for coculture n° 2 and 443 mg CH₄-COD L⁻¹ d⁻¹ for coculture n° 3. These results indicate that cocultures n° 2 and 3 were active and showed growth, unlike coculture n° 1 which showed low activity and little growth. The *Pichia pastoris* monoculture showed no CH₄ removal activity and hardly any growth. These results were confirmed by the OD and COD increments over the whole incubation period (Table VI-2), as the OD and COD increments are significantly higher (p<0.01) for the two active cocultures compared to the monoculture and the low-active coculture.

Table VI-2. OD and COD values of the *Pichia pastoris* mono- and cocultures at time t = 0d and t = 3d. The low-active coculture n° 1 is indicated in grey.

<table>
<thead>
<tr>
<th></th>
<th>OD₆₀₀nm</th>
<th>COD (mg L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t = 0 d</td>
<td>t = 3 d</td>
</tr>
<tr>
<td>monoculture</td>
<td>0.024</td>
<td>0.056</td>
</tr>
<tr>
<td>coculture n° 1</td>
<td>0.049</td>
<td>0.119</td>
</tr>
<tr>
<td>coculture n° 2</td>
<td>0.049</td>
<td>0.759</td>
</tr>
<tr>
<td>coculture n° 3</td>
<td>0.049</td>
<td>0.803</td>
</tr>
</tbody>
</table>
At the beginning and end of the incubation period, cell densities of \textit{Pichia pastoris} were measured with flow cytometry, as this allows appropriate quantification (Figure VI-6). Due to the larger size of the yeasts, differentiation with the MOB was possible, while at the same time Life/Dead staining indicated the active state of the majority of the yeast cells. The cell density of the yeast monoculture increased with a factor 1.15, the cell density of \textit{Pichia pastoris} in coculture n° 1 increased with a factor 1.24, in coculture n° 2 with a factor 1.68 and in coculture n° 3 there was an increase in cell density with a factor 2.24 (Figure VI-7). These results are a slight underestimation of the actual increase in cell density since the flow cytometer could not separate MOB and yeast cells perfectly, and therefore there was a small overlap, which was not included.

![Image](image-url)

Figure VI-6. Flow cytometry data plotting sideward scatter (SS log) in function of forward scatter (FS log) (left) and PE-Texas Red log in function of FITC log (right) for Live/Dead staining. The top graphs are dot plots of a \textit{Pichia pastoris} monoculture and the bottom graphs are dot plots of a coculture containing \textit{Pichia pastoris} and \textit{Methylocystis parvus}.
Figure VI-7. Cell densities of the *Pichia pastoris* mono- and cocultures at time $t = 0$ d (light grey) and $t = 3$ d (dark grey) measured using flow cytometry.

Live/Dead staining was performed in combination with the cell density measurements to determine the percentage of viable *Pichia pastoris* cells (Table VI-3). At the end of the incubation period, the percentage of living cells was highest for the cocultures n° 2 and 3, and the percentage of dead cells increased for the yeast monoculture and low-active coculture n° 1.

Table VI-3. Live/Dead staining results of the *Pichia pastoris* mono- and cocultures at the beginning and end of the incubation period. The low-active coculture n° 1 is indicated in grey.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Living cells</th>
<th>Dead cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t = 0$ d</td>
<td>$t = 3$ d</td>
</tr>
<tr>
<td>monoculture</td>
<td>99%</td>
<td>65%</td>
</tr>
<tr>
<td>coculture n° 1</td>
<td>99%</td>
<td>74%</td>
</tr>
<tr>
<td>coculture n° 2</td>
<td>99%</td>
<td>98%</td>
</tr>
<tr>
<td>coculture n° 3</td>
<td>98%</td>
<td>97%</td>
</tr>
</tbody>
</table>
VI.4 Discussion

VI.4.1 MOB release considerable amounts of organic carbon to the environment

In order for associated community members to obtain and metabolize CH$_4$ derived organic C, MOB first need to release suitable compounds. Exploratory experiments were conducted to evaluate the amount and composition of the metabolites produced by MOB and leaking into the culture medium. It appeared that clear differences occurred between the various MOB strains investigated, but on average 25% of the organic matter was present in the culture medium, probably as sugar-containing compounds, extrapolymeric substances and/or methanol, since formaldehyde and short chain fatty acids tests proved to be negative. Although decayed MOB cells could be a source of organic C for heterotrophs, a methylotrophic yeast strain only showed significant growth when an active MOB was present. This indicates that active C fluxes took place and that the metabolic networking is more than just phagotrophy.

VI.4.2 CH$_4$ derived carbon is distributed rapidly over the methanotrophic community

A time course labelling experiment allowed to monitor the distribution of 13C labelled metabolites and the subsequent incorporation of 13C into the DNA of the community members. Based on the DGGE fingerprint pattern, the percentage of bands in the ‘heavy’ 13C labelled DNA fraction was determined relative to the maximum amount of bands in all fractions, at that specific point in time. For the WWTP sample, the percentage of bands present in the 13C gradient fraction relative to the maximum amount of bands reached 100% after 96 hours of incubation indicating that the 13C had progressively spread over the entire community. This percentage was however lower, but above 50%, for the other two samples. The methane oxidation activity of the reactor containing the swamp sample was lower than that of the WWTP sample, and this could be the reason why the metabolic networking was also slower in the swamp community compared to the WWTP community.
The obtained results indicated that metabolic networking occurred, since 13C labelled compounds were used by a considerable amount of detected and therefore prominently present bacteria. Although the bands were not identified, it is clear that heterotrophs were involved, as in analogous incubations with comparable inocula, more than half of the methanotrophic community members observed with the same 16S rRNA gene based DGGE had a heterotrophic nature (van der Ha et al., 2012). In conclusion, the conducted experiments provide proof of the existence of a microbial food chain driven by CH$_4$ derived organic C. The obtained results are in agreement with research performed at the Max Planck Institute (Dumont et al., 2011). DNA- and mRNA-based SIP experiments showed that cross-feeding of methanotrophic metabolites by other microorganisms occurred and this cross-feeding of the 13C was primarily detected by DNA-SIP.

Molecular techniques like high throughput sequencing methods could be useful to analyze the composition of the heavy fractions, in order to determine how many of the bands in the 16S rRNA DGGE represent MOB and how many represent associated members. Moreover, it would be of interest to know which organisms are first in line to use which 13C-labelled metabolites produced by the MOB. If the network is very specific, then the same type of species are expected to be the first to appear in the 13C fraction of the DGGE fingerprint pattern, independent of the original sample. However, if the network is rather random, the metabolites produced by the MOB will be used by a variety of species. Experiments could also be conducted in which an extra non-labelled carbon source is provided to the methane oxidizing community. This could result in less intensive networking and consequently, the incorporation of 13C into the DNA of the entire community will progress more gradually. In order for all these tests to work, a large amount of samples should be taken and both the substrate affinity and growth characteristics, i.e. doubling time, of all species should be known.

VI.4.3 Towards applications

The previously mentioned results indicate that metabolic networking occurs within methanotrophic communities and therefore a possible application of this networking was
explored. While coculturing experiments with *Escherichia coli* were not successful, *Pichia pastoris* GS115 was capable of growing in coculture with the MOB, without any readily available carbon source. Moreover, active methane oxidation was necessary for the survival of *Pichia pastoris* GS115, indicating metabolites specifically produced by the methanotrophs (e.g. extrapolymeric substances and/or methanol) were used by *Pichia pastoris* GS115 instead of dead biomass. The cell density of *Pichia pastoris* GS115 grown in coculture with *Methylcystis parvus* increased with a factor 2.24 compared to *Pichia pastoris* GS115 grown in monoculture on dNMS with CH$_4$ as sole carbon source. The percentage of living yeast cells after a 3-day cultivation period was 97% in a coculture showing high methane oxidation rates, 75% in a coculture showing very low methane oxidation rates, and merely 65% in monoculture.

The conducted experiments deliver proof of principle that the metabolic network can exist between MOB and other associated microorganisms. This can have potential applications in the biotechnological industry. Further research is necessary to determine the long-term effects and upscaling possibilities. In addition, tests should be conducted with other MOB species, since *Methylcystis parvus* is known to produce few extracellular substances. Therefore, superior results could be obtained with MOB species that produce more metabolites or extrapolymeric substances, respectively. Additionally, methylotrophic bacteria can also be tested in coculture with MOB, since this diverse group of organisms is capable of growing on C1-substrates such as methanol. It is important to further elucidate the metabolic networking and to fully characterize the metabolites produced by MOB in order to optimize this concept and select the best possible methanotrophic-heterotrophic cocultures.
Acknowledgements

DVDHA, IV, WV and NB designed the experiments. IV and DVDHA performed the experiments, analyzed the data and wrote the manuscript. SH maintained the MOB cultures, analyzed the soluble sugar content and gave support for the analyses. PDV, SH, WV and NB commented on the manuscript. This work would not have been possible without the support of Tim Lacoere. Moreover, our gratitude for the assistance we got from Sue Read, Prof. dr. C. Murrell, Geert Meesen and the department of molecular biotechnology (UGent). This research was funded by a PhD grant for David van der Ha from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen, SB-83259) and a research grant from the Geconcerteerde Onderzoeksactie (GOA) of Ghent University (BOF09/GOA/005).
CHAPTER VII

CARBON NEUTRAL METHANE OXIDATION BY A PARTNERSHIP OF

MOB AND MICROALGAE

Light microscopic image of a methalgae floc, LabMET
Don’t take any wooden nickels

When you sell your soul.

Mr. E
Chapter VII. Carbon neutral methane oxidation by a partnership of MOB and microalgae

Abstract

Effluents of anaerobic wastewater treatment plants are saturated with methane. A novel approach is presented to treat such effluents using a coculture of methane oxidizing communities and microalgae, allowing microbial methane oxidation with minimal CO$_2$ emissions. Coculturing such *methalgae* communities in sequence batch reactors under continuous illumination yielded a factor of about 1.6 more biomass relative to the control reactors without microalgae. Moreover, 55% less external O$_2$ supply was needed to maintain the methane oxidation, as O$_2$ was produced *in situ* by the microalgae. An overall methane oxidation rate of 171 ± 27 mg CH$_4$ L$^{-1}$ liquid phase d$^{-1}$ was accomplished in a semi-batch set-up, while the excess CO$_2$ production was lower than 1 mg CO$_2$ L$^{-1}$ d$^{-1}$. Moreover, *methalgae* cultures adapted easily to an industrial digestate. Even under anoxic conditions, considerable methanotrophic activity was observed due to the fact that MOB could rely on *in situ* O$_2$ production by algal photosynthetic processes. These results show that a coculture of microalgae and methane oxidizing communities could lead to a novel treatment for dissolved CH$_4$ in anaerobic effluents.

Redrafted after:

VII.1 Introduction

There is an increasing interest for anaerobic treatment technology, such as upflow anaerobic sludge blanket digestion, which allows recovery of energy and nutrients (van Lier et al., 2001, Verstraete et al., 2009). However, during such processes, part of the generated biogas dissolves in the liquid effluent, resulting in a considerable release of methane into the atmosphere and consequently also a loss of energy. Although under typical conditions of an anaerobic digestion process (35°C, 60% CH₄, 40% CO₂ (v/v)), only 11 mg CH₄ L⁻¹ is dissolved in the effluent, CH₄ losses can be up to 25% of the produced CH₄, especially when treating low strength wastewater (Cakir and Stenstrom, 2005, Hartley and Lant, 2006). When the loading rate is lower than 0.7 g biological oxygen demand L⁻¹, anaerobic treatment can emit even more CO₂-equivalents than treatment with traditional activated sludge processes (Cakir and Stenstrom, 2005). The reason for these high emissions is twofold: firstly, there is a continuous outflow of relatively large volumes of CH₄ saturated effluent. Secondly oversaturation up to a factor of 4 has been observed in digester effluents (Hartley and Lant, 2006). Only few studies have described reactors to treat dissolved CH₄ in such effluents (Hatamoto et al., 2010, Matsuura et al., 2010). The introduction of an economically feasible CH₄ oxidizing unit in the typical polishing step of anaerobic digester effluents, could lower the greenhouse gas emissions of anaerobic treatment installations (Verstraete et al., 2009). Moreover, if dissolved CH₄ and CO₂ could be transformed into products with added value, treatment of low-strength wastewater would effectively be seen as a valuable service.

Methane is particularly unreactive: it requires 435 kJ mol⁻¹ to break the chemical bond between the carbon and hydrogen atom (Dalton, 2005). As a result it is not easily removed with physico-chemical techniques. Aerobic methane oxidizing bacteria (MOB) are able to break this strong C-H bound by means of the enzyme methane monooxygenase, which exists in a soluble and particulate form (Dalton, 2005, Hanson and Hanson, 1996). A drawback of applying such MOB in anaerobic effluents is that oxygen needs to be added externally under such conditions that the CH₄ is not stripped from the liquid.
To avoid external aeration and stripping, O₂ can be provided through the addition of microalgae in the system. Both prokaryotic cyanobacteria, eukaryotic microalgae and diatoms produce O₂ in situ during the photosynthetic reactions, when sufficient light energy is provided for CO₂ fixation (Mata et al., 2010, Melis, 2009, Thajuddin and Subramanian, 2005). The synergistic relationship whereby microalgae provide O₂ for bacterial processes has been successfully applied for tertiary treatment of different industrial wastewaters, with the focus on removal of organic carbon, nitrogen and phosphorus (Molinuevo-Salces et al., 2010, Munoz and Guieysse, 2006). Algal-bacterial processes have also been used for treatment of hazardous contaminants. For example, different algal-bacterial cocultures were able to degrade phenanthrene, acetonitrile and salicylate by pollutant-specific bacteria without an external O₂ supply (Borde et al., 2003, Guieysse et al., 2002, Munoz et al., 2005). As far as the authors know, no research has been performed on cocultures of microalgae and CH₄ oxidizing communities for CH₄ mitigation. In nature however, synergistic relationships are ubiquitous and have been observed between MOB and photosynthetically active mosses (Kip et al., 2010, Raghoebarsing et al., 2005). While the MOB provide the C source for the eukaryotes, O₂ is provided in return by the photosynthetically active species. This type of relationship has also been observed previously between MOB and microalgae in fresh water lakes (Kankaala et al., 2006, Trimmer et al., 2010).

In this study, a coculture of MOB and microalgae, further indicated as methalgae, was evaluated in the scope of a greenhouse gas free CH₄ oxidation. The aim of this study was to achieve a sustainable CH₄ oxidation with a lower need for externally supplied O₂, while observing the influence of the N source. Lastly, it was tested if methalgae cultures are able to sustain activity in an industrial digestate without external aeration. The outcomes of this study provided a first successful attempt towards the development of a treatment unit for dissolved CH₄ in O₂-depleted effluents.
Chapter VII

VII.2 Experimental section

VII.2.1 Sampling and inoculation

Nine identical gastight bottles, each with a total volume of 1150 mL served as reactor. Six of the latter were filled with 200 mL dNMS-medium (per liter: 1 g KNO₃; 0.2 g MgSO₄.7H₂O; 3.59 g Na₂HPO₄.2H₂O; 1.36 g KH₂PO₄; 45 mg CaCl₂.6H₂O; 4.5 mg Na₂-EDTA; 25 µg CuSO₄.5H₂O (0.1 µM); 3.5 mg FeCl₃.6H₂O) according to Whittenbury et al. (1970b). The three other gastight bottles were filled with 200 mL dAMS-medium, which has the same composition as dNMS-medium, except that 140 mg NO₃⁻-N was replaced with 140 mg NH₄⁺-N, in the form of NH₄Cl. Additionally, 1 mL trace solution L⁻¹ was added to the dNMS or dAMS medium, according to van der Ha et al. (2010). The pH of both media was 6.9. An active CH₄ oxidizing community, previously enriched at the laboratory, was used as inoculum (van der Ha et al., 2010). Equal volumes (20% v/v liquid phase) of this mixed inoculum were added to each reactor. The gas phase (950 mL) contained 20% (v/v) CH₄ in air.

VII.2.2 Experimental set-up

Three different treatments were set-up over a period of 30 days: reactors with CH₄ oxidizing communities, referred as “MOC-reactors” and two sets of reactors containing a coculture of methane oxidizing bacteria and algae (MAC), with nitrate (N-MAC) or ammonium (A-MAC) as respective N sources. Firstly, three reactors with a methane oxidizing community (MOC), not inoculated with microalgae, were shielded from the light and had nitrate as N source. Secondly, six reactors with a methalgae community were inoculated with a mixed microalgae culture (5% v/v liquid phase), originating from an open pond type photobioreactor, which was used to grow a mixed algal culture in mineral medium under continuous bubbling of CO₂ (De Schamphelaire and Verstraete, 2009). Three of these reactors contained 140 mg NO₃⁻-N as N source (N-MAC), while three contained 140 mg NH₄⁺-N as N source (A-MAC). The initial VSS concentration was 61±1 mg
L\(^{-1}\) for the reactors with a MOC and 76±1 mg L\(^{-1}\) for the N-MAC and A-MAC reactors. All reactor where placed on a shaker at 120 rpm.

All six MAC-reactors were exposed to four TL-lamps (36W, Master TL-D 90 Deluxe, Philips, Eindhoven, The Netherlands), which posses a light spectrum comparable with the solar radiation spectrum. The light intensity (photosynthetic active range; PAR) at the level of the liquid/gas interphase (inside the gastight bottles) was 80 \(\mu\)mol photons-PAR m\(^2\) s\(^{-1}\). The illuminated area and illuminated area/volume ratio were 195 cm\(^2\) and 0.97 cm\(^2\) cm\(^{-3}\) respectively. The temperature of the water phase in the reactors was measured after each cycle and was 22±2°C.

After each cycle of 72h, the liquid phases of the triplicates were merged together and four fifths of the well-mixed liquid phase was replenished with freshly made medium. Hence, the hydraulic retention time and sludge retention time were both 90 h. To maintain the microbial diversity, 2% (v/v) tertiary effluent of a WWTP (Ossemeersen, Gent, Belgium), wherein microalgae were visibly present, was added in between all cycles. The reactors were open for at least 30 minutes, which allowed the gas phase to equilibrate with the outside air. A volume of 200 mL of CH\(_4\) (99.95% pure, Air Liquide, Liège, Belgium) was then added to the closed reactors. The gas phase of a control reactor after 15 min of equilibration with the water phase contained respectively 193 mL of O\(_2\), 235 mL of CH\(_4\), 793 mL of N\(_2\) and 0.07 mL of CO\(_2\) per L of gas phase. After 10 cycles, the reactors with MOC and N-MAC were discontinued.

VII.2.3 Effect of the N source, ethyn addition and autoclavage

Additional tests were performed, all with an active A-MAC. In all cases, three A-MAC reactors were set up in parallel, as mentioned above, and applied as controls.

- **Nitrogen source** To test the influence of the N source, three reactors with an A-MAC were given 140 mg NO\(_3\)-N L\(^{-1}\) instead of NH\(_4^+\)-N L\(^{-1}\) as N source.
• **Ethyn addition** The influence of the CH₄ oxidation inhibitor ethyn (C₂H₂) was analyzed by adding 0.2% (v/v) C₂H₂ to three reactors with an A-MAC. In another three reactors, the composition of the gas phase was altered to 13% (v/v) CH₄, 8% (v/v) CO₂ and 0.2% (v/v) C₂H₂ in air, to investigate the effect of C₂H₂ on the algal CO₂-fixating activity.

• **Autoclavation** When the tests were completed, the reactors were autoclaved (20 min, 121°C, 1 bar) to estimate the influence of losses and chemical adsorption processes. The gastight bottles were cooled down to room temperature and placed on a shaker, with new CH₄ added.

VII.2.4 Growth in industrial digestate

Methalgae cultures were incubated under anoxic conditions in the digestate of an upflow anaerobic sludge blanket (UASB) reactor, treating potato waste of Agristo NV (Harelbeke, Belgium). The digestate was pumped on site into gastight alumina bags at the outflow of the anaerobic digester, while passing a filter with a mesh of 2 mm. The bags were transported to the lab and conserved at 4°C until application. Temperature and DO were measured on site, while DO, pH, anion concentrations, dissolved H₂S concentration, VSS, TSS, TIC, TOC, TC, COD and sCOD were analyzed in samples of three different sampling campaigns. The BOD was measured once. Before starting the test, six Schott bottles (V=595 mL) were flushed for 30 min with N₂ in order to create an anoxic atmosphere, whereafter 100 mL digestate and 100 ml CH₄ were added. Inoculation occurred with 5 mL of an active methanotrophic community, originating from a sequence batch reactor and pre-cultivated on the digestate under an aerobic atmosphere. Algal inoculation occurred by means of 5 mL of active non-axenic algae cultures, i.e. *Chlorella emersonii* (n=3) or *Scenedesmus* sp. (n=3), respectively. The bottles were placed on a shaker (90 rpm) at a light intensity of 92 μmol m⁻² s⁻¹ and a temperature of 32°C. The gas phase composition of the bottles was daily analyzed by means of GC analyses.
VII.2.5 Chemical analyses

At the end of each cycle, samples were taken for further analysis. Filtered samples (0.45 µm filter, Millipore, Brussels, Belgium) were analyzed for Cl\(^-\), NO\(_3^-\), NO\(_2^-\), SO\(_4^{2-}\), PO\(_4^{3-}\) and CHOO by means of an 761 Compact Ion Chromatograph, equipped with a conductivity detector (Metrohm, Zofingen, Switzerland). The ammonium concentration was determined by steam distillation, according to Greenberg et al. (1992). Kjeldahl nitrogen was analyzed by standard methods (Greenberg et al., 1992) and pH was determined with a SP10B pH electrode, connected to a Consort C532 multimeter analyzer (Turnhout, Belgium). A specific color reaction for aldehydes (Schiff’s reagent, Merck, Belgium; detection limit: 2 mg L\(^{-1}\)) was used to monitor formaldehyde formation, while quantification of the soluble methane monooxygenase activity, by means of a naphthalene oxidation assay, was performed according to van der Ha et al. (2010): a crystal of naphthalene is oxidized by the soluble methane monooxygenase to naphtanol, which reacts with a tetrazotized-o-dianisidine solution. The reaction product was measured with a spectrophotometer at a wavelength of 525 nm. Volatile suspended solids (VSS) were assessed according to Greenberg et al. (1992). The dissolved total carbon (TC), total inorganic carbon (TIC) and total organic carbon (TOC) content was determined with a LCK 381 TC/TOC cuvette test (difference method). This method has a detection range between 60 and 735 mg TOC L\(^{-1}\) and was assessed using a Xion 500 model LPG-385 photospectrometer (Hach Lange GMBH, Düsseldorf, Germany). The total and soluble chemical (n=3) oxygen demand (COD and sCOD) were analyzed by means of manual COD kits in the range of 100-1,500 mg COD L\(^{-1}\) (Nanocolor COD test kit, Macherey-Nagel, UK). For sCOD measurements, samples were filtered with a 0.45 µm Milex filter. The biological oxygen demand (BOD) was also measured by means of the Winkler method (5d, 20°C) according to Greenberg et al (1992). Lastly, sulphide concentrations were analyzed by means of LCK 653 sulphide kits (Hach Lange) with a measuring range between 0.1 and 2.0 mg S\(^-\) L\(^{-1}\). The architecture of the methalgae flocs was examined with a Zeiss Axioskop 2 Plus epifluorescence microscope (Carl Zeiss, Jena, Germany).
VII.2.6 Gas composition analyses

For each cycle, a gas sample (1 mL) was taken immediately after the addition of CH₄, after 24 h, 48 h and at the end of each cycle (72 h), with a gastight syringe (Hamilton, Sigma Aldrich, Bornem, Belgium). The gas phase composition was analyzed with a Compact GC (Global Analyzer Solutions, Breda, The Netherlands), equipped with a Porabond pre-column and a Molsieve SA column. Concentrations of CH₄, O₂, CO₂, N₂O and N₂ were determined by means of a thermal conductivity detector with a detection limit of 1 ppmv for each gas component. Significant changes in the N₂ concentration of the gas phase were never observed.

VII.2.7 Estimation of the relative algal abundance

Standard methods to quantify chlorophyll content failed due to partial extraction of the chlorophyll. Therefore, a semi-quantitative analysis was developed that allowed to measure differences in chlorophyll content within the methalgae flocs: well mixed samples were sonicated (Labsonic M, B. Braun Biotechnology Enterprise GmbH, Melsungen, Germany) for 5 min and transferred to a cuvette, followed by measurement of the chlorophyll peak. The latter was detected at an absorbance wavelength of 685 nm whereas the cultures without microalgae showed a linear pattern between 600 and 800 nm. Thus, the relative chlorophyll peak height was calculated as absorbance₆₈₅ nm – (absorbance₆₃₅ nm + absorbance₇₃₅ nm)/2. To validate this parameter, different mixtures of a MOC with the algal inoculum were tested, which resulted in a linear relationship between the algal concentration and the measured ratio, with a coefficient of determination (R²) value of 0.98 (n=28). At the end of the 10th cycle, the relative peak height was also measured before sonication. This allowed the estimation of the partition of the algal biomass over the liquid phase and the flocs, respectively.
VII.2.8 Statistical analysis

Throughout this study, the standard deviation is given for the triplicates, with average values being calculated over the last five cycles (cycle 6 – cycle 10), unless otherwise mentioned. Likewise, concentrations and rates are expressed per liter liquid phase, unless otherwise mentioned. Statistical analysis was performed with SPSS for Windows, version 15 (SPSS Inc., Chicago, Illinois, USA). Homogeneity of variances and normality of the data were determined with a Levene's test and a Kolmogorov Smirnov test, respectively. When a normal distribution and homogeneity of variances were observed, significant differences between mean values were analyzed by a One-way ANOVA test, with a significance level of 0.05 (LSD). If no normal distribution was observed, the differences in the means were statistically analyzed by Kruskal-Wallis, followed by a Mann-Whitney post hoc test including a Bonferroni correction.

VII.3 Results

VII.3.1 Methane oxidation rates

The overall methane oxidation rates (MOR) of the CH₄ oxidizing communities with NO₃⁻ as N source (MOC), the methalgae communities with NO₃⁻ as N source (N-MAC), and the methalgae communities with NH₄⁺ as N source (A-MAC) were measured over ten cycles. During the first two cycles, a significantly lower MOR was found for the A-MAC in comparison with the MOC and N-MAC (Figure VII-1). Thereafter, no consistent differences (p>0.05) in MOR were found. During each cycle, the daily observed MOR differed for the MOC and MAC, respectively. During the first 24h, the MOC had a significantly higher MOR than both N-MAC and A-MAC (Table VII-1). However, during the second day of a cycle, the MOR were very similar. During the last day of the cycle, the MOR decreased in the MOC to 54 ± 16 mg CH₄ L⁻¹ d⁻¹, while an almost identical MOR was found for the N-MAC (169 ± 27 mg CH₄ L⁻¹ d⁻¹) and A-MAC (161 ± 35 mg CH₄ L⁻¹ d⁻¹) (Table VII-1).
Figure VII-1. The overall methane oxidation rate (mg CH$_4$ L$^{-1}$ d$^{-1}$; average over 72h) for the methane oxidizing communities (MOC; circle), *methalga* communities with NO$_3^-$-N (N-MAC; triangle) and *methalga* communities with NH$_4^+$-N (A-MAC; square), showing a stable trend in time for all communities.

Table VII-1. The average daily and overall methane oxidation rate (MOR; mg CH$_4$ L$^{-1}$ d$^{-1}$) over the whole cycle (72h) for the methane oxidizing community (MOC), the *methalga* community with nitrate as N source (N-MAC) and the *methalga* community with ammonium as N source (A-MAC) from cycle 6 to 10.

<table>
<thead>
<tr>
<th></th>
<th>MOC</th>
<th>N-MAC</th>
<th>A-MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>266 ± 57</td>
<td>135 ± 39</td>
<td>173 ± 53</td>
</tr>
<tr>
<td>Day 2</td>
<td>210 ± 46</td>
<td>210 ± 44</td>
<td>208 ± 37</td>
</tr>
<tr>
<td>Day 3</td>
<td>54 ± 16</td>
<td>169 ± 27</td>
<td>161 ± 35</td>
</tr>
<tr>
<td>Overall</td>
<td>177 ± 12</td>
<td>171 ± 27</td>
<td>181 ± 23</td>
</tr>
</tbody>
</table>
VII.3.2 Carbon balances

On average, 386 ± 60 (N-MAC) and 407 ± 51 (A-MAC) mg CH$_4$C L$^{-1}$ cycle$^{-1}$ were metabolized. A comparable value of 394 ± 27 mg CH$_4$C L$^{-1}$ cycle$^{-1}$ was found for the MOC (Table VII-2). After 72h, an average CO$_2$ production of 138 ± 10 mg CO$_2$C L$^{-1}$ cycle$^{-1}$ was detected in the MOC-reactors, due to dissimilatory CH$_4$ oxidation and microbial respiration. This concentration corresponded with a CO$_2$-C$_{produced}$:CH$_4$-C$_{consumed}$ ratio of 0.35 ± 0.03. In the reactors with MAC however, the overall CO$_2$ production was in all MAC-reactors lower than 2 mg CO$_2$C L$^{-1}$ cycle$^{-1}$ from the second cycle on (Table VII-2).

Table VII-2. Overview of the CH$_4$ oxidation (mg CH$_4$C L$^{-1}$ cycle$^{-1}$), the CO$_2$ production (mg CO$_2$C L$^{-1}$ cycle$^{-1}$), the ratio of total organic carbon over CH$_4$C (mg TOC mg$^{-1}$ CH$_4$-C$_{consumed}$), the accumulation of volatile suspended solids (mg VSS L$^{-1}$ cycle$^{-1}$), the nitrogen consumption (mg N L$^{-1}$ cycle$^{-1}$), the ratio of total organic nitrogen over total organic carbon (mg TON mg$^{-1}$ TOC), the average pH change and the molar O$_2$$_{consumed}$:CH$_4$$_{oxidized}$ ratio over a cycle for the reactors with a methane oxidizing community (MOC), a methalgae community with nitrate as N source (N-MAC) and a methalgae community with ammonium as N source (A-MAC) respectively.

<table>
<thead>
<tr>
<th></th>
<th>MOC</th>
<th>N-MAC</th>
<th>A-MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$ oxidation</td>
<td>394 ± 27</td>
<td>386 ± 60</td>
<td>407 ± 51</td>
</tr>
<tr>
<td>CO$_2$ production</td>
<td>138 ± 10</td>
<td>< 2</td>
<td>< 2</td>
</tr>
<tr>
<td>TOC ratio:CH$_4$C*</td>
<td>0.40 ± 0.03</td>
<td>0.85 ± 0.13</td>
<td>0.91 ± 0.13</td>
</tr>
<tr>
<td>VSS accumulation</td>
<td>411 ± 80</td>
<td>641 ± 83</td>
<td>688 ± 106</td>
</tr>
<tr>
<td>N consumption</td>
<td>38 ± 6</td>
<td>76 ± 15</td>
<td>61 ± 9</td>
</tr>
<tr>
<td>TON:TOC ratio*</td>
<td>0.18 ± 0.01</td>
<td>0.22 ± 0.03</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>pH change</td>
<td>-0.2</td>
<td>+0.6</td>
<td>-0.3</td>
</tr>
<tr>
<td>O$_2$:CH$_4$ ratio</td>
<td>1.14 ± 0.09</td>
<td>0.50 ± 0.11</td>
<td>0.69 ± 0.12</td>
</tr>
</tbody>
</table>

* average value for the 10th cycle
The concentration of formaldehyde, a metabolite of the CH₄ oxidation reactions, was always lower than the detection limit (2 mg L⁻¹), while the concentration of formic acid never exceeded a concentration of 2 mg HCOOH L⁻¹. When applying a ratio of 1.49 mg COD (chemical oxygen demand) mg⁻¹ VSS as observed in comparable reactors (van der Ha et al., 2010), an average growth yield of 0.29±0.05 g CDW-COD g⁻¹ CH₄-COD was observed in the MOC.

Analysis of the total organic carbon (TOC) and inorganic carbon (TIC) content of the liquid phase resulted in a TOC_accumulated:CH₄_C_consumed ratio of 0.85 ± 0.13 and 0.91 ± 0.13 for the N-MAC and A-MAC respectively, where a ratio of 0.40 ± 0.03 was observed for the MOC (Table VII-2). Based on the TOC measurements, the N-MAC assimilated a factor 2.3 more CH₄ oxidized-C into biomass, compared to the MOC (Figure VII-2). The TIC content was with 10 ± 4 (N-MAC) and 5 ± 1 (A-MAC) mg C L⁻¹ significantly lower than the TIC content of the MOC (35 ± 8 mg C L⁻¹) (Figure VII-2). Although it was impossible to quantify the separate VSS accumulation of the microalgae and bacteria respectively, analysis of the total VSS content confirmed the higher biomass accumulation when microalgae were present. The observed VSS accumulation of 641 ± 83 (N-MAC) and 688 ± 106 (A-MAC) mg VSS L⁻¹ cycle⁻¹ was a factor 1.6 and 1.7 higher than in the MOC-reactors, respectively (Table VII-2).

VII.3.3 Apparent oxygen consumption

The apparent O₂ consumption was always significantly lower for the MAC than for the MOC. The average O₂_consumed:CH₄_consumed ratio (mol/mol) was 0.50 ± 0.11 (N-MAC) and 0.69 ± 0.12 (A-MAC) respectively, i.e. 55 an 43% lower than in the MOC-reactors (1.14 ± 0.08).

The O₂_consumed:CH₄_oxidized ratio was significantly higher for the A-MAC compared to the N-MAC. This difference was also observed when the N source of the N-MAC was changed to ammonium, as the O₂_consumed:CH₄_consumed ratio rose from 0.48 ± 0.04 to 0.72 ± 0.18. There was also a change in the ratio when the N source of an A-MAC was changed to nitrate. The O₂_consumed:CH₄_oxidized ratio dropped to 0.59 ± 0.08 with nitrate as N source, while with
ammonium as N source it was still 0.75 ± 0.05 mol. In contrast, no change in the ratio was found when the N source of the MOC was altered to NH_4^+ (data not shown). Also, no ammonium oxidizing activity was observed when A-MAC were grown in the absence of CH_4 (data not shown).

Figure VII-2. Overview of the average carbon balances for the methane oxidizing community (MOC), *methalgae* community with nitrate as N source (N-MAC) and the *methalgae* community with ammonium as N source (A-MAC) during the 10th cycle. The height of the columns shows the total amount of oxidized CH_4-C (mg CH_4-C L$^{-1}$ liquid phase) during one cycle. The total organic carbon (TOC), total inorganic carbon (TIC) and CO$_2$ production in the gas phase (CO$_2$-C) are expressed as mg C L$^{-1}$ liquid phase. The difference between the measured CH_4-C removal and the total production of TIC, TOC and CO$_2$-C is shown as ‘not defined’.
VII.3.4 Macro- and microscopic community organization

In the algal inoculum, the microalgae *Chlorella* sp., *Scenedesmus* sp., *Closterium* sp., *Euglena* sp. and *Cosmarium* sp. and the cyanobacterium *Phormidium* sp. were classified, based on their cell morphology. Over time, there was a clear selection for *Scenedesmus* sp., which became dominant in all reactors.

The addition of microalgae had an influence on the macroscopic, as well as the microscopic organization of the community. While most bacteria of the MOC were in suspension or formed smaller flocs, larger flocs (up to 2 mm) were formed by the MAC (Figure VII-3A). On a microscopic scale, randomly organized microalgae and bacteria were observed in the *methalgae* flocs (Figure VII-3B). Until the sixth cycle, the relative chlorophyll content increased for the MAC, which indicated an accumulation of algal biomass (Figure VII-4). Until the 8th cycle, the total amount of chlorophyll was significantly higher in the N-MAC-reactors compared to the A-MAC-reactors (Figure VII-4).

![Images](A,B,C,D,E,G,H)

Figure VII-3. Images of the reactors with a methane oxidizing community (A-B), a *methalgae* community with NO$_3^-$ as N source (C-D) and a *methalgae* community with NH$_4^+$ as N source (E-F), after the first (upper row) and fifth (lower row) cycle. Microscopic images of the bioflocs from a *methalgae* community with NO$_3^-$ as N source (cycle 5) are shown with a 100x enlargement (G) and 1000x enlargement (H), respectively.
Based on the relative chlorophyll peak height before and after sonication, 51 ± 3 (N-MAC) and 47 ± 2% (A-MAC) of the algal biomass was present in the flocs. To test the settleability of the cultures, the VSS content of both the decanted liquid phase (90% of total volume) and the sludge phase were measured after 5 minutes of sedimentation. Respectively 65 ± 6% (N-MAC) and 61 ± 5% (A-MAC) of the VSS were present in the sludge phase (10% of total volume), where this was only 23 ± 4% for the MOC.

Figure VII-4. The relative chlorophyll peak height for the three types of communities. No chlorophyll was found back in the methane oxidizing community (MOC). For both the *methalgalae* community with nitrate as N source (N-MAC) and ammonium as N source (A-MAC), an upward trend in algal growth was observed.
VII.3.5 The influence of heat treatment, ethyn addition and incubation in the dark

The microbial nature of the CH₄ oxidation activity was confirmed by the fact that the CH₄ oxidizing rate declined to 0.2 ± 2.1 mg CH₄ L⁻¹ d⁻¹ after heat treatment (20 min, 121°C, 1 bar). Addition of 0.2% (v/v) C₂H₂, a known inhibitor of MOB, also led to a complete inhibition of the CH₄ oxidation activity. To verify the CH₄ oxidation capacity of the microalgae, the A-MAC reactors were incubated with a gas phase consisting out of 13% (v/v) CH₄, 8% (v/v) CO₂ and 0.2% (v/v) C₂H₂ in air. After 72h, all CO₂ was incorporated into biomass by the microalgae, while no significant CH₄ oxidizing rate could be observed.

The presence of the soluble methane monooxygenase was detected in the three communities. A naphthalene oxidation rate of 155 ± 33 nmol mg⁻¹ protein h⁻¹ was found for the MOC (Koh et al., 1993). Although naphthalene oxidation was observed visually for the MAC, no quantification of the soluble methane monooxygenase was possible, since the microalgae interfered with the color measurement. The A-MAC was also incubated under dark conditions. The overall CH₄ oxidizing rate of 131 ± 1 mg CH₄ L⁻¹ d⁻¹ under dark conditions was 29% lower than under lighted conditions (182 ± 10 mg CH₄ L⁻¹ d⁻¹). This difference was the largest (44%) during the first 24h of the cycle.

VII.3.6 The influence of the N source

The N source influenced the CH₄ oxidizing rate during the first two cycles (Figure VII-1). During those cycles, the overall CH₄ oxidizing rate of the A-MAC was 101 ± 34 mg CH₄ L⁻¹ d⁻¹, significantly lower than the CH₄ oxidizing rate of 148 ± 11 mg CH₄ L⁻¹ d⁻¹ observed for the N-MAC. From the third cycle on, no consistent differences in the overall CH₄ oxidizing rate or in the VSS accumulation could be observed between the MOC, N-MAC and A-MAC (Table VII-2). Although the absolute nitrogen consumption of the N-MAC and A-MAC was a factor 2 and 1.6 higher than for the MOC (Table VII-3), respectively, the \(\text{TON}_{\text{accumulated}} : \text{TOC}_{\text{accumulated}} \) ratios were comparable (Table VII-2).
Table VII-3. Overview of the consumed and produced nitrogen species for the methane oxidizing community (MOC), the methalgae community with nitrate as N source (N-MAC) and the methalgae community with ammonium as N source (A-MAC), during the 10th cycle. The N-consumption is expressed as mg NO$_3$-N L$^{-1}$ liquid phase cycle$^{-1}$ for the MOC and N-MAC, and as NH$_4^+$-N for the A-MAC. The TON-, NO$_3^-$, NH$_4^+$ and NO$_2^-$ concentrations are expressed as mg N L$^{-1}$ liquid phase cycle$^{-1}$. The N$_2$O is expressed as mg N$_2$O-N in the gas phase L$^{-1}$ liquid phase. The difference between the observed nitrogen consumption and production, respectively, is shown as ‘not defined’.

<table>
<thead>
<tr>
<th></th>
<th>MOC</th>
<th>N-MAC</th>
<th>A-MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$-N</td>
<td>41.7 ± 3.7</td>
<td>73.6 ± 1.9</td>
<td>n.a.</td>
</tr>
<tr>
<td>NH$_4^+$-N</td>
<td>n.a.</td>
<td>n.a.</td>
<td>63.0 ± 2.3</td>
</tr>
<tr>
<td>N-production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$-N</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.1 ± 0.2</td>
</tr>
<tr>
<td>NH$_4^+$-N</td>
<td>1.2 ± 0.1</td>
<td>1.8 ± 0.9</td>
<td>n.a.</td>
</tr>
<tr>
<td>NO$_2^-$-N</td>
<td>0.5 ± 0.1</td>
<td>1.0 ± 0.2</td>
<td>0.4 ± 0.4</td>
</tr>
<tr>
<td>N$_2$O-N</td>
<td>5.2 ± 0.8</td>
<td>u.d.l.</td>
<td>u.d.l.</td>
</tr>
<tr>
<td>TON</td>
<td>25.4 ± 1.9</td>
<td>67.6 ± 1.7</td>
<td>64.6 ± 8.3</td>
</tr>
<tr>
<td>Not defined</td>
<td>9.4 ± 0.8</td>
<td>3.2 ± 0.4</td>
<td>2.1 ± 0.1</td>
</tr>
</tbody>
</table>

* u.d.l.: under detection limit
* n.a.: not applicable

An evaluation of the nitrogen balances was performed for the three communities (Table VII-3). The nitrite production was in all cases relatively low, with maximum values of respectively 0.5 ± 0.1 (MOC), 1.0 ± 0.2 (N-MAC) and 0.4 ± 0.4 (A-MAC) mg NO$_2$-N L$^{-1}$ cycle$^{-1}$. Note that in the MOC-reactors, N$_2$O production was observed when O$_2$ concentrations decreased below 10% (v/v) (Table VII-3). The N source also influenced the pH evolution. The average pH increased with 0.6 units per cycle in the N-MAC reactors. The A-MAC on
their turn lowered the pH with 0.3 units per cycle. The average pH of the MOC-reactors, with nitrate as N source, decreased on average with 0.2 during each cycle (Table VII-2).

VII.3.7 Methalgae activity in anoxic non-synthetic effluents

The activity of a methalgae culture was evaluated in an anoxic effluent originating from an anaerobic digester, fed with potato waste. Essential physico-chemical parameters were analyzed and are represented in Table VII-4.

Table VII-4. Overview of physico-chemical parameters of the anoxic effluent. Where possible, average values (n=3) are given together with the standard deviation (SD).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average±SD</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>34</td>
<td>°C</td>
</tr>
<tr>
<td>DO</td>
<td>0.25</td>
<td>mg O₂ L⁻¹</td>
</tr>
<tr>
<td>pH</td>
<td>7.45±0.33</td>
<td>-</td>
</tr>
<tr>
<td>NH₄⁺-N (TAN)</td>
<td>291±6</td>
<td>mg NH₄⁺-N L⁻¹</td>
</tr>
<tr>
<td>NO₂⁻-N</td>
<td><0.5</td>
<td>mg NO₂⁻-N L⁻¹</td>
</tr>
<tr>
<td>NO₃⁻-N</td>
<td>0.84±0.84</td>
<td>mg NO₃⁻-N L⁻¹</td>
</tr>
<tr>
<td>PO₄³⁻-P</td>
<td>147±33</td>
<td>mg PO₄³⁻-P L⁻¹</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>908±459</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>3.65±0.23</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>H₂S</td>
<td>7.26±3.68</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>CZV_totaal</td>
<td>462±152</td>
<td>mg O₂ L⁻¹</td>
</tr>
<tr>
<td>CZV_opgelost</td>
<td>315±13</td>
<td>mg O₂ L⁻¹</td>
</tr>
<tr>
<td>VSS</td>
<td>484±170</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>TC</td>
<td>838±75</td>
<td>mg C L⁻¹</td>
</tr>
<tr>
<td>TIC</td>
<td>525±199</td>
<td>mg C L⁻¹</td>
</tr>
<tr>
<td>TOC</td>
<td>269±187</td>
<td>mg C L⁻¹</td>
</tr>
<tr>
<td>BZV</td>
<td>380</td>
<td>mg O₂ L⁻¹</td>
</tr>
</tbody>
</table>
Thereafter, six bottles were inoculated with a pre-incubated methanotrophic culture and algae cultures of *Scenedesmus* sp. or *Chlorella emersonii*, respectively, while the evolution of the O$_2$ concentration and the methane oxidizing activity were followed up (Figures VII-5 and VII-6, respectively).

![Graph showing O$_2$ concentration in gas phase](image)

Figure VII-5. Overview of the O$_2$ concentration in the gas phase of bottles wherein methalgae cultures were cultivated in anoxic effluent. Tests were performed in triplicate with two different algae species, i.e. *Scenedesmus* sp. (filled circles) and *Chlorella emersonii* (open circles). The error bars indicate the standard deviation. Significant apparent O$_2$ production was observed from day 4 on ($p<0.05$).
Figure VII-6. Representation of the measured methane oxidation rates (mg CH₄ L⁻¹ d⁻¹) of *methalgae* cultures cultivated with anoxic effluent. Tests were performed in triplicate with two different algae species, i.e. *Scenedesmus* sp. (filled circles) and *Chlorella emersonii* (open circles). The error bars indicate the standard deviation. Significant apparent O₂ production was observed from day 5 on (*p*<0.05).

During the first three days, no apparent O₂ production was observed. This was in agreement with the fact that no algal growth was visually observed. From the fourth day on, a significant O₂ production occurred and thereafter, the O₂ concentrations kept on increasing. No significant differences were observed between the activity of both tested algae species (*p*<0.05). Yet, substantial differences were observed within the triplicates, as in both cases, one of the bottles hardly showed algal activity. The MOR profiles followed the same pattern. During the first four days, CH₄ was rather produced than consumed. However, significant CH₄ oxidation was observed from the fifth day on, when the effluent became oxygenated. Thereafter, the MOR showed an increasing trend, with a maximum of 344±166 mg CH₄ L⁻¹ d⁻¹ for the *Scenedesmus* sp. culture after nine days of incubation.
VII.4 Discussion

VII.4.1 Methane oxidation rates in the presence of microalgae

To accomplish a technically feasible and environmentally sustainable CH$_4$ oxidation, a high methane oxidation rate (MOR) is needed. The presence of microalgae did not lead to a significant decrease in the MOR, which shows that no significant inhibitory effect from the microalgae on the MOB was present. Only during the first 2 cycles, a less performing A-MAC was observed, which may have been due to the inoculant being precultured with NO$_3^-$ as N source. The overall CH$_4$ oxidizing rates over one cycle of 177 ± 12 (MOC) and 171 ± 27 (N-MAC) mg CH$_4$ L$^{-1}$ d$^{-1}$ were a factor of 1.5 higher than previously achieved with the same type of reactor (van der Ha et al., 2010). The higher sludge retention time (90h versus 140h) and the higher ratio of gas phase over liquid phase (5 versus 2) probably led to a longer period without CH$_4$ and O$_2$ limitations. These CH$_4$ oxidizing rates are in the range of continuous CH$_4$ oxidizing reactors reported in the literature, where CH$_4$ oxidizing rates were achieved in a range of 24 to 696 mg CH$_4$ L$^{-1}$ d$^{-1}$ (Melse and Van der Werf, 2005, Nikiema et al., 2005).

The significantly lower CH$_4$ oxidizing rate of the MAC compared to the MOC during the start-up phase of a cycle could be due to the observed floc formation. In the MAC, more bacteria and microalgae were observed living closely together in methalgae flocs (Figure VII-3). Therefore, competition for available O$_2$, CH$_4$ and nutrients must take place inside the flocs (Hamdi, 1995, Modin et al., 2008). Additionally, a longer lag time may have been due to CH$_4$ and O$_2$ diffusion through the methalgae flocs (Hamdi, 1995, Xavier et al., 2005). During a cycle, newly formed flocs were observed with a smaller diameter, thus encountering less diffusion limitations, which may explain the higher CH$_4$ oxidizing rate during the second day. It was also observed that the CH$_4$ oxidizing rate of the MOC decreased significantly during the third day of each cycle, concomitant with the limiting concentration of available O$_2$. In contrast, the CH$_4$ oxidizing rates of the N-MAC and A-MAC was 4 times higher, as the microalgae produced enough O$_2$ to maintain the CH$_4$ oxidation. With the experimental set-up used in this work, the gas composition varied
during each cycle, which explains the variation in the MOR. However, the MOR during the second day was the most representative value, as both the effect of the start-up adaptation and the limiting CH₄/O₂-concentrations were negligible.

VII.4.2 CO₂ fixation supported an increased biomass production

The dissimilatory CH₄ oxidation processes, in combination with the heterotrophic respiration, led to a CO₂-C\(_{produced}\):CH₄-C\(_{consumed}\) ratio of 0.35 for the MOC. This has also been mentioned in previous studies, where a ratio between 0.17 and 0.40 was observed for methanotrophic communities (Börjesson et al., 1998, Whittenbury et al., 1970b). In the MAC reactors, almost no CO₂ was measured in the gas phase at the end of each cycle. This shows that there was enough light energy present for the CO₂ fixation of the algae, so light intensity was not a limiting factor for the photosynthetic processes. No (bi)carbonate was added to the medium, which means that algal growth was completely dependent on the microbially produced CO₂. This indicated that the CH₄-C was dissimilated to CO₂-C by the MOB, and was to a large extent transformed to TOC, as the microalgae were able to readily use the microbial produced CO₂ for their metabolism. This algal CO₂ fixation led to a 130 ± 20% higher TOC accumulation, compared to the MOC.

Based on the average MOR of 210±44 mg CH₄ L\(^{-1}\) d\(^{-1}\) in the N-MAC reactors (Table VII-1) and the ratio of 0.85±0.13 mg total organic carbon\(_{produced}\) for every mg of CH₄-C\(_{consumed}\) (Table VII-2), an average carbon biofixation of about 135 mg CH₄-C L\(^{-1}\) d\(^{-1}\) can be calculated. This value is similar to the carbon removal rate of 127±26 mg TOC-C L\(^{-1}\) d\(^{-1}\) that was observed with a similar reactor type for an algal-bacterial coculture treating four times diluted swine slurry under anaerobic conditions (Gonzalez et al., 2008).

VII.4.3 Algae lowered the need for an external oxygen supply

In the MOC, a molar O₂\(_{consumed}\):CH₄\(_{consumed}\) ratio of 1.14 ± 0.09 was observed, which is comparable to the ratio of 1.2 to 1.4, observed with a comparable previous study (Modin et al., 2010). The algal O₂ production, due to photosynthetic processes, lowered the
overall O₂ need in the N-MAC with 55%. The presence of O₂ producing algae allowed the MOB in the MAC-reactors to sustain CH₄ oxidation during the third day of each cycle, when the bacteria were deprived from O₂ originally present in the gas phase. When additional (bi)carbonate or CO₂ would be supplied, microalgae could provide enough O₂ for the bacterial community to make external O₂ supply obsolete. This could lower the cost for a CH₄ oxidizing biofilter drastically if an efficient transfer of light energy could be achieved. This CO₂ supplementation is easily achieved, as CO₂ is, due to the biogas production, already present in the effluent of the anaerobic digestion process. The O₂ consumption was dependent of the applied N source: with NH₄⁺ as N source, the O₂ consumption of the methalgae was a factor 1.4 higher than with NO₃ L as N source. The fact that this difference was not observed with the MOC, indicates that the difference in apparent O₂ consumption is caused by the algal metabolism. The underlying reason is unknown, although it seems to be related to nitrogen assimilation processes.

VII.4.4 The coculture of bacteria and microalgae has the tendency to form flocs

The coculture of bacteria and microalgae tends to form flocs, where about half of the algal and bacterial biomass accumulates. This floc formation may be initiated through the attractive forces of surface hydrophobicity (van Loosdrecht et al., 1987) or production of algal or/and bacterial EPS (Fuentes et al., 1999, Grossart et al., 2006, Wilshusen et al., 2004a). Moreover, it could be a mutually beneficial syntrophic relationship, as they are interdependent for their nutrient sources. This floc formation did not seem to lead to a differentiation in the floc configuration. However, the tendency of the methalgae to form flocs, made it easier to separate the biomass from the liquid phase.

VII.4.5 The bacterial methane oxidation activity

The CH₄ oxidation activity was clearly of microbial origin as a heat treatment stopped the CH₄ oxidation activity almost completely. The CH₄ oxidation activity of the MOB was also completely stopped by the addition of C₂H₂, a known inhibitor of MOB (Chan and Parkin,
2000, Prior and Dalton, 1985). This indicates that MOB were responsible for the CH$_4$ oxidation activity. Their presence was confirmed by the detection of the soluble methane monooxygenase, an enzyme that is only present in MOB (Dalton, 2005).

Moreover, microalgae did not show any CH$_4$ oxidizing capacity. After addition of C$_2$H$_2$ and CO$_2$ in the gas phase of the methalgae culture, no CH$_4$ oxidation activity was observed, although all the readily available CO$_2$ was removed, due to algal carbon fixation. This shows that C$_2$H$_2$ is a good selective inhibitor for MOB versus microalgae. The lack of CH$_4$ oxidizing activity of the microalgae was also observed under dark incubation conditions: a distinctive CH$_4$ oxidation activity was observed, although no light energy was present, necessary for the algal photosynthetic processes. However, the measured MOR was significantly lower than the MOR of the control reactors, incubated in the light. This implies that the O$_2$ production of the microalgae inside the methalgae flocs positively influenced the CH$_4$ oxidation activity.

VII.4.6 The influence of the nitrogen source

The nitrogen need of both microalgae and MOB is higher than 0.15 mg N mg$^{-1}$ incorporated C (Klausmeier et al., 2004, Scheutz et al., 2009a). Microalgae, as well as MOB, can use NO$_3^-$ and NH$_4^+$ as N source (Bodelier and Laanbroek, 2004, Li et al., 2010b, Lourenco et al., 1998). However, it has been observed that ammonium can have an inhibitory effect on MOB (Begonja and Hrsak, 2001, Nyerges and Stein, 2009). Microalgae on the other hand are sensitive for both ammonium as ammonia: 28 mg NH$_3$-N L$^{-1}$ inhibited the growth of *Scenedesmus obliquus*, at a pH of 8 (Azov and Goldman, 1982, Kallqvist and Svenson, 2003). In the current study, no inhibition was observed related to the N source, as no significant differences in MOR or VSS accumulation were found between N-MAC and A-MAC. Due to a higher VSS accumulation, the nitrogen consumption of the N-MAC was a factor 2 higher than the N-consumption of the MOC. The $\text{TON}_{\text{accumulated}} : \text{TOC}_{\text{accumulated}}$ ratio was however not significantly different for the three communities. The relatively low nitrite concentrations did not induce inhibitory effects (King and Schnell, 1994b, Nyerges and Stein, 2009). The N$_2$O production of the MOC was
probably caused by aerobic CH₄ oxidation coupled to denitrification (AME-D), a known process when O₂ levels are low (Modin et al., 2010). It was however unexpected that this process could occur when 4 mg O₂ L⁻¹ was still present in the liquid phase.

The N source also influenced the pH changes in the MAC-reactors. The pH drop in the MOC reactors was caused by the acidifying effect of the produced CO₂ and (bi)carbonates that dissolved in the water phase. In the MAC-reactors, the acidifying effect of the bacterially produced CO₂ was neutralized by the algal fixation. This however cannot explain the pH rise, as no other C source was present in considerable amounts. The rise of the pH in the N-MAC probably was due to the alkalizing effect of assimilatory nitrate reductase (Eisele and Ullrich, 1975, Fuggi et al., 1981). In the A-MAC however, the pH decreased as the assimilation of ammonium into microbial biomass produces protons (Fuggi et al., 1981, Li et al., 2008).

VII.4.7 Methalgae activity in anoxic industrial effluents

There is a considerable difference between microbial activity in optimal growth medium under aerobic conditions and activity in anoxic effluents of anaerobic digesters. Still, conditions in the digestate allowed microbial activity as at least a close to neutral pH occurred, while substantial amounts of NH₄⁺-N, PO₄³⁻-P and SO₄²⁻-S were available. Moreover, a large amount of TIC was present, allowing algal photosynthesis. During the first four days of incubation, no apparent O₂ production was observed as the algae probably had to adapt to the new environment. Moreover, other processes like H₂S oxidation and heterotrophic activity form alternative O₂ sinks. Still, from the fourth day on, O₂ concentrations increased considerably, resulting in methanotrophic activity. The methane oxidation rates were in the same order as with the A-MAC and N-MAC communities from the former tests. In conclusion, methalgae communities can easily adapt to at least some industrial anoxic wastestreams without loss of activity. Moreover, no external O₂ addition was necessary, as the microalgae supplied the latter in situ.
VII.4.8 Conclusions

Coculturing CH$_4$ oxidizing communities and microalgae allowed a greenhouse gas neutral oxidation of CH$_4$ to microbial biomass. Microalgae converted almost all CO$_2$, produced by methane oxidizing bacteria, to biomass. In this configuration, the presence of photosynthetic active microalgae lowered the need of externally supplied O$_2$ for the CH$_4$ oxidizing community with 55%. Moreover, methalgae cultures adapted easily to an industrial digestate. Even under anoxic conditions, considerable methanotrophic activity was observed as the MOB could rely on *in situ* O$_2$ production by algal photosynthesis. This methalgae concept therefore creates perspectives for a sustainable treatment of CH$_4$ saturated effluents. The low light intensity needed, the observed floc formation and the interchangeability of the N source support this conceptual approach. However, implementation of a continuous system under anoxic conditions with a high methane oxidation rate per unit reactor volume, an efficient transfer of light energy and a low spatial footprint are prerequisites for application in practice.

Acknowledgements

DVDHA, WV and NB designed the experiments. BB and DVDHA performed the experiments and analyzed the data. DVDHA wrote the manuscript. BB, WV and NB commented on the manuscript. This research was funded by a PhD grant for David van der Ha from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen, SB-83259) and a research grant from the Geconcerteerde Onderzoeksactie (GOA) of Ghent University (BOF09/O0A005). The authors gratefully thank Suzanne Read and Simon De Corte for proof reading the manuscript. We thank Tim Lacoere for the graphic design. Marie Linthout and Sofie Van den Hende are greatly acknowledged for their assistance.
CHAPTER VIII

FACULTATIVE PONDS HARBOUR METHANE OXIDIZING COMMUNITIES

SUPPORTED BY ALGAE
I am not apt to follow blindly the lead of other men. I have steadily endeavoured to keep my mind free.

Charles Darwin
Chapter VIII. Facultative ponds harbor methane oxidizing communities supported by algae

Abstract

Waste stabilization ponds are key units of many low-cost wastewater treatment plants. Typically, anaerobic processes taking place in the sludge blanket result in emissions of the greenhouse gas CH₄. A South African pilot facultative waste stabilization pond was used to evaluate the fate of CH₄ in the oxygenated pond surface layer. On site emission analyses showed that such facultative ponds are substantial CH₄ sources. Yet, part of the produced CH₄ is consumed by aerobic methane oxidizing bacteria (MOB) before it can reach the atmosphere. Both type Ia, Ib and II MOB were isolated out of enriched samples originating from the surface layer of 25 cm, wherein at least 10⁴ cultivable MOB mL⁻¹ were observed. These enrichments also showed a high methane oxidizing activity of 190±5 mg CH₄ L⁻¹ liquid d⁻¹. The algal community had an important indirect effect on the methanotrophic activity as the algae provided the MOB with O₂. In laboratory simulations with a stagnant water column, methane oxidation rates were significantly higher when algae were able to produce O₂, which was subsequently consumed by MOB. As such, algae have an essential supportive role in the CH₄ oxidation of facultative ponds and could therefore influence their carbon footprint to a substantial extent.

Redrafted after:

VIII.1 Introduction

All over the world, treatment of wastewater is a necessity to obtain a sustainable way of living for an ever-increasing population (Verstraete et al., 2009). While industrialized countries have the possibility to invest in state-of-the art technologies like activated sludge systems or anaerobic digesters, sewage treatment with a low capital and operational cost is often the only possibility in many developing countries (Aiyuk et al., 2004, De Almeida et al., 2009, Mara, 2004). Therefore, waste stabilization ponds (WSP) have been successfully implemented for wastewater treatment, largely due to the pioneering work of Oswald and Marais (Caldwell, 1946, Marais, 1966, Oswald, 1976). WSP are characterized by long retention times to allow for the gradual breakdown of organic waste by microorganisms (Mara, 2005). In addition to anaerobic and aerobic ponds, facultative versions exist and these are the most common WSP types in the USA (Reed, 1995). They differ from anaerobic ponds as there is an aerobic surface layer present. Aside from wind effects, this layer is mainly oxygenated by algae and cyanobacteria, which produce oxygen as a product of photosynthesis (Mara, 2005). Often, these algae enter the system naturally and a clear selection frequently occurs for motile algae that can optimize their vertical position, therefore having an advantage over non-motile algae (Mara, 2005, Pearson et al., 1987). At the bottom of the pond however, an almost permanent anaerobic sludge blanket results in the release of large amounts of biogas comprising H$_2$S, NH$_3$, CO$_2$ and CH$_4$ (Craggs et al., 2008). Due to the nature and construction of these ponds, large emissions of CO$_2$ and CH$_4$ from the surface area can be expected and CH$_4$ production rates of 0.17 kg CH$_4$ kg$^{-1}$ BOD$_{waste}$ were found in models of anaerobic ponds fed with municipal waste (DeGarie et al., 2000, van der Steen et al., 2003). Picot et al. (2003) estimated that about 3.3 m3 capita$^{-1}$ y$^{-1}$ of CH$_4$ is produced in real scale ponds, when a daily sewage production of 100 g chemical oxygen demand (COD) capita$^{-1}$ d$^{-1}$ is assumed. Taking into account that CH$_4$ is a 25 times stronger greenhouse gas than CO$_2$ (Forster et al., 2007), a production of 0.25 ton CO$_2$-equivalents of CH$_4$ y$^{-1}$ per household of four persons can be estimated.
Due to these high emissions and the presence of O$_2$ in the surface layer of facultative ponds, aerobic methane oxidizing bacteria (MOB) might be expected to be part of the resident microbial community. Although van der Steen et al. (2003) did not find evidence of significant microbial CH$_4$ oxidation activity in simulated WSP bottles, MOB were identified in the root zone of *Lemna minor*, a common aquatic plant regularly floating on the surface of such ponds (Hanson et al., 1993). It has been observed at laboratory scale that algae can provide the MOB with molecular O$_2$, but this interaction is still poorly described under natural conditions (Bahr et al., 2011, van der Ha et al., 2011).

The present study focuses on a pilot scale Primary Facultative Pond (PFP), receiving domestic wastewater. In an effort to evaluate the influence of the algal photosynthetic activity on the methanotrophic activity, pond samples were enriched with CH$_4$ under illuminated and dark conditions. Furthermore, the amount of cultivable MOB in the pond was estimated by means of a most probable number approach. Finally, an isolation campaign on the enriched pond samples allowed to positively identify cultivable MOB.

VIII.2 Experimental section

VIII.2.1 Study site

The facultative pond used in this study is a component of an Integrated Algae Pond System located at the Institute for Environmental Biotechnology Rhodes University (EBRU), adjacent to the Grahamstown Wastewater Treatment Plant (33° 19’ 07” South, 26° 33’ 25” East), which operates uninterrupted and treats 80 m3 d$^{-1}$ of domestic effluent. The complete system comprises a 840 m2 PFP, a single fermentation pit, two 500 m2 high rate algal ponds and two algal settling ponds. Upflow velocity in the fermentation pit is maintained at 1-1.5 m d$^{-1}$ while the Hydraulic Retention Times (HRT) in the fermentation pit and PFP are 3 and 20 d, respectively. All experiments and sampling took place in the period from February 2nd until April 25th, 2012.
VIII.2.2 Estimation of methane emissions

Emission of CH$_4$ from the facultative pond was estimated by means of a free-floating gas capture device positioned in an area equidistant from the centre and the border of the pond. The device was constructed of polystyrene (2 dm2) with an attached gastight polyethylene terephthalate bottle (420 mL) and an open cross section of 20 cm2. Biogas produced from the PFP expelled the water from the bottle allowing quantification of produced CH$_4$ over time. Extrapolated quantification of CH$_4$ production was based on measurements during six different periods of 24 to 120h.

VIII.2.3 Influence of algae on the physico-chemical conditions in the pond

In order to estimate the physico-chemical conditions in the pond, depth profiles of temperature, dissolved oxygen (DO) and pH were constructed at different time intervals at a predefined spot approximately 6 m from the centre of the pond, thereby not disturbing the water column. The mentioned parameters were measured every 1 cm from the surface to a depth of 50-60 cm. DO and temperature were measured using a handheld dissolved oxygen meter (Model 85, YSI Inc., OH, USA), while pH was measured with a WTW330 (WTW, Weilheim, Germany) instrument.

On March 13th 2012, three samples (1 L) were harvested aseptically from the PFP using a pump. Two samples (sample$_{5	ext{cm}, \text{no visible algae}}$ and sample$_{25	ext{cm}, \text{no algae}}$), from a depth of 5 cm and 25 cm respectively, were taken 6 m from the centre of the pond where no algae were visibly present. A third sample (sample$_{5	ext{cm}, \text{visible algae}}$) was taken at 5 cm depth, 50 cm away from the edge of the pond, where a large amount of motile algae were visibly present. At the time of sampling, the light intensity at the water surface was 1604 µmol m$^{-2}$ s$^{-1}$ (PAR photosynthetic active range), while ambient air temperature was 28.4°C. The pond was at that time largely anaerobic, with the exception of some zones where motile algae appeared to gather. The water temperature, pH and DO were measured in situ. Chlorophyll content, VSS and COD analyses were performed within 1h of sampling. Subsamples were immediately filtered using a 0.22 µm filter (Millipore, Belgium) and
Facultative ponds harbor methane oxidizing communities supported by algae

stored at 4°C until analyses of anion concentration, soluble COD (sCOD) and NH₄⁺-N, respectively.

VIII.2.4 Amount and activity of MOB

Based on physico-chemical analyses of the pond water, diluted Ammonium Mineral Salts medium (dAMS) was chosen as medium for enrichment of the pond samples, as it had a similar NH₄⁺-content and pH value as the pond water, without the presence of organic C sources, which would make the enrichment and isolation of MOB more difficult. Sterile dAMS medium (pH 6.9) was prepared by adding 0.1 g NH₄Cl; 0.2 g MgSO₄.7H₂O; 7.17 g Na₂HPO₄.2H₂O; 2.72 g KH₂PO₄; 30 mg CaCl₂.6H₂O; 4.5 mg Na₂-EDTA; 3.5 mg FeCl₃.6H₂O; 2.5 mg CuSO₄.5H₂O (10 µM) and other trace elements to one liter of demineralized water up to a volume of 1 L, in accordance to Bowman (2006).

Quantification of living MOB in the three mentioned pond samples was done by dilution to extinction (n=3), up to a 10⁷ fold dilution. Therefore, 900 µL of sterile dAMS medium and 100 µL sample from the lower dilution were pooled into 12 mL vacutainers (BD, South Africa) under an atmosphere of 20% (v/v) CH₄ in air. After 12 days, presence of MOB was evaluated based on measurements of the absorbance (A₆₀₀nm), supported by gas phase analyses. Therefore, control vials were used that were treated similarly, but without addition of CH₄ to the gas phase. Dilutions were considered positive for methanotrophic activity when the absorbance increased with a factor 10 and the CH₄ concentration dropped below the average initial value, substracted by five times the standard deviation. This information was used to estimate the abundance of cultivable MOB under the given growth conditions using most probable number tables and is expressed together with its 95% confidence interval (Anonymous, 2008).

The methanotrophic activity was evaluated by measuring the CH₄ oxidation rate of enrichments from the three mentioned pond samples. Therefore, six Schott bottles with a total volume of 590 mL were sterilized and sealed with butyl stoppers. To three bottles, 100 mL sterile dAMS medium was added while the three remaining bottles were filled
with 100 mL filtered (0.22 µm) supernatant (pH 7.1), obtained after centrifugation of pond water (15 min, 10,000 × g, Beckman Coulter Avanti J-E Centrifuge). All bottles were inoculated with 5% (v/v) of one of three fresh pond samples, filled with 20% (v/v) CH₄ in air and placed on a shaker (80 rpm) at 28°C in the dark. The CH₄ oxidation rate and apparent O₂ consumption were measured daily until the O₂ concentration was below 3% (v/v). To indicate the microbial nature of the CH₄ oxidation, the same approach was used after autoclaving the cultures (20 min, 121°C, 1 bar). No significant CH₄ oxidation was observed in this bottle during a period of 96h.

VIII.2.5 Isolation and identification of cultivable MOB

After four days of incubation, the enriched samples with dAMS were subsampled (25 mL) and MOB were isolated according to Hoefman et al. (2012a). Briefly, samples were serially diluted in 12-fold to the point of extinction (10⁻³ up to 10⁻¹⁰) in 96-well microtiter plates with dAMS. After incubation for two weeks at 28°C under an atmosphere of 50% (v/v) in air in gastight jars (Oxoid), the highest dilution of each series that was visually positive for growth, was plated onto dAMS agar and sub-cultured to purity. Pure cultures were confirmed for methane oxidation by CH₄ and O₂ consumption and CO₂ production through GC analysis (Compact GC; Global Analyzer Solutions, Belgium) of batch cultures. Pure cultures positive for CH₄ oxidation were identified via 16S rRNA gene sequence analysis and dereplicated via (GTG)₅ rep-PCR fingerprinting. Purity of the MOB isolates was confirmed by (i) colony morphology, (ii) phase-contrast microscopy, (iii) absence of heterotrophic growth on 1/10 trypticase soy agar under air and (iv) absence of growth on dAMS under air.

VIII.2.6 Algae assisted methane oxidation

To evaluate the influence of algal photosynthetic activity on the CH₄ oxidation rate, pond samples were taken 5 cm below the surface (DO = 0.4 mg O₂ L⁻¹). Into three darkened bottles and three illuminated bottles with a volume of 590 mL, 80 mL of filtered pond water was added. These bottles were incubated with 10 mL of an active MOB enrichment
Facultative ponds harbor methane oxidizing communities supported by algae

on filtered pond water and 10 mL of a native mixed algae culture, both originating from the pond. All bottles were sealed, filled with 20% (v/v) CH₄ in air and placed in an incubation room at 28±2°C without shaking. While the dark bottles were shielded from the light, the illuminated bottles were placed continuously under fluorescent lamps for 72h, (71 µmol m⁻² s⁻¹, PAR) and the CH₄ and O₂ concentrations in the gas phase measured daily. Control bottles without algal inoculation indicated that the supplied light intensity had no inhibitory effect on the methanotrophic activity as such.

VIII.2.7 Physico-chemical analyses of the liquid and gas phase

The concentration of volatile suspended solids (VSS) was assessed according to Greenberg et al. (1992). For chlorophyll extraction, a volume of 20-200 mL was filtered using a Whatman GF/C filter and the filter cake extracted in darkness with 90% acetone for 24h according to Eaton et al. (1998). The absorbance was measured using an AquaMate Plus Spectrophotometer (Thermo Scientific, Waltham, MA). The concentrations of NH₄⁺, NO₃⁻, NO₂⁻ and PO₄³⁻ and the concentration of chemical oxygen demand (COD) were analyzed by means of the respectable Merck Spectroquant® test kit (Merck, Whitehouse Station, NJ) and analyzed with the same spectrophotometer. The soluble COD (sCOD) content was measured with a Nanocolor COD test kit 160 (Macherey-Nagel, Germany) with a measuring range between 0 and 160 mg COD L⁻¹. Absorbance was measured with a Nanocolor vario 4 (Macherey-Nagel, Germany). Identification of algae species was done by means of a Carl Zeiss Axiostar Plus light microscope (400× and 1000× magnification).

Analyses of the O₂ and CH₄ concentrations in the gas phase was by injection of 250 µL into an Agilent 6820 gas chromatograph (Agilent Technologies, Santa Clara CA) equipped with a flame ionization and thermal conductivity detector and fitted with either a Molsieve 5A packed column (6 ft × 2.1 mm i.d., Restek Corporation, Bellefonte, PA) or a GS-GasPRO capillary column (60 m × 0.32 mm i.d., Agilent Technologies, Santa Clara, CA). The thermal conductivity detector was set at 300°C with helium as the carrier gas at a flow rate of 0.9 mL min⁻¹. The gas pressure in the bottles was measured with an Infield 7 pressure meter (UMS, Germany) to compensate for over- or under pressure.
VIII.2.8 Statistical analysis

Results were statistically analyzed by performing a Welch modified two-sample t-test with equal variance and at a significance level of 95% \((n \text{ replicates, } p<0.05)\). Significant CH\(_4\) removal was defined as a difference of 5% compared to the former sampling point. Analyses were performed with SPSS (Duncan, version 19.0).

VIII.2.9 Nucleotide sequence accession numbers

The 16S rRNA gene sequence data generated in this study has been deposited in GenBank/EMBL/DDBJ with accession numbers HF558987 to HF558991.

VIII.3 Results

VIII.3.1 Influence of algae on the physico-chemical conditions in the pond

Depth profiles over time showed that the physico-chemical conditions in the pond fluctuated constantly: temperature, DO and pH shifted drastically over short periods, depending on the preceding weather conditions (Figure VIII-1 and VIII-2). The maximal depth where O\(_2\) saturation occurred depended strongly on the algal activity and was positioned between 55 and less than 1 cm below the pond surface. On sunny days, O\(_2\) levels in the surface layer regularly reached oversaturated values above 25 mg O\(_2\) L\(^{-1}\), though the pond became completely anaerobic during shaded days. Microscopic determination showed that most algae present belonged to the motile *Pyrobotris* species while small amounts of *Chlorella* sp., *Scenedesmus* sp., *Pediastrum* sp. and cyanobacterial species were also observed.
Facultative ponds harbor methane oxidizing communities supported by algae.

Figure VIII-1. Temperature profiles of the pond (6 m away from the centre of the pond) in steps of 10 mm, at three different times (February, 7th: solid line, February, 9th: dashed line, February, 10th: dotted line).

Figure VIII-2. Dissolved oxygen (DO, mg O₂ L⁻¹) profiles of the pond (6 m away from the centre of the pond) in steps of 10 mm at three different times (February, 7th: solid line, February, 9th: dashed line, February, 10th: dotted line).
To evaluate the influence of algal presence on the physico-chemical conditions in the pond, three samples were taken at a time when the pond was largely anaerobic: sample$_{5cm, visible algae}$ was taken at 5 cm depth and algae were visibly observed. Sample$_{5cm, no visible algae}$ was also taken at 5 cm depth but without visibly observable algae while sample$_{25cm, no algae}$ was taken at 25 cm depth and also without visibly observable algae. In the latter, no chlorophyll was detected and the DO concentration in that sample was below the detection limit of 0.05 mg O$_2$ L$^{-1}$ (Table VIII-1). In the other two samples, taken at 5 cm depth, algae were present and concentrations of 0.1±0.1 (sample$_{5cm, no visible algae}$) and 4.4±0.7 (sample$_{5cm, visible algae}$) mg chlorophyll L$^{-1}$ were measured. The DO concentrations of these samples were 3.5 and 13.6 mg O$_2$ L$^{-1}$ respectively, demonstrating the correlation between algal presence and DO. Higher amounts of algae also resulted into increased COD and VSS concentrations (Table VIII-1).

Table VIII-1. Overview of physico-chemical parameters for the sample taken at 25 cm depth and samples taken at 5 cm depth with and without visible algae presence, respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample$_{5cm, no visible algae}$</th>
<th>Sample$_{5cm, visible algae}$</th>
<th>Sample$_{25cm, no algae}$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water temp.</td>
<td>27.1</td>
<td>26.4</td>
<td>23.7</td>
<td>°C</td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
<td>8.4</td>
<td>7.1</td>
<td>-</td>
</tr>
<tr>
<td>DO</td>
<td>3.5</td>
<td>13.6</td>
<td><0.05</td>
<td>mg O$_2$ L$^{-1}$</td>
</tr>
<tr>
<td>VSS</td>
<td>282±52</td>
<td>584±64</td>
<td>248±26</td>
<td>mg VSS L$^{-1}$</td>
</tr>
<tr>
<td>COD</td>
<td>186±13</td>
<td>430±17</td>
<td>180±6</td>
<td>mg COD L$^{-1}$</td>
</tr>
<tr>
<td>sCOD</td>
<td>99</td>
<td>122</td>
<td>84</td>
<td>mg sCOD L$^{-1}$</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>0.12±0.02</td>
<td>4.38±0.71</td>
<td><0.02</td>
<td>mg Chl L$^{-1}$</td>
</tr>
<tr>
<td>NO$_3^-$N</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>mg NO$_3^-$N L$^{-1}$</td>
</tr>
<tr>
<td>NO$_2^-$N</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>mg NO$_2^-$N L$^{-1}$</td>
</tr>
<tr>
<td>NH$_4^+$-N</td>
<td>17.0</td>
<td>18.5</td>
<td>21.0</td>
<td>mg NH$_4^+$-N L$^{-1}$</td>
</tr>
<tr>
<td>PO$_4^{3-}$</td>
<td>4.8</td>
<td>5.2</td>
<td>4.8</td>
<td>mg PO$_4^{3-}$ L$^{-1}$</td>
</tr>
</tbody>
</table>
VIII.3.2 Amount and activity of MOB

To assess the amount of cultivable MOB in the pond, most probable number analysis was performed on the three pond samples. 9.3×10^4 MOB mL$^{-1}$ [1.8×10^4 to 4.2×10^5 MOB mL$^{-1}$] were found for sample$_{5cm}$, visible algae and sample$_{5cm}$, no visible algae, while sample$_{25cm}$, no algae had a concentration of 2.3×10^4 MOB mL$^{-1}$ [4.6×10^3 to 9.4×10^4 MOB mL$^{-1}$].

The CH$_4$ emissions of the primary facultative pond (PFP) were measured during late summer/early autumn with a floating gas capturing device. An average CH$_4$ emission of 8.6 ± 1.9 m3 CH$_4$ d$^{-1}$ was found for the whole pond, indicating the presence of dissolved CH$_4$, a necessity for methanotrophic activity. dAMS was chosen as enrichment medium since this typical growth medium for MOB has a similar pH of 6.9 and a similar ammonium content of 25 mg NH$_4^+$-N L$^{-1}$ as the pond water. Presence of MOB was confirmed by enrichment in dAMS as well as in filtered pond water. No significant differences in CH$_4$ oxidation rates were observed between both growth media, indicating that the use of dAMS had no influence on the methanotrophic activity of the enriched community. After a lag-phase of about 24h, significant CH$_4$ oxidation rates were observed for both media and the maximal daily CH$_4$ oxidation rates of 190±5 and (dAMS) and 179±24 mg CH$_4$ L$^{-1}$ liquid d$^{-1}$ (pond water) were found during the third day of enrichment. At the same time, respectively 441±48 and 412±90 mg O$_2$ L$^{-1}$ medium d$^{-1}$ were consumed, indicating that there was no significant difference in apparent O$_2$ consumption. This led to apparent molar ratios of 1.16±0.13 (dAMS) and 1.15±0.19 (pond water) O$_2$ consumed over CH$_4$ oxidized respectively, for the whole microbial community.

VIII.3.3 Isolation and identification of cultivable MOB

In total, 16 MOB pure cultures were isolated out of the three pond samples, enriched on dAMS. Five type II MOB were isolated, identified as *Methylocystis* sp. (closest related type strain of *Methylocystis parvus* with 99.4-99.5% 16S rRNA gene sequence similarity) and dereplicated into at least three different strains based on rep-PCR fingerprinting. Seven type Ib MOB were isolated; these had identical rep-PCR profiles and were identified as
Methylococcaceae sp., very distantly related to any of the known type Ia MOB (closest related type strain of Methylocaldum gracile with 94.2% 16S rRNA gene sequence similarity). Four type Ia MOB were isolated and identified as Methylomonas sp. (closest related type strain of Methylomonas koyamae with 100% 16S rRNA gene sequence similarity). The rep-PCR profile of these four isolates were identical but distinct from the type strain of Methylomonas koyamae (Figure VIII-3).

![Image](Image.png)

Figure VIII-3. GTG₅ rep-PCR fingerprinting using Pearson product moment correlation coefficient and UPGMA. MOB isolates were divided into five rep-clusters. Four isolates identified as Methylomonas sp. by 16S rRNA gene sequencing had a similar rep-profile (cluster 1), distinct from the most closely related type strain Methylomonas koyamae NCIMB 14606ᵀ. Seven Methylococcaceae isolates shared a similar rep-profile (cluster 2). The five Methylocystis isolates could be divided into three groups (cluster 3, 4 and 5) based on their rep-PCR fingerprint, distinct from the most closely related type strain Methylocystis parvus NCIMB 11129ᵀ. A representative of each cluster was selected randomly (underlined) for accession number assignment.
VIII.3.4 Algal assisted methane oxidation

To evaluate how the *in situ* algal O$_2$ production influenced the CH$_4$ oxidizing activity, fresh pond water with a DO concentration of only 0.6 mg O$_2$ L$^{-1}$ was added to bottles and inoculation occurred with enrichments of MOB and microalgae originating from the same facultative pond. Under an atmosphere of 20% CH$_4$ (v/v) in air, the CH$_4$ oxidation rate was evaluated under stagnant conditions, simulating a water column open to the air. Three dark bottles were shielded from the light, while three illuminated bottles allowed the indigenous algae to produce O$_2$. During the first day of incubation, a lag-phase without significant CH$_4$ oxidation was observed in both test series. From the second day on, CH$_4$ oxidation started in the darkened as well as in the illuminated bottles. However, a significantly higher CH$_4$ oxidation rate was observed in the illuminated bottles (Table VIII-2).

<table>
<thead>
<tr>
<th></th>
<th>Illuminated bottles</th>
<th>Darkened bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CH$_4$ oxidation</td>
<td>318±27*</td>
<td>202±25*</td>
</tr>
<tr>
<td>MOR 24-48h</td>
<td>135±33*</td>
<td>64±28*</td>
</tr>
<tr>
<td>MOR 48-72h</td>
<td>172±25</td>
<td>141±29</td>
</tr>
<tr>
<td>Total O$_2$ consumption</td>
<td>616±49</td>
<td>596±25</td>
</tr>
<tr>
<td>Molar O$_2$:CH$_4$ ratio</td>
<td>0.97±0.14*</td>
<td>1.48±0.26*</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>7.3±0.6*</td>
<td>3.1±0.4*</td>
</tr>
</tbody>
</table>

Table VIII-2. Comparison of activity parameters between three illuminated bottles and three darkened bottles: the total CH$_4$ oxidation (mg CH$_4$ L$^{-1}$ liquid), methane oxidation rate (MOR, mg CH$_4$ L$^{-1}$ liquid d$^{-1}$) for the second and third day, total O$_2$ consumption (mg O$_2$ L$^{-1}$ liquid), molar ratio of apparent consumption of O$_2$ over CH$_4$ and concentration of dissolved O$_2$ in the liquid phase after the test period of 72h. Significant differences between darkened and illuminated bottles are marked with an asterisk (*) ($p<0.05$).
Also during the third day, a higher CH\textsubscript{4} oxidation rate was observed in the illuminated bottles. This led to a 1.6 times higher amount of CH\textsubscript{4} removed over the whole test period. At the same time, a similar apparent O\textsubscript{2} consumption was observed, resulting in a significantly higher apparent molar O\textsubscript{2}:CH\textsubscript{4} consumption ratio in the dark bottles (Table VIII-2). The higher \textit{in situ} O\textsubscript{2} production in the illuminated bottles was also observed at the end of the testing period, as a significantly higher DO concentration was present in the liquid phase of the illuminated bottles compared to the dark bottles (Table VIII-2).

\textbf{VIII.4 Discussion}

\textbf{VIII.4.1 Algae assist the methane oxidation}

Without the photosynthetic activity of the algae, the whole pond would be anaerobic, except for a surface layer of a few millimetres, where wind and diffusion effects provide some aeration. Photosynthetic O\textsubscript{2} production is a necessity for methanotrophic activity as aerobic MOB can only use molecular O\textsubscript{2} as final electron acceptor (Hanson and Hanson, 1996). It has been reported that photosynthetic organisms like the aquatic grass \textit{Calamogrostis canadensis} or submerged \textit{Spagnum} mosses can provide O\textsubscript{2} to MOB in anaerobic or microaerophilic conditions, thereby enhancing CH\textsubscript{4} oxidizing activity (Kip et al., 2010). This ability was also observed for algae in laboratory tests, where algae enhanced methanotrophic activity by the \textit{in situ} production of O\textsubscript{2} (van der Ha et al., 2011). This interaction was in this study confirmed in a straightforward set-up, mimicking a shallow stagnant anaerobic water column under an atmosphere of CH\textsubscript{4} and air. In the darkened bottles, the CH\textsubscript{4} oxidizing activity was limited by the slow gas transfer of O\textsubscript{2} to the water column (Melse and Van der Werf, 2005), while in the illuminated bottles algal photosynthetic activity increased the concentration of the limiting dissolved O\textsubscript{2}, resulting in a 57% higher CH\textsubscript{4} removal rate. The difference in the apparent O\textsubscript{2}:CH\textsubscript{4} ratio can be explained by \textit{de novo} O\textsubscript{2} production by the active algae, which led to a lower consumption of O\textsubscript{2} originating from the gas phase. It can also be concluded that the CH\textsubscript{4} oxidizing activity in these systems is limited by O\textsubscript{2} availability, rather than the amount of available CH\textsubscript{4}. This beneficial effect of the algae on MOB is probably even more pronounced in the
Facultative ponds harbor methane oxidizing communities supported by algae

pond, as the water column there is much deeper, leading to an even more difficult gas transfer. Moreover, a stronger influence of the algae can be expected in the pond, as light intensities during the day are more than an order of magnitude higher than in the batch test, resulting in a zone of more than 50 cm with algae.

VIII.4.2 Facultative ponds harbor a robust and diverse methanotrophic community

The microbial community from the pond showed a high CH$_4$ oxidizing activity when incubated with CH$_4$, demonstrating the presence of CH$_4$ oxidizing organisms. The maximal observed CH$_4$ oxidation rate was quickly achieved and those rates were similar to those observed in comparable studies, where enrichments of various inocula were used (Hoefman et al., 2012a, van der Ha et al., 2010). As the activity of the enrichments with filtered pond water and typical dAMS growth medium was similar, no severe nutrient limitations seemed to occur in the pond. Indeed, sufficient NH$_4^+$-N and PO$_4^{3-}$-P was present in the pond to support bacterial activity, while the observed pH and temperature ranges are suited for most in literature described MOB. These conditions explain why at least 10^4 cultivable MOB mL$^{-1}$ were observed in pond samples from the upper 50 cm of the water column. This number is undoubtedly an underestimation of the total amount of active MOB as a relatively short incubation period was applied and not all MOB are cultivable in one mineral growth medium (Hoefman et al., 2012a). Still, these numbers show that, in contrast to results by van der Steen et al. (2003), a large pool of MOB is present in the facultative pond. The isolation campaign showed that MOB indeed were responsible for CH$_4$ oxidation, as species were isolated and identified from all three major types of proteobacterial MOB, i.e. type Ia, Ib and II. This reveals a diverse methanotrophic seed bank and implies that there was no strong selection towards one specialized species. Moreover, a *Methylococccaeae* sp. was isolated that is only very distantly related to all known MOB type strains. This finding could be the result of the specific conditions of the pond and deserves further investigation.
During the incubation period of pond samples with CH₄, short lag-phases were observed compared to similar batch tests with different types of CH₄ oxidizing inocula, showing that many MOB were active or able to resuscitate quickly from dormancy (Hoefman et al., 2012a, Hoefman et al., 2012b, van der Ha et al., 2011). Indeed, fast phenotypic adaptation and formation of resting structures are common characteristics of MOB and would create a major advantage for the MOB in facultative ponds, where drastic changes in growth conditions take place (Hanson and Hanson, 1996, Whittenbury et al., 1970a). Due to the non-sheltered nature of the facultative pond and the algal activity, extreme changes of DO, pH and temperature occurred over time and created temporarily harsh growth conditions. Moreover, the combination of high pH with strong light intensities and O₂ oversaturation could result in an increased production of harmful radicals, which are known to negatively influence MOB and induce dormancy (Murase and Sugimoto, 2005). Also, the presence of toxic H₂S, originating from anaerobic processes in the sludge blanket, was observed regularly. Probably the MOB form resting structures and/or have mechanisms to protect themselves to a certain extent against such negative influences (Hanson and Hanson, 1996, Roslev and King, 1994). These characteristics could be of importance for biotechnological applications where robustness and a fast response towards negative stimuli are required.

VIII.4.3 Importance within the framework of global warming

It can be concluded that algal O₂ production is the driving force for the CH₄ oxidizing activity in facultative ponds. As such ponds are important emission sources of CH₄, understanding and enhancing these interactions could help to decrease the C footprint of these wastewater treatment units. Indeed, although at least part of the CH₄ produced by methanogens in the anaerobic sludge blanket is consumed by the MOB before it reaches the atmosphere, elementary extrapolation of measured pond emissions still shows a total loss of about 3000 m³ CH₄ y⁻¹, equalling a yearly contribution of 55 ton CO₂-equivalents y⁻¹ or an emission of 0.98 kg CH₄ y⁻¹ per inhabitant for this relatively small pond. The role of this algal driven CH₄ oxidation seems underestimated and therefore deserves further attention.
Acknowledgements

DVDHA, AKC and NB designed the experiments. DVDHA performed the experiments, analyzed the data and wrote the manuscript. SH performed the miniaturized extinction culturing, including the rep-PCR and identification of MOB isolates. MLI helped with the experiments. SH, PDV, IML, AKC and NB commented on the manuscript. The authors like to thank the EBRU staff firmly for their kind assistance. Also our gratitude to the Research Foundation Flanders (FWO), who made this joint research possible via financial support. This research was also funded by a PhD grant to David van der Ha from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen, SB-83259) and research grants from the Geconcerteerde Onderzoeksactie (GOA) of Ghent University (BOF09/GOA/005).
CHAPTER IX

CONVERSION OF BIOMETHANE TO BIOPRODUCTS BY ALGAE AND MOB

Chlorophyll extractions, EBRU, Grahamstown
Sometimes our best decisions are the ones that don’t make sense at all.

Ted Mosby
Chapter IX. Conversion of biogas to bioproducts by algae and MOB

Abstract

Biogas produced by anaerobic digestion is typically converted into electricity and low value heat. In this study, biogas is microbially transformed into a different set of valuable bioproducts. As proof of principle, the production of feed additives, i.e. lipids and poly-hydroxy-butyrate, out of biogas was evaluated. In a first stage, the CO$_2$ in a synthetic biogas was photosynthetically fixed by an algal *Scenedesmus* sp. culture at an average rate of 192±9 mg CO$_2$ L$^{-1}$ liquid d$^{-1}$, resulting in concomitant O$_2$ production. After N depletion, more than 30% of the formed lipids (220±7 mg lipids g$^{-1}$ total organic carbon) were unsaturated. In a second stage, the theoretical resulting gas mixture of 60% CH$_4$ and 40% O$_2$ was treated by a methane oxidizing *Methylocystis parvus* culture, with oxidation rates up to 452±7 mg$^{-1}$ CH$_4$-C L$^{-1}$ liquid d$^{-1}$. By repeated N limitation, concentrations of 295±50 mg intracellular poly-hydroxy-butyrate g$^{-1}$ cell dry weight were achieved. Finally, a one-stage approach with controlled coculturing of both microbial groups resulted in harvestable bioflocs. This is the first time that a total microbial conversion of both greenhouse gases into biomass was achieved without external O$_2$ provision and could result into a novel sink for CH$_4$ originating from all types of wastestreams.

Redrafted after:

Chapter IX

IX.1 Introduction

The major goals of wastewater treatment are the protection of downstream users and the environment (Wilsenach et al., 2003). However, due to the scarceness of freshwater, nutrients and energy, sustainable recovery of the latter has become an additional priority (Driver et al., 1999, McDonough and Braungart, 2002). While conventional aerobic treatment converts waste into low caloric heat and CO₂, anaerobic digestion technology allows partial recovery of energy into biogas, which contains about 60% CH₄ next to 40% CO₂ and small amounts of H₂S, H₂ and NH₃ (Demirel et al., 2010). Up to 70% of the organic matter from sewage can be converted to biogas, hence about 0.35 m³ CH₄ can be produced out of a kg of sewage chemical oxygen demand (Verstraete et al., 2009). In best case, this biogas is used for green electricity production with conversion yields of merely 40% while the rest becomes heat, making economical sustainable recovery tough in smaller installations (Poschl et al., 2010). Due to these losses, green electricity production through anaerobic digestion is subsidised with amounts of 83-280 euro MWhₑl⁻¹ in the EU to assure competitiveness with non-renewable energy sources (Sakulin and Borroni, 2010). Therefore, alternative sinks for biogas could be of interest on the condition that enough added value is created to motivate the conversion, as biogas has a value of about 0.2 euro m⁻³ (for the EU) (Verstraete et al., 2009).

Scientists and industry have put much interest in microalgae as they can be cultivated in areas that are not of interest for food crop production, while at the same time, production rates of 70 ton cell dry weight ha⁻¹ y⁻¹ were calculated, comparable with production rates of agricultural crops (Melis, 2009, Zamalloa et al., 2011). Microalgae have been used to transform CO₂ into a whole range of interesting metabolites, like carotenoids and vitamins (Sasso et al., 2012) while their relatively high lipid content make them also interesting for biofuel production (Mata et al., 2010). Aerobic methane oxidizing bacteria (MOB) on the other hand are one of the few bacteria able to oxidize the stable CH₄-molecule, the other major component of biogas. They are known to produce poly-hydroxy-butyrate (PHB) - a biodegradable polyester - as a type of intracellular energy and carbon storage (Sasso et al.,
When grown under nutrient limitation, MOB can incorporate PHB up to 60% of their total cell dry weight (Wendlandt et al., 2010, Zhang et al., 2011). The theoretical yield coefficient lies between 0.51 and 0.73 mg PHB mg\(^{-1}\) CH\(_4\) oxidized, but depends strongly on the species and the type of nutrient limitation (Wendlandt et al., 2010). This PHB can be used as a biodegradable alternative for polypropylene plastics and is also applied in aquaculture as an energy source and probiotic compound for fish and Artemia nauplii (Pieja et al., 2011).

In this study, synthetic biogas was converted into valuable algal and bacterial biomass by N limited cultivation. In a first of two stages, an algal Scenedesmus sp. culture fixed the CO\(_2\) present in the biogas, creating a gas mixture of CH\(_4\) and O\(_2\). In a second stage, this gas mixture was transformed into PHB by a methanotrophic culture. An alternative one-stage coculture approach under controlled conditions allowed in situ transformation of both greenhouse gases into microbial biomass without the need of external O\(_2\) addition, thus creating an alternative sink for biogas. An increase in pH hereby resulted in the formation of bioflocs, facilitating the harvesting of the flocs.

IX.2 Experimental section

IX.2.1 Growth characteristics of the Scenedesmus sp. culture on different CO\(_2\) concentrations

A non-axenic Scenedesmus sp. culture originating from a photobioreactor (Zamalloa et al., 2012a) was pre-cultivated on buffered diluted Nitrate Mineral Salts medium (dNMS) with a pH of 6.8. This growth medium consisted out of 0.2 g KNO\(_3\); 0.2 g MgSO\(_4\).7H\(_2\)O; 3.59 g Na\(_2\)HPO\(_4\).2H\(_2\)O; 1.36 g KH\(_2\)PO\(_4\); 30 mg CaCl\(_2\).6H\(_2\)O; 5 mg FeNaEDTA; 2.5 mg CuSO\(_4\).5H\(_2\)O (10 \(\mu\)M) and 1 mL trace element solution (van der Ha et al., 2010, Whittenbury et al., 1970b) L\(^{-1}\). For optimal algal growth, 0.01 mg cyanocobalamin, 0.01 mg thiamin and 0.002 mg biotin L\(^{-1}\) were supplemented. Fifteen similar gastight bottles of 1150 mL were filled with 180 mL of this sterile medium and inoculated with 20 mL of the Scenedesmus sp. culture (final concentration of 316 mg cell dry weight (CDW) L\(^{-1}\)). Light microscopy confirmed that
no other algal species were present. All bottles were flushed with He and filled with 0%, 10%, 20%, 40% and 60% CO₂ at atmospheric pressure (in triplicate). After 1h of equilibration, 1M NaOH was used to assure that the pH was between 6.75 and 7.10 after which gas pressure and composition were analyzed. The bottles were placed on a shaker (120 rpm) at 20±1°C and illuminated with fluorescent lamps (75 μmol PAR m⁻² s⁻¹). The gas composition and optical density (OD) at 610 nm were analyzed daily over a period of 72h. On a daily base, the amount of consumed CO₂ was calculated and a similar amount of CO₂ added.

IX.2.2 Lipid production by an algal *Scenedesmus* sp. culture cultivated on synthetic biogas

Six new bottles were filled and handled in a similar way. The only difference between the three test and control bottles was the nitrogen content of the applied medium: 23.6±0.4 mg NO₃⁻ N L⁻¹ versus 136.0±1.0 mg NO₃⁻ N L⁻¹ in the controls. To the bottles, 320 mL medium was added together with 80 mL *Scenedesmus* sp. pre-cultured on 40% CO₂, resulting in 103±2 mg total organic C L⁻¹. The gas phase was filled with synthetic biogas, a mixture of 60% CH₄ and 40% CO₂. After equilibration, the gas phase consisted out of 63±3% CH₄ and 28±3% CO₂ next to 5±1% N₂ and 1.5±0.3% O₂. The bottles were placed on a shaker (100 rpm) at 22±2°C under 90 μmol PAR m⁻² s⁻¹. Daily, 100 mL of liquid was sampled for further analysis: pH, anion concentration, OD, CDW, total inorganic and organic C content (TIC and TOC) and lipid content, next to gas phase analyses. After 120h, 80 mL of the algal cultures from triplicate bottles was mixed with 320 mL of fresh medium and synthetic biogas was added. The total test period consisted out of three cycles.

IX.2.3 Production of poly-hydroxy-butyrate by *Methylocystis parvus*

Three similar test bottles were filled with 200 mL dNMS-medium with 32.0±0.3 mg NO₃⁻ N L⁻¹ while three control bottles contained 143.6±3.1 mg NO₃⁻ N L⁻¹. Inoculation took place with an axenic *Methylocystis parvus* culture (NCIMB 11129⁷), resulting into 46.9±0.5 mg CDW L⁻¹. The gas phase of the closed bottles was flushed resulting in a final composition of
Conversion of biogas to bioproducts by algae and MOB

58.4±3.7% CH₄, 41.2±2.4% O₂, 4.2±1.3% N₂ and 0.2±0.2% CO₂. The bottles were placed in the dark on a shaker (100 rpm) at 22±2°C. On a one to two day basis, 25 mL of liquid was sampled for further analysis of the pH, OD, CDW, anion concentration and poly-hydroxybutyrate (PHB) content, together with analyses of the gas phase composition. After 48, 72 and 96h, 100 mL O₂ was added to the gas phase to ensure that the O₂ concentration did not become limiting. At the end of each of three cycles (120h), the liquid phase of triplicate bottles was merged and diluted 15-25 times to obtain an optical density at the start of the new cycle in a range between 0.100 and 0.125. Thereafter, a new cycle started with a fresh gas mixture.

Before each cycle, purity of the culture was checked by plating on tryptic soy agar (Hoefman et al., 2012a). After the third cycle, both a test bottle and a control bottle were again refreshed, however with an addition of 2% C₂H₂, while two other bottles were autoclaved. In all these bottles, no substantial CH₄ oxidation was observed during a period of 120h.

9.2.4 One-stage biofloc production under controlled conditions

A 3L continuous stirred tank reactor (CSTR, Biostat B reactor, Sartorius, Germany) was used at 20±1°C with pH regulation between 6.95 and 7.05. The reactor was originally filled with 1150 mL dNMS medium (45±3 mg NO₃⁻-N L⁻¹) and inoculated with a Scenedesmus sp. culture, pre-inoculated on synthetic biogas (final concentration of 598 mg CDW L⁻¹; 9.7 mg chlorophyll L⁻¹) and a Methylocystis parvus culture pre-inoculated on a gas mixture of 60% CH₄ and 40% O₂ (final concentration of 468 mg CDW L⁻¹). The gas phase of the reactor was flushed with synthetic biogas. During the first 24h, a gastight bag (2.0L) with the same gas mixture was attached to the reactor to assure atmospheric pressure in the reactor. Thereafter, the gas bag was replaced by a gastight syringe (60 mL), filled with He. The reactor was continuously stirred (120 rpm) and a light intensity of 60 µmol PAR m⁻² s⁻¹ was measured inside the reactor. At the start of the test, 150 mL of liquid was sampled for later analyses, leading to a final volume of 1L liquid. Daily, 120-300 mL liquid was sampled and replaced by fresh dNMS medium without N source. This allowed to follow up the OD,
TIC-, TOC-, CDW- and chlorophyll content. After 96h, the gas phase was flushed with synthetic biogas after which 40 mL of C₂H₂ was added.

After the original test period without C₂H₂ addition, 200 mL of the liquid phase was taken out of the reactor and diluted with 200 mL fresh dNMS medium (32.4±0.8 mg NO₃⁻-N L⁻¹). In two of four reactors, the pH was increased from 7.1 to 8.8 with 1M NaOH in order to evaluate the influence of a pH increase on floc formation. All four reactors were incubated on a shaker (100 rpm, 72 µmol PAR m⁻² s⁻¹) at 20±1°C with synthetic biogas.

IX.2.5 Physico-chemical analyses

The gas phase compositions were analyzed with a Compact gas chromatograph, combined with gas pressure measurements. (van der Ha et al., 2011) The methane oxidation rate (MOR) was calculated and expressed as mg CH₄ L⁻¹ liquid d⁻¹. All gas concentrations are expressed as volume percent (% v/v) of the total gas phase. CDW was assessed according to Greenberg et al. (1992). The TIC and TOC contents were determined with a TOC-5000 total organic carbon analyzer (Shimadzu). A SP10B pH electrode, connected to a Consort C532 multimeter analyzer (Turnhout, Belgium) was used to measure pH differences.

Filtered samples (0.45 µm filter, Millipore, Brussels, Belgium) were analyzed for NO₃⁻ and NO₂⁻ by means of a 761 Compact Ion Chromatograph, equipped with a conductivity detector (Metrohm, Zofingen, Switzerland). There was no sample where the nitrite concentration exceeded 1.4 mg NO₂⁻-N L⁻¹. Assessment of optical density (610 nm) was performed with a WPA Lightwave II spectrophotometer (610 nm). The chlorophyll content was assessed according to Wilthshire et al. (2000), whereby two extraction cycles (37 kHz; 80 W) took place with sonication at 0°C for 60 minutes.

IX.2.6 Fatty acid and poly-hydroxy-butyrate analyses

For fatty acid analyses, fresh samples of 50 mL were centrifuged (15’, 5000 g) and the water phase discarded. The test tubes were then flushed with N₂ and stored at -20°C until extraction according to Lepage and Roy (1984). Dried fatty acids methyl esters (FAME)
were dissolved in 0.5 mL octane and transferred to 2 mL glass vials, flushed with N\textsubscript{2} and stored at -30\textdegree C until injection in a Chrompack CP9001 GC, equipped with a CP9010 liquid autosampler, a temperature programmed on-column injector and an FID detector with H\textsubscript{2} as carrier gas.

For PHB analyses, frozen samples of 4 mL were thawed and centrifuged (20’, 6000 g). The pellets were then treated according to De Schryver et al. (2009) Crotonic acid, formed after acid hydrolyses of the PHB was analyzed with high-performance liquid chromatography (HPLC), equipped with a Phenomenex Rezex ROA organic acid (H 8%) column. Injection took place at room temperature with a flow of 0.6 mL min-1 with 2.5 mM H\textsubscript{2}SO\textsubscript{4} in milli-Q water. For each set of analyses, a standard curve was made by means of a crotonic acid solution. The PHB content is expressed per g cell dry weight (CDW), analyzed in parallel.

IX.2.7 Statistical analysis

Results were statistically analyzed by performing a Welch modified two-sample t-test with equal variance and at a significance level of 95% (n results, p<0.05). Analyses were performed with the Statistical Package for the Social Sciences (SPSS, Duncan, version 19.0).

IX.3 Results

IX.3.1 Activity of a Scenedesmus sp. monoculture under increased CO\textsubscript{2} concentrations

A Scenedesmus sp. culture (318 mg CDW L-1) was cultivated in the absence of other microalgae after addition of 0%, 10%, 20%, 40% and 60% CO\textsubscript{2} respectively, in the gas phase. Over a period of 72h, no significant growth or photosynthetic O\textsubscript{2} production was observed in the control bottles without CO\textsubscript{2} amendment (n=3, p<0.05). The growth and activity was comparable in the treatments with 10%, 20% and 40% CO\textsubscript{2} and an average O\textsubscript{2} production of 345±10 mg O\textsubscript{2} L-1 liquid d-1 (40% CO\textsubscript{2}) was found over the three-day period.
The treatment with 60% CO\textsubscript{2} however showed a significantly lower growth rate and photosynthetic oxygen production of 244±89 mg O\textsubscript{2} L-1\text{liquid d}^{-1} (p<0.05).

IX.3.2 Growth parameters of a Scenedesmus sp. monoculture under N limited growth conditions

In a first of two stages, the growth of a Scenedesmus sp. culture was further evaluated under an atmosphere of 60% CH\textsubscript{4} and 40% CO\textsubscript{2}, defined as synthetic biogas. The three test and the three control bottles differed only by the applied NO\textsubscript{3}^-\text{N} dose, i.e. 23.6±0.4 mg NO\textsubscript{3}^-\text{N L}^{-1} in the test bottles and 136±1 mg NO\textsubscript{3}^-\text{N L}^{-1} in the controls. During all three subsequent cultivation cycles, the NO\textsubscript{3}^-\text{N} concentration in the control bottles never decreased below 69 mg NO\textsubscript{3}^-\text{N L}^{-1}. In the test bottles, the NO\textsubscript{3}^-\text{N} concentration decreased below 2 mg NO\textsubscript{3}^-\text{N after 48-72h in the second and third cycle.}

The average CO\textsubscript{2} fixation rate of 192±9 mg CO\textsubscript{2} L-1\text{liquid d}^{-1} in the test bottles were not significantly lower than in the control bottles (Table IX-1). When the dissolved inorganic nitrogen was depleted, CO\textsubscript{2} fixation rates in the test bottles decreased slightly, but differed never significantly (p<0.05). The molar ratio of produced O\textsubscript{2} over fixed CO\textsubscript{2} was comparable for both test series and 98±4% of the fixed CO\textsubscript{2}-C was found back in the biomass. Due to the N limited growth from 48-72h on, a significantly lower ratio of 0.05±0.01 mg consumed NO\textsubscript{3}^-\text{N mg}^{-1} produced TOC was observed in the test bottles, compared to 0.11±0.01 mg NO\textsubscript{3}^-\text{N mg}^{-1} TOC in the control bottles (Table IX-1). In a similar set-up, growth of algae was tested with biogas from a lab scale digester fed with molasses. The same trends were observed with comparable average CO\textsubscript{2} fixation rates of 154±36 mg CO\textsubscript{2} L-1\text{liquid d}^{-1}.

Table IX-1. Overview of different activity parameters of a *Scenedesmus* sp. monoculture in the test bottles with N limiting growth and the control bottles without N limiting growth for three subsequent cycles: average CO₂ fixation rate (mg CO₂ L⁻¹ liquid d⁻¹), average and maximal O₂ production rate (mg O₂ L⁻¹ liquid d⁻¹), average ratio of produced O₂ over consumed CO₂ (mol O₂ mol⁻¹ CO₂), average growth yield (mg TOC_produced mg⁻¹ CO₂_consumed), average TOC production (mg TOC L⁻¹ liquid d⁻¹) and average ratio of consumed NO₃⁻-N over produced TOC (mg NO₃⁻-N mg⁻¹ TOC). Standard deviations are given for triplicates. Significant differences between test and control bottles are marked with a * (p<0.05).

<table>
<thead>
<tr>
<th></th>
<th>Test bottles</th>
<th>Control bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycle 1</td>
<td>Cycle 2</td>
</tr>
<tr>
<td>Average CO₂ fixation rate</td>
<td>163±38</td>
<td>166±9</td>
</tr>
<tr>
<td>Average O₂ production rate</td>
<td>114±30</td>
<td>112±45</td>
</tr>
<tr>
<td>Maximal O₂ production rate</td>
<td>148±39</td>
<td>140±31</td>
</tr>
<tr>
<td>Average molar O₂/CO₂ ratio</td>
<td>0.96±0.17</td>
<td>0.93±0.06</td>
</tr>
<tr>
<td>Average growth yield</td>
<td>1.12±0.19</td>
<td>1.13±0.10</td>
</tr>
<tr>
<td>Average TOC production</td>
<td>50±4</td>
<td>51±8</td>
</tr>
<tr>
<td>Average NO₃⁻/TOC ratio</td>
<td>0.05±0.01*</td>
<td>0.05±0.01*</td>
</tr>
</tbody>
</table>
IX.3.3 Lipid profile of a *Scenedesmus* sp. monoculture under N limited growth conditions

During the cycles described above, the lipid content and constitution of the *Scenedesmus* sp. cultures were analyzed (Figure IX-1). The N limited growth on synthetic biogas resulted in an increase of the lipid content, measured as fatty acid methyl esters (FAME). While a minimum of 79±4 mg FAME g\(^{-1}\) TOC was found at the beginning of the first cycle, 220±7 mg FAME g\(^{-1}\) TOC was detected in the test bottles at the end of the third cycle. This was significantly more than the 128±12 mg FAME g\(^{-1}\) TOC found in the control bottles (p<0.05). During each cycle, the same response was found for the test bottles: when sufficient N was provided, the concentration of lipids decreased. Under N limited growth conditions however, a steep incline of the lipid concentration occurred (Figure IX-1). This increase was only faintly present in the control bottles. Of the detected fatty acids, the following were present in the highest concentrations at the end of the third cycle: oleic acid (C18:1(n-9), 38%), palmitic acid (C16:0, 23%) and alpha linolenic acid (C18:3 (n-3), 18%).

The most important influence of the N limited growth was the increase in the concentration of oleic acid from 10.0±1.4% (day 3, cycle 3) to 38.3±4.6% at the end of cycle 3. The total amount of the omega-3 and omega-6 lipids was 21.4 and 10.3% respectively (end of cycle 3) and was not significantly different from the control bottles (p<0.05).

IX.3.4 Growth parameters of a *Methylocustis parvus* monoculture under N limited growth conditions

In the second stage, the possibility of PHB production by MOB was tested. An axenic monoculture of *Methylocystis parvus* was cultivated on a gas mixture of 60% CH\(_4\) and 40% CO\(_2\), the theoretical gas composition after total photosynthetic conversion of CO\(_2\) by algae growing on the former synthetic biogas mixture. The control and test series differed again only for the amount of added NO\(_3\)^-N: 147.8±2.7 mg NO\(_3\)^-N L\(^{-1}\) in the control bottles (n=3) and 33.4±0.5 mg NO\(_3\)^-N L\(^{-1}\) in the test bottles (n=3) at the beginning of the first of three cycles.
Figure IX-1. The average ratio (n=3) of measured FAME per unit of TOC (mg FAME g\(^{-1}\) TOC) for the test bottles (filled circles) and the control bottles (open circles) with a *Scenedesmus* sp. monoculture over three consecutive cycles of seven days. The grey zones indicate where N limited growth occurred.

The N limited growth was used as driving force for PHB production. In all three sequential cycles, the test bottles became NO\(_3\)-N depleted 48h-72h after the start of the cycles. In the control bottles, the NO\(_3\)-N concentration never decreased below 34.8±2.2 mg L\(^{-1}\). Except for the first 24h of the second and third cycle, no significant differences in the methane oxidation rate (MOR) were observed between the test and control bottles (Table IX-2). Also the CO\(_2\) production and O\(_2\) consumption rates showed only significant differences during the first 24h, as a slightly longer lag phase could be observed for the test bottles. The overall MOR for both test series did not change significantly over the three cycles. The maximum daily MOR always occurred between 24h and 48h after the
start of a cycle, with a maximum of 452±7 and 437±18 mg CH\textsubscript{4}-C L-1 liquid d-1 for the test and control bottles respectively (cycle 3). Although not significant (p<0.05), a slightly higher MOR was found in the control bottles. The average ratio of mol O\textsubscript{2}-consumed over mol CH\textsubscript{4}-consumed was higher for the test bottles, where an average of 1.59±0.03 was found in the third cycle, compared to 1.46±0.02 for the control bottles (Table IX-2). The average growth yield was always higher in the control bottles, although the growth yield in the test reactors increased each cycle, with a maximum of 0.46±0.04 mg TOC\textsubscript{produced} mg-1 CH\textsubscript{4}-consumed in the third cycle, compared to 0.55±0.08 mg TOC\textsubscript{produced} mg-1 CH\textsubscript{4}-consumed for the control bottles (Table IX-2). Due to the N limitation, a significantly lower ratio of NO\textsubscript{3}--N\textsubscript{consumed} over produced TOC was found for the test bottles. In the third cycle, only 0.07±0.01 mg NO\textsubscript{3}--N was consumed per mg TOC increase, where this was 0.21±0.03 mg NO\textsubscript{3}--N for the control bottles without N limitation (Table IX-2).

IX.3.5 PHB production by a *Methylocystis parvus* monoculture under N limited growth conditions

During each cycle of five days, the same trends of bacterial PHB concentrations were observed: during the first 24h of the cycle, when no N limitation occurred, PHB concentrations were low. After 24-48h, N limited growth occurred, followed by a significant (p<0.05) increase of the PHB concentration (Figure IX-2). The PHB concentration decreased thereafter, with a percentage of PHB after 120h that was still significantly higher than after 24h (p<0.05). Due to the alteration of optimal and N limited growth, considerably higher PHB concentrations were found at the start of the second and third cycle, as each cycle started with a PHB enriched inoculum from the former cycle. However, the PHB content always decreased during the first 24h, and was at that moment always below 20 mg PHB g-1 CDW.
Table IX-2. Overview of different activity parameters for an axenic *Methylocystis parvus* culture in the test bottles with N limiting growth and the control bottles without N limiting growth for three subsequent cycles: total amount of oxidized CH$_4$–C (mg CH$_4$-C L$^{-1}$ liquid), average and maximal CH$_4$ oxidation rate (MOR; mg CH$_4$-C L$^{-1}$ liquid d$^{-1}$), average ratio of consumed O$_2$ and CH$_4$ (mol O$_2$ mol$^{-1}$ CH$_4$), average growth yield (mg TOC$_{produced}$ mg$^{-1}$ CH$_4$$_{consumed}$), average TOC production (mg TOC L$^{-1}$ liquid d$^{-1}$) and average ratio of consumed NO$_3^-$-N over produced TOC (mg NO$_3^-$-N mg$^{-1}$ TOC). Standard deviations are given for triplicates. Significant differences between test and control bottles are marked with a star (*) ($p<0.05$).

<table>
<thead>
<tr>
<th></th>
<th>Test bottles</th>
<th>Control bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycle 1</td>
<td>Cycle 2</td>
</tr>
<tr>
<td>Total oxidized CH$_4$</td>
<td>1032±32</td>
<td>1019±18</td>
</tr>
<tr>
<td>Average MOR</td>
<td>212±6</td>
<td>209±4</td>
</tr>
<tr>
<td>Maximal daily MOR</td>
<td>316±17</td>
<td>295±11</td>
</tr>
<tr>
<td>Average mol O$_2$/CH$_4$ ratio</td>
<td>1.52±0.05</td>
<td>1.55±0.03*</td>
</tr>
<tr>
<td>Average yield</td>
<td>0.37±0.03*</td>
<td>0.41±0.04</td>
</tr>
<tr>
<td>Average TOC production</td>
<td>79±6*</td>
<td>86±8</td>
</tr>
<tr>
<td>Average NO$_3^-$-N/TOC ratio</td>
<td>0.09±0.0*</td>
<td>0.08±0.01*</td>
</tr>
</tbody>
</table>
Figure IX-2. The average ratio (n=3) of measured PHB per unit of CDW (mg PHB g\(^{-1}\) CDW) for the test bottles (filled circles) and the control bottles (open circles) of a *Methylocystis parvus* monoculture over three consecutive cycles of five days. The grey zones indicate where N limited growth occurred.

When comparing the three subsequent cycles, the maximum achieved PHB concentrations in the test bottles increased significantly in each subsequent cycle (p<0.05). The highest concentration in the test bottles was found after 72h during the third cycle: 295±50 mg PHB g\(^{-1}\) CDW, where the concentration in the control bottles was always below 1 mg PHB g\(^{-1}\) CDW. During the N limited growth (48-120h) period of the third cycle, 243±76 mg PHB was produced per g consumed CH\(_4\)-C in the test bottles.
IX.3.6 Biofloc production by a coculture of *Methylocystis parvus* and *Scenedesmus* sp. under controlled N limited growth conditions

Alternatively, a one-stage approach was tested whereby a non-axenic coculture of *Methylocystis parvus* and *Scenedesmus* sp. was cultivated in a continuous stirred tank reactor (CSTR) under an atmosphere of synthetic biogas. From the moment that light energy was provided, the dissolved oxygen (DO) concentration increased from less than 0.2 to 3.2 mg O$_2$ L$^{-1}$ in 8 min. Thereafter, the DO concentration dropped immediately back to less than 0.2 mg O$_2$ L$^{-1}$ and never increased above that value for the whole testing period of 96h. The O$_2$ concentration in the gas phase showed the same trend, as 1 to 3% O$_2$ was present in all gas samples.

Over the whole testing period (96h), an average MOR of 70 mg CH$_4$-C L$^{-1}$ d$^{-1}$ was found, resulting in a total oxidation of 281 mg CH$_4$-C. During those 96h, the apparent amount of CO$_2$ – the sum of CO$_2$ in the gas phase and TIC – decreased with 204 mg CO$_2$-C. As a total production of 474 mg TOC was measured, 98% of the total sum of apparent metabolized CH$_4$-C and CO$_2$-C was found back as TOC. It was calculated that 59% of the TOC production originated from CH$_4$, by direct methanotrophic assimilation or by secondary algal fixation of CO$_2$ originating from the bacterial dissimilatory processes. In total, 40±4 mg chlorophyll L$^{-1}$ liquid was produced, and the production rates correlated well with the evolution of CDW in the reactor. The NO$_3^-$-N concentration decreased during the first 24h from 45.4±0.6 to 15.15±0.2 mg NO$_3^-$-N L$^{-1}$ and became depleted from the second day on as measured values from then on were below the detection limit of 0.5 mg L$^{-1}$. At the end of the test period, a similar lipid profile was observed as in the former batch tests.

After the test period of 96h, 2% C$_2$H$_2$, a known inhibitor of MOB (Urmann et al., 2008), was added to the gas phase resulting in a decrease of the MOR from 128 to less than 2 mg CH$_4$ L$^{-1}$ liquid d$^{-1}$. The DO concentration, which before never reached 0.2 mg O$_2$ L$^{-1}$ or 2% of the maximal O$_2$ solubility of 9.1 mg O$_2$ L$^{-1}$ (21°C), increased immediately after addition of C$_2$H$_2$ to 3.3 mg O$_2$ L$^{-1}$ after 10’, 7.3 mg O$_2$ L$^{-1}$ after 30’, 11.2 mg O$_2$ L$^{-1}$ after 1h and 23.2 mg O$_2$ L$^{-1}$ after 21h. Gas phase analyses showed that the algal O$_2$ production during the 21h period
was 211 mg O$_2$ L$^{-1}$liquid d$^{-1}$ (770 mg microbial CDW L$^{-1}$). At the same time 274 mg CO$_2$ L$^{-1}$liquid d$^{-1}$ was removed in the reactor, resulting in a ratio of 0.94 mol O$_2$ produced per mol CO$_2$ fixed.

After the test period without C$_2$H$_2$, the coculture was transferred to four Schott bottles. In the two bottles without pH adjustment, 16% of the biomass was present in microbial flocs (mesh of 105 μm, n=2) after 48h. Due to the algal activity, the pH increased from 7.1 to 8.3 over the test period. In the other two bottles, which started with a pH of 8.8, floc formation was observed with on average 48% of the biomass present in bioflocs. The higher pH at the start of the test period also led to a 38% lower CH$_4$ removal rate compared to the non-adjusted bottles. The pH increased in these bottles to 9.8.

IX.4 Discussion

IX.4.1 Algae and MOB can metabolize high CO$_2$ and CH$_4$ concentrations

To enable microbial conversions of biogas into bioproducts, algae and MOB are needed which can rapidly metabolize high concentrations of CO$_2$ and CH$_4$, respectively. The algal *Scenedesmus* sp. culture did not show a significant loss in fixation or growth rate with CO$_2$ concentrations up to 40%. Moreover, there was no sign that the build-up of O$_2$ influenced the fixation activity. These results are in agreement with earlier published data, where a similar 35% decrease in algal activity occurred only at concentrations above 50% CO$_2$ (Ho et al., 2010). Moreover, preliminary tests with biogas from a lab scale digester indicated that the CO$_2$ fixation was not hampered by other present gas components. Finding other algae adequate to grow on biogas should not pose problems, as other commercially applied algae species are known to grow on concentrations above 40% CO$_2$ (Salih, 2011).

Less is known about the behaviour of MOB on high concentrations of CH$_4$ and O$_2$ particularly. While it has been shown that MOB can metabolize concentrations above 50% CH$_4$, few other publications mention O$_2$ concentrations above the atmospheric concentration of 20.8% (Pieja et al., 2011, Scheutz et al., 2009b). No negative effect of the high CH$_4$ and O$_2$ concentrations was observed, as the measured average MOR of 210±2 mg CH$_4$-C L$^{-1}$ liquid d$^{-1}$ was in agreement with former tests with atmospheric O$_2$ concentrations under comparable conditions (van der Ha et al., 2010). Although other
MOB strains need to be tested, it can be expected that many other methanotrophic species and strains are able to metabolize high concentrations of CH\(_4\) and O\(_2\). Therefore, the intended gas mixtures, i.e. biogas, should not hinder the presented concept.

IX.4.2 The production of bioproducts can be easily induced by nitrogen depletion

In order to create large amounts of biomass with maximal concentrations of valuable bioproducts, a cost-effective approach is needed whereby initially optimal growth conditions are created. Thereafter, the growth conditions should induce high production rates of the biocompounds. In both the two-stage and the coculture approach, N limited growth was chosen as inducing factor because under such conditions algae increased their lipid production while MOB produced high quality PHB if sufficient CH\(_4\) is available (Wendlandt et al., 2010, Zhang et al., 2008). Without any manipulation during the test cycles, growth and biocompound production were successfully combined without a significant loss of activity. Indeed, both the algal *Scenedesmus* sp. culture as the methanotrophic *Methylocystis parvus* culture became N depleted after 24-48h, without expressing lower overall activity or growth rates. N limited cultivation of algae on synthetic biogas led to a significantly higher lipid content compared to controls without N limited growth. Moreover, up to 30% of the lipids had an unsaturated omega-3 or omega-6 nature and are of high value in animal feed and food, as they induce beneficial health effects (Sasso et al., 2012). The same trend was observed in the second stage, where N limited cultivation of a methanotrophic culture on a mixture of 60% CH\(_4\) and 40% O\(_2\) led to an increase of the PHB content up to 30% of the cell dry weight, while this was less than 2% in the control bottles without N limited growth. When optimally controlled, PHB concentrations of MOB like *Methylocystis parvus* can reach values up to 60% of the bacterial CDW, leaving space for further improvements (Wendlandt et al., 2010, Zhang et al., 2008). Also important is the effect of the feast-and-famine regime, whereby alternating phases of optimal growth conditions and N limited growth respectively selected for those algae and bacteria able to switch their metabolism the fastest, leading
to cultures with a higher biocompound production rate. This effect was the strongest for the MOB, as two extra cycles led to a three times higher PHB concentration. However, the obtained results are just an indication of possible yields, as it looks plausible that a higher amount of cycles would further increase the concentrations of lipids and PHB respectively. Also a better fine-tuning of the cycles would increase the yields, for example by harvesting the biomass when the biocompound concentration is maximal.

IX.4.3 A symbiotic cooperation of algae and MOB led to biofloc formation

Whereas a two-stage approach allows to optimize the growth conditions and biocompound production of the algae and MOB separately, a one-stage process is ideal for production of bioflocs while lowering the investment costs. These bioflocs consisted out of randomly organized microalgae and bacteria, as described in our previous work (van der Ha et al., 2011). The results with a coculture in a CSTR showed that both the photosynthetic and methanotrophic processes can take place simultaneously, whereby a symbiotic relationship exists between the algae and MOB. Over the testing period, both the amount of CO$_2$ - gaseous and dissolved - as CH$_4$ decreased steadily. Overall, 98% of consumed CH$_4$-C and CO$_2$-C was found back as biomass. Algae were actively growing as chlorophyll was produced over the test period, while light microscopy and flow cytometry confirmed an increase in algal numbers of at least two orders (data not shown). Interestingly, light energy immediately triggered the photosynthetic O$_2$ production followed by an immediate start-up of the aerobic bacterial metabolism due to the sudden availability of dissolved O$_2$. The produced O$_2$ was efficiently taken up, as dissolved O$_2$ values always stayed below the detection limit. Simultaneously, a steady decrease in CH$_4$ concentration was observed. This CH$_4$ removal had an obvious methanotrophic nature as the CH$_4$ removal was stopped when a methanotrophic inhibitor was added. Instantaneously, concentrations of dissolved O$_2$ increased up to 250% of saturation because MOB were no longer a sink for the produced O$_2$. At the same time, an increase in the apparent CO$_2$ removal rate was observed, as MOB no longer produced additional CO$_2$. The average CH$_4$ oxidation rate of 93 mg CH$_4$-C L$^{-1}$ d$^{-1}$ during the normal test period in the CSTR was lower than the 158±2 mg CH$_4$-C L$^{-1}$ d$^{-1}$ in the batch tests, as the methanotrophic
activity was limited by the low availability of dissolved O$_2$. To increase the MOR, an increase in photosynthetic activity is needed through better design, a higher ratio of algae over MOB or an increase of the low light intensities.

No important floc formation occurred under controlled conditions. However, an increase of the pH to 8.8 at the start easily induced floc formation, probably due to exopolysaccharides (EPS) formation by the MOB under these non-optimal conditions (Malashenko et al., 2001). This relatively minor increase in pH at the end of the production process could lower the cost of harvesting the biomass considerably.

Acknowledgments

DVDHA, WV and NB designed the experiments. DVDHA and LN performed the experiments and analyzed the data. FK and DR helped with the PHB analyses and PB gave support for the fatty acids analyses. DVDHA wrote the manuscript, which was commented by PB, WV and NB. The authors thank Geert Van de Wiele, Arne Verliefde, Zuwairat Asekomé and Gwynet Leyre for their assistance and the colleagues of LM-UGent and Carlos Zamalloa for providing cultures. This research was supported by a research grant from the Geconcerteerde Onderzoeksactie (GOA) of Ghent University (BOF09/GOA/005). David van der Ha was funded by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen, SB-83259). Willy Verstraete is indebted to the Ghent Bio-Economy multidisciplinary partnership (MRP).
There are no passengers on spaceship Earth. We are all crew.

— Marshall McLuhan
author and educator

Cradle of humankind world heritage center, Maropeng, South Africa
Laat mij maar dromen...

(till death do us part)
Chapter X. General discussion and perspectives

X.1 General research outcomes

X.1.1 Positioning of this research

When the United Nations Secretary General Ban Ki-moon took the stand at the last UN climate Conference (COP17) in Doha, he gave following warning about the global warming phenomena: “Let us be under no illusion. This is a crisis. A threat to us all. A threat to our economies, our security and the well-being of our children and those who will come after.” (Abano, 2012). The fact that high profile spokesmen dare to be so blunt on the international scene shows that many policy makers are now aware of the possible long-term threats that climate change can cause.

Traditionally, all spotlights in the climate change debate are on CO₂. Indeed, a majority of the global warming effect is assigned to this GHG. However, CO₂ is to a large extent linked to our behaviour; to considerably decrease our CO₂ emissions, we mostly need to lower our luxury consumption (Kannberg et al., 2009). Anthropogenic CH₄ emissions are however more on the production side, i.e. gas, oil and coal installations, ruminants and agriculture, rice paddies and landfills. These sources often have a potential for engineerable solutions, especially as such sources are often less diffuse. With its 15-20% contribution to the global warming effect (Forster et al., 2007, WMO, 2012), CH₄ mitigation is an important piece in the whole GHG puzzle. The specific global goal is clear: balance the whole CH₄ budget by achieving a decrease of 6% in global CH₄ emissions (Jardine et al., 2004).

Over the last decades, many research groups have focused on the microbiotechnological potential of CH₄ mitigation by means of methanotrophs. While much knowledge has been gathered about the physiology and ecology of methanotrophs, translation to biotechnological applications has been lagging behind. A few of the main reasons are (i)
the low solubility of \(\text{CH}_4 \) and \(\text{O}_2 \) in water, (ii) scanty experience with methanotrophic communities in engineered environments and (iii) the fact that there are less economical stimuli for \(\text{CH}_4 \) mitigation than for \(\text{CO}_2 \) mitigation. The goal of this dissertation was therefore to increase the knowledge on methanotrophic microbiomes and to explore novel biotechnological applications based on interactions of MOB with other microorganisms.

X.1.2 Main research outcomes

The key concept in this dissertation is the methanotrophic microbiome, i.e. the whole microbial community directly or indirectly depending on \(\text{CH}_4 \) as carbon and energy source. Hereby two different relations can be distinguished: in the first chapters, the focus lay on the effect of external growth factors on the methanotrophic community, while further chapters zoom in on the interactions within the methanotrophic microbiome and the applied potential that follows out of it.

In order to shed some light in these black box systems, it is important that the methanotrophic community can be characterized and the dominant MOB identified and/or isolated. To achieve these goals, it is necessary to combine culture independent and dependent techniques. Conventional isolation techniques are however laborious and time-consuming. Therefore, a novel and miniaturized isolation technique was developed in Chapter II, allowing to isolate and screen MOB with desired characteristics for their biotechnological potential. This technique was used to isolate fast-growing MOB from various environments. The applicability of this novel isolation technique was confirmed in Chapter VIII, where a diverse set of MOB was isolated from a facultative pond, thereby proving that such environments harbor an interesting methanotrophic potential.

The physiology, behaviour and ecology of MOB have been investigated numerously in lab environments. However, when the goal is to treat \(\text{CH}_4 \) emissions in or from natural or anthropogenic environments, it is important to know how steering factors influence such methanotrophic communities. In Chapter III, the influence of three important steering
Factors on the activity and community structure were evaluated, i.e. the N source, salt concentration and Cu\(^{2+}\) levels, respectively. It was observed that Cu\(^{2+}\), as stimulator of pMMO expression, increased the methanotrophic activity with a factor 1.5-1.7. Moreover, Cu\(^{2+}\) additions increased the resistance against salt additions significantly, indicating that pMMO is more salt resistant than sMMO. Therefore, screening and follow up of Cu\(^{2+}\) concentrations is important in environments with increased salt concentrations.

The influence of NH\(_4^+\) - another steering factor - on MOB is still under debate, as both stimulating as inhibiting effects have been observed previously (De Visscher and Van Cleemput, 2003, Stein and Klotz, 2011). In Chapter IV, the behavior of methanotrophic communities was evaluated at increased NH\(_4^+\)-N concentrations. A methanotrophic community was found able to oxidize CH\(_4\) at a concentration of 2000 mg NH\(_4^+\)-N L\(^{-1}\), without loss of methane oxidizing activity. This is by far the highest concentration of NH\(_4^+\)-N ever observed whereby MOB are not inhibited by NH\(_4^+\). This sustained methane oxidizing activity was however only observed when the NH\(_4^+\)-N concentration was gradually increased. The typical inhibiting effect of NH\(_4^+\) on MOB observed in lab environments as well as in agricultural applications could be counteracted by accomplishing a gradual increase instead of the currently applied shock loads. The increased NH\(_4^+\)-N concentrations also resulted into drastic shifts in the methanotrophic community. Although type I MOB were hardly present in the starting inoculum, a type Ia - *Methylosarcina*-like - MOB became highly dominant after NH\(_4^+\)-N amendments above 1000 mg NH\(_4^+\)-N L\(^{-1}\). This MOB could be useful to mitigate CH\(_4\) in environments where increased NH\(_4^+\) concentrations occur.

When dealing with methanotrophic communities, it is important to pay attention to the present non-methanotrophic members. In all the mentioned methanotrophic communities, heterotrophs formed an important fraction, although no organic carbon sources were amended and the retention times were kept relatively short. This shows that there exist meaningful interactions between the MOB and the associated heterotrophs. In Chapter V, the interaction between MOB and associated heterotrophs was investigated at
different copper concentrations. Although continuous shifts were observed in the heterotrophic community of the different subcultures, over time the heterotrophic communities evolved to a similar composition. This indicates that MOB select for certain heterotrophs, possible fulfilling vital processes. These interactions within the methanotrophic microbiome were the subject of Chapter VI, where it was shown that 13C labelled CH$_4$-C was metabolized by MOB and quickly transferred to heterotrophs, which build it into their cell structures. In less than 50 h, half of the bands observed in 16S rRNA gene based DGGE profiles of methanotrophic communities already had C13 incorporated. Moreover, it was proven that the CH$_4$ derived carbon fluxes allowed growth of a methylotrophic yeast with biotechnological potential. Tests with axenic cultures of an MOB strain together with a *Pichia pastoris* strain indicated that only active MOB could sustain growth of the associated heterotroph, indicating an active transfer of CH$_4$ derived metabolites from the MOB to the methylotroph.

A specific interaction between MOB and another type of microorganisms was the subject of Chapters VII-IX, i.e. the symbiotic relationship between MOB and the autotrophic microalgae. In Chapter VII, proof of principle was given of this *methalgae* concept. It was observed that MOB and algae can be cocultured, with CH$_4$ as sole carbon source. Algae were able to grow by metabolizing the methanotrophic end product CO$_2$ and subsequently, algae supplied O$_2$ *in situ* to MOB by photosynthetic processes. By means of this cooperation, both GHG are tackled simultaneously, while at the same time MOB are no longer restricted to aerobic environments, enabling more biotechnological applications.

In Chapter VIII, proof was obtained that this interaction occurs in semi-natural conditions, as the *methalgae* interaction was observed in a facultative pond. It was shown that photosynthetic activity allowed a higher methane oxidizing activity in stagnant waters. Due to the algal O$_2$ production, such ponds harbor an important methanotrophic community, reducing the carbon footprint of these wastewater treatment plants. Moreover, the methanotrophic community was diverse, as both type la, lb and II MOB were isolated, most probably including members of a new genus. The methanotrophic community in such ponds have a biotechnological potential, as the harsh conditions
wherein they are active could lead to adaptations that might be beneficial when used in applications under tough and/or variable conditions. Lastly, the *methalgae* concept was applied for biotechnological purposes in Chapter IX. Instead of the typical conversion of biogas to electricity and low value heat, *a conversion of CH₄ into valuable bioproducts was accomplished*. In a two-stage approach, synthetic biogas was converted into valuable algal and methanotrophic biomass, respectively, by straightforward N limited growth under a feast-and-famine regime. By means of a one-stage approach with a coculture of algae and MOB, it was shown for the first time that *a total microbial conversion of both CH₄ and CO₂ is possible under anaerobic conditions, without external O₂ provision*. Moreover, an increase of the pH induced floc formation, facilitating the harvesting of the bioflocs.

A schematic overview of the different research topics is presented in Figure X-1.

![Figure X-1. Schematic research overview indicating the most important conclusions for each chapter.](image-url)
X.2 Future perspectives

X.2.1 Increasing the available methanotrophic pool

For a long time, the following question has been subject of debate: when a microbial community is performing the required tasks, is there still a need to identify each essential organism of the community? Some people of the engineering-orientated school would state that as long as the job is done, thereby attaining functional stability, there is no need to invest lots of efforts and money on further characterization. Besides, what is the value of a complete screening of a community, if the latter is possibly constraint to only this specific ecosystem? Indeed, bio-augmentation efforts, i.e. transfers of communities from one environment to another, have been less straightforward as hoped for. Microbial communities do not easily occupy niches in a new ecosystem where a native microbial community is already present (Guimaraes et al., 2010). Nonetheless, matching the specific needs for a certain biotechnological application with the characteristics of available microorganisms increases the chance of a successful application considerably. Yet, before the behavior and biotechnological potential of MOB can be tested, they first need to be available. However, like many fastidious organisms, MOB are difficult to preserve (Hoefman et al., 2012a). As a result, many discovered and described strains are currently no longer available in culture collections (Bowman et al., 1993b). Consequently, only a small fraction of the methanotrophic diversity is described and thus, it is no surprise that in the last two years alone, at least four new MOB genera have been described in literature (Geymonat et al., 2011, Hirayama et al., 2012, Luke and Frenzel, 2011, Vorobev et al., 2011). Even often examined environments like wastewater treatment plants, biofilters and wetlands, allow isolation of novel MOB species, as was shown in Chapter II. These results also demonstrate that enrichment based techniques can still result in the isolation of novel methanotrophs with potentially interesting characteristics.

Due to troublesome preservation, much of the knowledge gained about the physiology of MOB is based on the limited number of type strains that are available in culture collections. A good example with MOB can be found in Chapters II and V, where
Methylomonas spp. were identified, able to express sMMO in addition to pMMO. These results contrast with the for a long time generally accepted idea that sMMO expression is very rare in type I MOB; a statement based on tests with the type strains, which are not able to perform this enzyme switch. Thanks to recent novel culture dependent and independent techniques and the increased interest for MOB, more established MOB facts had to be revised. The old separation between type I and type II MOB concerning their ability to fixate N₂ for instance has also been thorn down (Auman et al., 2001). In general, recent discoveries of new species and new abilities have shown that the flexibility and variability in the methanotrophic gene pool have been underestimated. Moreover, it is clear that more unknown MOB strains are out in the wild, some of them with interesting characteristics. Therefore, uncultured methanotrophic populations can be seen as a latent source of potential industrial catalysts (McDonald et al., 2006).

The in Chapter II depicted miniaturized isolation strategy, combined with novel preservation techniques for autotrophs like MOB (Heylen et al., 2012a, Heylen et al., 2012b, Hoefman et al., 2012a) should help to increase the pool of available MOB, allowing to screen more organisms for attractive characteristics. In Chapter II, the proof of principle was shown for fast-growing MOB. However, the applied strategy has more potential, as it allows high-throughput isolation of MOB with a whole range of desired characteristics. For example, when the objective is to obtain highly NH₄⁺-N resilient MOB or to evaluate the influence of a certain environmental factor like salt concentration on the community, a straightforward adaptation of the growth medium in the 96 well plates allows to simultaneously isolate and screen the methanotrophic members, all in a miniaturized way.

If the presented isolation technique would be used to evaluate the methanotrophic community of a certain environment, it is important to know that the enrichment step will skew the investigated community structure to a possibly large extent (Vorobev and Dedysh, 2008). Still, the relatively small isolation campaign concerning the MOB in a facultative pond, as described in Chapter VII, resulted in positive isolation of type Ia, Ib
and II MOB, indicating that the proposed approach is able to retain part of the present diversity. Although it is not clear if these isolated MOB were active and/or highly abundant in the original ecosystem or rather present in the seed bank, those concerns are only secondary from an applied point of view. Indeed, the proposed approach does not aim to understand the community structure of the environment under investigation, but results in the isolation of MOB with a wanted profile. In this particular case, robust and fast growing MOB could be isolated, able to withstand drastic changes in growth conditions like pH, temperature, O₂, CO₂ and H₂S concentrations. The latter could certainly be beneficial for biotechnological applications, for example as adequate members in methalgalae consortia. Therefore, these isolates - including strains most probably belonging to a new methanotrophic genus - are currently described and characterized by Sven Hoefman et al. in the Laboratory of Microbiology (LM-UGent).

In addition to the culture dependent characterization, culture independent techniques are powerful tools to gain understanding of the methanotrophic microbiome (McDonald et al., 2008). In Chapter V, community structures and shifts were evaluated by analyzing the 16S rRNA gene PCR based DGGE patterns using interpretative parameters, i.e. community organization, dynamics and richness (Read et al., 2011). Although next generation sequencing techniques are currently becoming the state-of-the-art technique, due to their ability for a faster and deeper community characterization, these DGGE-based analyses allow a relatively fast screening of the community and its reaction to changes in the environment. However, to gain knowledge on who is actually present and active in those communities, additional techniques are required. Clone libraries as in Chapter V can be useful to get an idea of the most dominant species, while microarray analyses as used in Chapter IV allow - at least for MOB – to gain taxonomic information at species level. Future studies will undoubtedly incorporate results from the omics technology platform, based on high throughput screening, as this advanced technology allows an even higher resolution characterization of mixed communities. The focal point of attention will thereby not lie on the information gathering, but rather on adequately dealing with the large datasets that are generated (Hudson, 2008).
When looking not only to ‘who is doing what’, but also to ‘who is doing it with whom’, other molecular techniques have proven their value. In Chapter VI, the strength of isotope labelling is shown for elucidating interactions between different organisms. Even with basic stable isotope probing (SIP), it was possible to visualize the very quick turnover of labelled methanotrophic metabolites from the MOB to the associated heterotrophic community. In further research, isotope based techniques could also prove their value in unravelling the interactions taking place in methalgae consortia. While the exchange of CH₄, CO₂ and O₂ between MOB and microalgae is clear, it is likely that also other interactions take place within the methalgae microbiome, for example the exchange of vitamins or metabolites.

In Chapter VI, other high-throughput technologies like flow cytometry helped to screen potentially interesting interactions with only a limited amount of sample volume and time. On top of these established molecular techniques, novel and promising techniques are currently coming available: Illumina MiSeq, protein-SIP, Raman microscopy, NanoSIMS and novel fluorescent in situ hybridization methods are only a few techniques that could allow a better, deeper and faster characterization of the methanotrophic microbiome, thereby expanding our knowledge on MOB significantly.

X.2.2 Expanding the field for applications

The ecology of MOB has been examined repeatedly, revealing the flexible nature of this bacterial group (Ward et al., 2004). Yet, throughout this dissertation it has become clear that both from an ecological as well as a biotechnological point of view, more interesting facts are awaiting discovery. In Chapters II and V, confirmation was given that the former believe that sMMO expression is rare for type I MOB indeed needs to be revised, as Methylomonas spp., type Ia MOB, were observed that are able to express both sMMO and pMMO. These MOB could have a biotechnological potential, since sMMO expressing MOB are popular candidates as catalysts for biotransformation and bioremediation processes. Moreover, being able to shift between both enzymes could be advantageous. This fact was observed in Chapter V, where the ability to express both types of MMO resulted into
a higher resistance against Cu\(^{2+}\) fluctuations. Another example of the beneficial MMO switch is the application of MOB for TCE degradation. One could take advantage of the higher growth yield of pMMO during the growth phase and couple this to a second phase where the higher rates of chlorinated compound degradation of sMMO could be exploited (Dalton, 2005, DiSpirito et al., 1992, Yu et al., 2009).

Also the never before reported observation in Chapter III that expression of pMMO makes MOB more resilient to salt additions, can be useful for environmental applications. This finding could be of interest when non-extremophilic MOB need to be used in wastewaters and brines with an increased salt content. By dosing a small amount of Cu\(^{2+}\), it could be possible to considerably increase the salt resistance of the methanotrophic community. Either way, an analysis of the Cu\(^{2+}\) concentration should become standard when applying MOB, as the influence of Cu\(^{2+}\) concentration cannot be underestimated. This was highlighted in Chapter III, where an increase of the Cu\(^{2+}\) addition led to a significantly higher CH\(_4\) oxidation rate; an effect that has also been observed by other research groups (Begonja and Hrsak, 2001). This correlation between Cu\(^{2+}\) concentrations and activity is however not a certitude, as was pointed out in Chapter V, where no significant increase of the methanotrophic activity was observed when pMMO instead of sMMO was expressed by the MOB. The presence of a dominant MOB able to switch between sMMO and pMMO in all different treatments could have played a role in this particular case. However, the underlying reason is unclear and tough to unravel without a better characterization and identification of the active MOB members.

Next to more insights in the role of MMO expression, attention in this dissertation went to the influence of NH\(_4^+\)/NH\(_3\) on the methanotrophic activity and community structure. This choice was made because CH\(_4\) mitigation often occurs in environments where reduced N compounds are present. From a biotechnological point of view, the most important finding was presented in Chapter IV, where a methanotrophic community was observed, resilient to high concentrations of 2000 mg NH\(_4^+\)-N L\(^{-1}\). This shows that the application field of MOB can be extended to areas with high NH\(_4^+\)-concentrations. In further research,
it would also be interesting to evaluate the resilience towards NH₃. Indeed, biotechnological applications like mitigation of CH₄ emissions from animal husbandry often take place in environments with increased NH₃ concentrations (Melse and Van der Werf, 2005, Petersen et al., 2009). Nonetheless, highly NH₄⁺-N resistant methanotrophic communities look promising for CH₄ mitigation in anaerobic environments where NH₄⁺ could be an inhibiting factor. In a further step, it would be noteworthy to evaluate the possibilities of coculturing MOB and AOB, which would result in a simultaneous treatment of CH₄ and NH₄⁺/NH₃. Although preliminary tests have shown that the latter is achievable, this coculturing strategy needs further exploration.

The obtained results of Chapter IV also call attention to another important element: a gradual adaptation towards an influencing growth parameter could result into an overall higher resilience. Currently, shock loads of NH₄⁺-N and other nutrients are still the common practice. However, in lab tests, these prompt doses skew the observed dose-response relationship, while in the agricultural business, fertilizer shock loads prevent the present community to adapt to the new conditions. When fertilizing soils, it would be useful to apply smaller and steadily increasing doses instead of giving all at once, in order to allow a community shift towards more adapted MOB.

X.2.3 Exploring the potential for eco-engineering

Most enrichments and tests in this dissertation where performed in mineral salts medium, without any addition of organic carbon sources. Combined with a relatively short sludge retention time, this created conditions whereby heterotrophs could only establish themselves in the community by employing methanotrophic metabolites to fulfil their carbon and energy needs. As observed in Chapters II-VI, MOB form the core of whole microbial food chains, driven by CH₃ derived carbon. Although such interactions have been observed before (Dumont et al., 2011), the underlying reasons and the impact of these interactions are mostly still to be discovered.
From an eco-engineering point of view, these interactions within the methanotrophic microbiome could lead to bacterial life in pristine environments lacking organic carbon source, on the condition that the other nutritional needs like N and P availability are fulfilled. As such, methanotrophic communities could help to reconvert the vast areas where for example former mining activities have resulted in desolate environments without fertile topsoils. As a result, these environments lack the conditions needed for life of higher organisms like plants and invertebrates. However, regulations in countries like South Africa are becoming stricter and companies are demanded to reclaim these areas with weathered or spilled coal. In such environments, MOB could be used as primary colonizers, creating a flux of energy and carbon to the soil. Indeed, due to the nature of such coal beds, CH₄ continuously seeps out (Adams et al., 2001), thereby providing the MOB and indirectly the associated heterotrophs of a relatively continuous flow of carbon and energy. Moreover, as many MOB have a N₂ fixation ability, even a lack of available NH₄⁺/NO₃⁻-N could be circumvented. MOB also have specific mechanisms to attain trace elements like Cu and Fe (Kenney and Rosenzweig, 2012), while sufficient P and S should be found in the coal layer itself. Therefore, methanotrophic communities could be able to start colonization processes that may form the base for further reconversion steps by grasses, fungi, etc. Until now, no attention has gone to this type of eco-engineering, although this could change due to the attention for biochar, a type of charcoal, created by pyrolysis of biomass. Currently, much scientific efforts are made to investigate if the conversion of organic carbon to inert charcoal could be a useful approach for carbon sequestration while at the same time the soil fertility would be increased (Xu et al., 2012). Results from other research groups indicate that at least in the beginning, biochar results into a C, N and probably also a P flux to soils wherein it has been applied (Nelissen et al., 2012). Moreover, biochar amendments seem to result – although temporarily – in an increased microbial activity. When this biochar would be inoculated with MOB before being applied to nutrient poor soils, it could be possible to sustain an active methanotrophic community, whereby the slow release of C, N and P allow the methanotrophic community to establish and adapt to the conditions. After the start up phase, the MOB could take over the C and N sequestration. Additionally, such an
enhanced bio-augmentation strategy could also help to reclaim the oil sands after fracking, while at the same time the CH$_4$ emissions of such soils could be lowered.

It is also worth mentioning another pristine environment that could be harboring CH$_4$-based communities, i.e. the sky. It has become clear that diverse bacterial communities are present in the vast atmosphere (Delort et al., 2010). MOB seem to be members of cloud communities, possibly forming an unexpected sink for atmospheric CH$_4$ (Temkviv et al., 2012). Methanotrophic activity could be possible due to the fact that next to water, CH$_4$ and CH$_3$OH, also N and P compounds are available in clouds. Moreover, MOB are able to go into resting stages, thereby able to rely on intracellular energy and carbon storage compounds like PHB (Roslev and King, 1994). Like that, they have a higher chance to sustain the harsh atmospheric conditions. The importance of this air-born community is far from assessed but although the concentration of MOB in clouds will be relatively low, this unacknowledged CH$_4$ sink could be meaningful due to the enormous volume of the atmosphere.

X.2.4 Creating a future for metabolic networking

Based on the findings in this dissertation, it is clear that under the tested conditions, the MOB selected for specific heterotrophs. This was most clear in Chapter V, where the associated heterotrophic community evolved over 10 sequential cycles to the same composition, although the Cu$^{2+}$ concentration was different for all three treatments. There are strong indications that the selection of the associated bacteria does not occur randomly and therefore this interaction is more than just saprophygy. The hypothesis of an active interaction is confirmed in Chapter VI, where only an active MOB culture was able to support the activity and growth of a methylotrophic Pischia pastoris strain, while no growth of the yeast was observed when the MOB was not oxidizing CH$_4$. The metabolites that allow this flux of carbon and energy from MOB to associated microorganisms are still unidentified. Also the reason why MOB seem to release considerable amounts of precious carbon and energy sources is not elucidated, although the heterotrophic removal of toxic intermediates like formaldehyde could for example be beneficial for the MOB (Hrsak and
Not surprisingly, the identified associated heterotrophic communities in Chapters II and V consisted mostly of bacteria metabolizing small organic molecules and/or intermediates of the methane oxidizing pathways. The latter fuels the hypothesis that the methanotrophic-heterotrophic interactions consist mostly out of the ‘leaking’ of smaller molecules from the MOB to the associated community.

However, the carrying capacity based on crossfeeding with MOB is remarkable. The clone library of Chapter V even indicates that there are more heterotrophs than MOB present in the methanotrophic community. Although in depth techniques are currently used to confirm these findings, support is given by the observations of other research groups that MOB are able to supply large amounts of carbon and energy to higher organisms (Petersen and Dubilier, 2009, Sanseverino et al., 2012). Yet, the biotechnological potential of these interactions have not been explored yet. The tests in Chapter VI create expectations, as proof of principle was given that active MOB are able to support the growth of heterotrophic organisms, in casu a methylotrophic biotechnological model-organism. If these results can be confirmed with other MOB and heterotrophic strains possessing a biotechnological potential, a novel sink could be created for numerous CH₄ containing waste streams, including biogas originating from anaerobic digestion processes of biorefinery downstrems, wastes and sediments (Figure X-2). The implementation of such biorefineries comes closer every day, but results in new waste streams to deal with (Vandamme and Verstraete, in press). One of the open questions is what to do with the large amounts of organic waste that results from the different biorefinery processes. A combination of anaerobic digestion and the here presented biogas-to-biomass transformation could validate these waste streams and result into a secondary stream of valuable biotechnological metabolites. Next to methanotrophic biomass, which could be used as a source for single cell proteins, PHB or ectoine, metabolic networking would allow to create additional value by transforming the methanotrophic metabolites to biotechnological high-value products by engineered organisms like Pichia pastoris or Escherichia coli.
General discussion and perspectives

Figure X-2. Conceptual scheme of a potential application of metabolic networking within methanotrophic consortia. The latter would allow to convert CH₄ containing gaseous streams, no matter the origin; both CH₄ containing waste streams and biogas originating from the recycling of biorefinery downstreams, wastes and sediments could be transformed into valuable products.

Still, this metabolic engineering concept with MOB is only in its first stage of development. Further tests are currently taking place in order to evaluate the identity, amount, rate and potential of the transfer of metabolites from MOB to associated microorganisms. Only then, the true potential of this interaction can be judged on its merits.

X.2.5 Revealing the ecological relevance of the methalgae interaction

Except for Candidatus Methylomirabilis oxyfera, all methane monooxygenase based methanotrophs need free O₂ as final electron acceptor (Ettwig et al., 2012, Hanson and Hanson, 1996). Therefore, applications with MOB are normally restricted to aerobic environments. Yet, CH₄ is microbially produced and therefore mostly present in anoxic environments. As a result, MOB are in natural stagnant water bodies typically dominantly present in the thin transition layer between the anaerobic and aerobic zones (Blumenberg et al., 2007, Schmale et al., 2012). However, in fully anoxic environments, only the small
upper water layer in contact with the atmosphere is aerated. In Chapter VIII, where a facultative pond was used as model for such environments, it was indeed observed that on dark days, the whole pond was anoxic with exception of the upper millimetres. Consequently, not all CH₄ can be oxidized before it escapes to the atmosphere. However, algae have the potential to aerate a large zone of the water column. This effect is demonstrated in Figure X-3, whereby diffusion columns are used with a counter diffusion grade of synthetic biogas from the bottom and ambient air from the top, inoculated with an algal *Chlorella* sp. culture. It is clear that algae drastically increase the depth of the zone wherein aerobic bacteria like MOB can be active, thereby increasing the methane oxidizing potential in the water column.

Figure X-3. Depth profiles of diffusion columns with soft agar, inoculated with an algal *Chlorella* sp. culture. Passive diffusion of synthetic biogas occurred from the bottom, while the top of the columns where open to the atmosphere. The most left profile (3a) was obtained from a column that was completely shielded from the light. It can be observed that only the upper zone of 8 mm was aerated. The other columns were shielded from the light, expect for a zone of 10 mm, where algal growth could occur (marked in green). This illuminated zone was present at a depth of 30-40 mm (3b), 45-55 mm (3c) and 60-70 mm (3d), respectively.
This algae-MOB interaction is probably not limited to facultative ponds, as the conditions needed for the *methalgae* interaction to occur are present in many water bodies. Various lakes, rivers, swamps and estuaries, but also engineered water bodies like wastewater treatment ponds, constructed wetlands and organic waste pits have a bottom layer where organic material is degraded under anaerobic conditions, with on top a surface layer wherein photosynthetic micro- or macroalgae are active. If actions can be taken to increase the amount and diversity of algae in such aquatic systems, it would not only lead to increased CO₂ sequestration, but could also indirectly increase the CH₄ oxidation rates.

At the same time, it is important to realize that the *methalgae* interaction is actually a triad, as also heterotrophic interactions occur with both methanotrophs and microalgae. The most important interactions are depicted in Figure X-4, indicating that there are a lot of processes taking place in the *methalgae microbiome*. It also shows the potential of such microbial communities for wastewater treatment purposes, as next to GHG mitigation, the whole community is also removing BOD, N and P.

![Diagram of algae-MOB interactions](image)

Figure X-4. Schematic overview of the most important interactions between methanotrophic bacteria, microalgae and heterotrophic bacteria, respectively.
X.2.6 Methalgae for CH₄ mitigation in anaerobic effluents

Although anaerobic digestion is often perceived as a more sustainable version of the traditional activated sludge processes, there are concerns about the carbon footprint of such installations (Cakir and Stenstrom, 2005, Hartley and Lant, 2006). Due to oversaturation phenomena and the fact that part of the CH₄ and CO₂ dissolves in the continuously outflowing effluent, these installations can become huge GHG emitters; a matter that only recently got attention. Physical treatments based on gasification and extraction are currently rolled out, but will still need to prove their economical and ecological feasibility (Bandara et al., 2011, Matsuura et al., 2010).

As wastewater treatment is one of the most successful microbiotechnological stories, it is no surprise that research groups have looked into the potential of microorganisms to treat dissolved CH₄ in anaerobic effluents. From a microbiotechnological point of view, Candidatus Methyloirabilis oxyfera has the most potential, as this species is able to produce its own oxygen in anaerobic conditions. Therefore, it does not need to be supplied of free O₂ like all other known MMO based methanotrophs (Ettwig et al., 2012). However, more knowledge on this peculiar methanotroph is needed before such applications could become possible. Anaerobic archaeal methanotrophs are also prone candidates, but due to their long doubling times and challenging cultivation needs, progress in the applied field is slow. As no anaerobic organisms can be applied (yet), aerobic MOB came into the picture (Hatamoto et al., 2011, Hatamoto et al., 2010). This research group used a down-flow hanging reactor with sponges whereon MOB could attach, resulting in the removal of a large fraction of the dissolved CH₄. However, there was a need for air sparging in order to supply the MOB of necessary O₂, which comes with a cost and can result into stripping of CH₄ and CO₂ to the gas phase. Therefore, an alternative strategy is proposed in this dissertation, whereby O₂ is microbially produced in situ in the anaerobic effluent by micro-algal photosynthesis. To our knowledge, the methalgae concept as described in Chapter VII, VIII and IX is the first microbial technique that allows complete mitigation of both GHG under anaerobic conditions without the need of air/O₂ sparging.
The strength of the *methalgaee* approach lies in the fact that CO₂ mitigation and CH₄ oxidation occur simultaneously. It should be stressed that every mitigation strategy by MOB results into production of CO₂, which is also a GHG. Due to the fact that CH₄ is a 25 times stronger GHG than CO₂, policy makers easily minimize the consequences of this transformation of CH₄ into a weaker GHG, CO₂. However, it is often forgotten that the GWP is a weight-based factor; the oxidation of 1 mol CH₄ results in 1 mol CO₂, but the latter is 2.8 times heavier. Therefore, only a factor 9 instead of 25 should be used when evaluating the GHG mitigation potential of MOB, and more general, every CH₄ mitigation strategy that results into CO₂ production. The *methalgaee* approach is one of few CH₄ mitigation strategies allowing a true carbon neutral CH₄ removal, as overall, no CO₂ is produced, but instead additional CO₂ is consumed by the algae. Moreover, algae and bacteria are a powerful combination for treatment of anaerobic wastewaters. Indeed, both do not only mitigate the GHG but are at the same time removing N, P and possible hazardous contaminants (Molinuevo-Salces et al., 2010, Munoz and Guieysse, 2006). Therefore, GHG mitigation by *methalgaee* can be successfully combined with a tertiary treatment of wastewaters. In Chapter VIII, this ‘double action’ has been demonstrated in an existing WWTP; while the goal of facultative ponds is primarily wastewater treatment, it is clear that the *methalgaee* interaction is also responsible for a decrease of the carbon footprint of such installations.

In this dissertation, proof of principle has been given for the application of *methalgaee* for treatment of dissolved CH₄ in anaerobic environments. Yet, more efforts are needed to valuate the feasibility for implementation of this approach in full-scale wastewater treatment plants. The most important challenges are the following:

• Wastewaters, especially with an industrial origin, are harsh environments for MOB, algae and microorganisms in general, due to the presence of inhibiting factors. Still, many successes have been booked with algal-bacterial consortia for the treatment of industrial anaerobic effluents (Molinuevo-Salces et al., 2010, Munoz and Guieysse, 2006, Van den Hende et al., 2011). Moreover, tests in this dissertation with *methalgaee*
cultures on anaerobic effluents from a domestic WWTP (Chapter VIII), a potato factory (Chapter VII) and a paper factory (data not shown) did not indicate unconquerable issues.

• As with all algae based reactors, provision of light energy and heat is the most critical factor. Although the cocultures in Chapters VII-IX were active under low light intensities and a lot of progress in efficient light provision has been made over the last years (Chen et al., 2011), artificial light energy stays costly. Therefore, optimal use should be made of available ‘free’ natural light and heat. For example, as effluents from anaerobic digesters are typically warmer than 20°C, no additional energy should be needed for heating.

• Digestate is often turbid. Although the algae that were cultivated in the digestate of a potato factory had no problem capturing light with a low intensity (Chapter VII), mixing will be needed to assure optimal algal activity and low hydraulic retention times.

• The reactor design should optimize the amount of light that can penetrate in the effluent. Therefore, a high surface to volume ratio is needed, which at the same time allows a high enough residence time of the flocs in the illuminated zone. Moreover, the reactor should be covered, to minimize the loss of (oversaturated) CH₄ and CO₂ to the atmosphere. Fortunately, both conditions can easily and at moderate costs be accomplished in installations like the one in Agristo NV, a Belgian potato factory, which has the digestate running out of the digester tank by means of an easily modifiable gutter system (Figure X-5). Concerning the dark night periods, buffer tanks could be useful in order to allow all digestate being treated during the illuminated period.
Figure X-5. A partial view on the wastewater treatment plant of the potato factory Agristo, Harelbeke, Belgium. The digestate originating from the anaerobic digestion process is pumped into a gutter system for further processing. The basin has a depth of less than a meter and the effluent is constantly in motion.

- Reactor design should also allow sufficient retention time for the microorganisms. Although doubling times of different MOB and microalgae vary to a large extent, a doubling time of one day is for both organisms a good guideline. Carrier material could be used to decouple the SRT from the HRT, avoiding washout of the methalgae biomass and allowing a decrease of the HRT. Tests in the lab indicated that MOB can easily attach on many conventional carrier materials (data not shown), while the sponge-like type used by Hatamoto (2010) could also be a worthy alternative. However, next to the cost, attention should be given to the shading effect that these carrier materials could generate.

- Lastly, a useful sink will be needed for the produced biomass. For most industrial wastewaters, it will not be possible to convert the biomass to valuable biocompounds due to regulatory rules, as the risk for toxins and hazardous products is high. If allowed by the local legislation, the biomass could however be useful as organic fertilizer. Also
re-digestion could be a solution, although the digestibility of algae is not superb and yields therefore relatively low (Munoz and Guieysse, 2006, Zamalloa et al., 2012a, Zamalloa et al., 2012b). Interestingly, bioflocs originating from wastewaters in food processing factories would be allowed as feed additive. As was mentioned in Chapter IX, such *methalgae* flocs could have a nutritional and prebiotic added value. Therefore, such companies would be the logic partners to start up a pilot installation, in order to evaluate the feasibility of the *methalgae* concept.

It is also important to highlight the not yet mentioned benefits of a *methalgae* approach for wastewater treatment:

- **The main reason** that methanotrophic biofilters have rarely made it to the full-scale level is due to the poor solubility of CH$_4$ and O$_2$. In studies with a CSTR and MOB for example, mass transfer coefficients of 19.1 h$^{-1}$ for O$_2$ and 16.3 h$^{-1}$ for CH$_4$ were calculated (Yu et al., 2006). Due to the slow mass transfer of these gases, enormous reactor volumes are needed to threat CH$_4$ containing gas flows. Even for a 1,000 m3 manure storage tank with high concentrations of CH$_4$, a biofilter of 20-80 m3 is required to remove 50% of the CH$_4$ emitted from the tank (Melse and Van der Werf, 2005). However, when (over-)saturated waters are treated, CH$_4$ is already dissolved maximally in the water phase, decreasing the effect of slow mass transfer to a large extend. As the intrinsic oxidation rate of MOB is much higher than the observed mass transfer limited rate, a decrease of the HRT can be expected, the latter being a prerequisite for successful implementation.

- **When working** with CH$_4$, there is always an explosion hazard. Especially when degassing processes are involved, the risk of calamities cannot be eliminated. However, when treating dissolved CH$_4$, this risk can be neglected. Therefore, a *methalgae* approach would be one of the safest solutions.

- **No air sparging is needed**, as the algae produce the oxygen *in situ*. Moreover, no heavy pumps are needed, as some current installations could quite easily be altered into a *methalgae* reactor. Both factors allow to decrease the operational cost.
Conclusively, it will take more extensive tests before methalgae will be used for the treatment of dissolved CH₄ and CO₂ in anaerobic effluents. However, there seems to be no reason why the methalgae concept should be ruled out beforehand. Nonetheless, it is clear that this concept has the highest change to succeed in low-cost WWTP with year round high amounts of solar energy.

X.2.7 Methalgae as driver for valuable biocompound production

In Chapter IX, another application for methalgae was explored in order to create an alternative sink for biogas. Methalgae consortia were used to convert biogas into valuable biomass. This production of valuable biocompounds out of biogas could be an element in the biorefinery concept, whereby the conversion of plant material to biomolecules results in a waste stream containing about 50% of the incoming C (Vandamme and Verstraete, in press). Anaerobic digestion coupled to the presented approach could result in a secondary stream of interesting biocompounds, increasing the overall conversion efficiency of the biorefinery in a sustainable way. However, as biogas has already a value (about 0.2 euro m⁻³ in the EU), conversions are only economically feasible if the end product is worth more than the biogas, augmented with the cost of the conversion. Two approaches were proposed as schematically represented in Figure X-6: a two-stage process which allows maximal optimization of the separate processes, leading to the creation of two separate high value end products and a one-stage approach which exhibits a lower operational cost, and therefore could be interesting for the production of feed components.

While many of the mentioned remarks about methalgae implementation are also valid here, some extra arguments should be pointed out:

- Also for this application, optimal use should be made of natural daylight, due to the high cost of artificial light. However, the proposed microbial conversions are perfectly complementary with green electricity production out of the produced biogas. Therefore, an elegant solution is here present to handle the dark hours. At the same time, the produced low caloric heat could be useful to maintain optimal growth temperatures for the microorganisms.
Figure X-6. Overview of the two possible pathways to apply the *methalgae* concept for conversion of biogas to valuable biomass. The two-stage process (a) allows to fine-tune the growth conditions for the algae and MOB separately. In the one stage approach (b), the MOB and microalgae are cultivated together. While the first approach allows the creation of two separate high-value end products, the second approach is more fit for low-cost production of nutritional feed flocs.

- Secondly, as with all methanotrophic bioreactors, reactor design should focus on an optimal gas transfer of the relatively low-soluble CH$_4$ and O$_2$, as this is still the Achilles’ heel of such biofilters. The membrane biofilm reactor technology might be promising, as it allows to tackle many challenges: the specific design allows to fine-tune the gas flows, optimize the gas transfer and lower the safety hazard as was well described for methanotrophic applications by Hamer (2010) and Modin et al. (2010).
- Floc formation could also affect the mass transfer rate negatively, but that has not hindered the application of bacterial-algal biofloc technology for wastewater and
flue gas treatment (Munoz and Guieysse, 2006, Van den Hende et al., 2010). Moreover, in the current study, algae and bacteria were well dispersed until stress conditions were induced, minimizing a possible decrease in mass transfer due to floc formation.

- Lastly, it should be stressed that this approach allows to aim for the production of biocompounds with high values. Promising biocompounds made by MOB are epoxypropane and ectoine (Reshetnikov et al., 2011), while algal production of astaxanthin and β-carotene is commercially established (Sasso et al., 2012). The most important strength of the proposed approach is the putative flexibility, as all growth conditions can be controlled and therefore optimized. At the same time, the concept allows to create clean biocompounds out of all kinds of gas streams with CH₄ and CO₂.

A quite extra-ordinary environment where *methalgae* could also be of value is space travelling. To allow a long-term manned space mission, closed loop systems are needed, allowing to minimize losses of energy, water and carbon on board of the spaceship. Therefore space agencies have been developing artificial ecosystems whereby all waste is recycled back to food for the crew, by means of physico-chemical techniques, higher plants, algal and bacterial processes. The MELiSSA (Micro-Ecological Life Support System Alternative) project of the European Space Agency has proposed and tested some possible settings (Tikhomirov et al., 2007, Verstraete et al., 2005). Some proposed closed loop systems include anaerobic digestion processes, thereby creating CH₄ (Poughon et al., 2009). However, the hazards of this explosive gas are unacceptable on a spaceship and therefore CH₄ should be vented to outer space, leading to a loss of carbon. As algae will be key-players of such artificial ecosystems, a *methalgae* implementation could be of help to close the carbon balance. By co-cultivating the algae and MOB on the digestate, CH₄–C could be recuperated and converted into food additives, without a risk for calamities.
Chapter X

X.2.8 Conclusions

This dissertation had as central concept the methanotrophic microbiome. The behavior of the methanotrophic community as a whole was evaluated during changes of environmentally relevant parameters like the \(\text{Cu}^{2+} \), \(\text{NaCl} \) or \(\text{NH}_4^+ \)-concentration, respectively. Even more imperative was that the interactions within the community were followed up, which allowed gaining knowledge on a community level. Indeed, since environmental biotechnological applications will be based mainly on whole communities rather than axenic cultures, it is important to couple the physiological, ecological and biotechnological capacities and needs. Obtained outcomes like the increased resilience towards salt or \(\text{NH}_4^+ \)-additions have their merits, but need now translation to the applied field. Some efforts were made to exploit the interactions of methanotrophs with the associated heterotrophs and microalgae, respectively. Novel concepts were presented and tested on a lab scale. By means of methanotrophic communities, it was possible to create novel \(\text{CH}_4 \) sinks, thereby combining \(\text{CH}_4 \) mitigation in wastewaters and gases with the production of added value products. This value creation is an important benefit, as the exploitation of methane oxidizing reactors comes with a capital and operational cost.

In conclusion, it has become clear that there is still a lot of knowledge about the methanotrophic microbiome waiting for us to discover. While innovative molecular technologies will definitely result into an expansion of the knowledge on the ecology and physiology of MOB and methanotrophic communities, biotechnological obstacles seem harder to tackle. Especially towards the treatment of poorly soluble gases, new ideas and concepts are required. These truly remarkable methanotrophs deserve that attention.
Lid of a methanotrophic reactor, DTU, Copenhagen

References

References

References

References

References

References

References

References

IPCC (2007b) Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change.

References

References

References

References

Oswald, W.J. (1976) Experiences with new pond designs in California, University of Texas Press, Austin, TX, USA.

References

Sakulin, C. and Borroni, V. (2010) Promotion of biogas and and its market development through local and regional partnerships - Task 2.1 Country specific conditions for the implementation of bioas technology - Comparison of Remuneration, Biogas Regions, Lyon, France.

References

References

References

References

SUMMARY

Cradle of humankind world heritage center, Maropeng, South Africa
Since the industrial revolution, the average temperature on Earth has risen considerably, mainly due to the enormous emissions of anthropogenic greenhouse gases. While CO₂ mitigation gets most of the attention, it is important to realize that CH₄, on weight basis a 25 times stronger greenhouse gas than CO₂, is responsible for about 18% of the global warming effect. In order to balance the worldwide CH₄ budget, a 6% decrease of current CH₄ emissions is needed. Physico-chemical technologies exist which enable the mitigation and transformation of CH₄, but these techniques are energy demanding. A microbiological alternative is available, as methanotrophic microorganisms have developed methods to oxidize the stable CH₄ molecule. A subgroup of these methanotrophs consists of aerobic alpha- and gamma-proteobacterial methane oxidizing bacteria (MOB), which are the key players in this dissertation. MOB are able to use CH₄ as their sole carbon and energy source and they form the core of methanotrophic microbiomes, the latter being entire microbial communities directly or indirectly depending on CH₄ for their growth and activity. In this dissertation two factors were examined that are important for utilizing these communities for applications in environmental biotechnology. The first factor concerns external parameters that influence the activity and structure of such communities. The other factor relates to the interactions taking place within the methanotrophic microbiome.

To facilitate this examination, an extinction-based isolation technique was developed in this dissertation to increase the available methanotrophic pool. In a microbiological framework, the chance of a successful application increases considerably when the specific needs to achieve a certain biotechnological purpose can be matched with the characteristics of available microorganisms. However, MOB are notoriously difficult to isolate and preserve and therefore only a small fraction of the methanotrophic diversity has been described so far. The developed miniaturized isolation technique allowed to isolate and screen MOB with desired characteristics for their biotechnological potential. By applying this novel approach, 22 fast-growing MOB were isolated from various
environments, even when traditional plating was unsuccessful. The effectiveness of this isolation technique was also confirmed by isolating a diverse set of MOB from a facultative waste stabilization pond. In that case, strains of all three groups of MOB, i.e. type Ia, Ib and II MOB, were isolated, of which some strains most likely belong to a new genus. In conclusion, miniaturized extinction culturing can be seen as a technique that is efficient in rapidly isolating numerous diverse MOB with desired characteristics, requiring little effort and few materials.

When MOB are applied for environmental biotechnological purposes, it is important to know how external growth parameters influence methanotrophic microbiomes. A potential niche for methanotrophic microbiomes is the mitigation of dissolved CH₄ in effluents from anaerobic digesters. These anaerobic effluents are an underestimated source of greenhouse gases, as they are often saturated with CH₄ and CO₂. Semi-continuously fed stirred reactors were used as model systems to evaluate the influence of key parameters on the activity of methanotrophic communities. By increasing the Cu²⁺ concentration, the expression of particulate methane monooxygenase (pMMO) was enhanced, which led to an increase of the methane oxidation rate by a factor of 1.5. Moreover, communities with pMMO expressing MOB exhibited also a higher resilience against NaCl. Additionally, the influence of increased loads of NH₄⁺-N on the activity and composition of a methanotrophic community was assessed. In contrast to a sudden increase, MOB showed remarkable resilience to gradually increasing ammonium loads. For the first time, substantial methane oxidation activity was observed in a methanotrophic community exposed to ammonium concentrations of up to 2500 mg NH₄⁺-N L⁻¹. All these obtained results demonstrate that the treatment of CH₄ saturated effluents, even those with increased NH₄⁺-N and salt levels, can be mitigated by implementation of methanotrophic communities.

It is also important not to lose sight of the non-methanotrophic members present in the community when dealing with methanotrophic microbiomes. In all the evaluated methanotrophic communities, heterotrophs formed an important fraction, although no
Organic carbon sources were added. This shows that there exist meaningful interactions between the MOB and the associated heterotrophs. Furthermore, when a methanotrophic community was exposed for 30 days to three different copper concentrations, i.e. 0.1, 1.0 and 10 µM Cu²⁺ respectively, the associated heterotrophic communities showed continuous shifts, but over time all subcultures evolved to a comparable composition, independent of the copper concentration. This indicates that the MOB selected for certain heterotrophs, possibly fulfilling vital processes like removal of potentially inhibitory intermediary compounds.

At the same time, carbon fluxes occur between MOB and associated microorganisms. When cultivating axenic MOB strains with CH₄ as sole C source, about 25% of the organic matter was present in the culturing media. Moreover, stable isotope probing showed that after 96h, up to 100% of bands observed in 16S rRNA gene DGGE profiles of three different methanotrophic communities were also present in the ¹³C gradient fractions. These results provided evidence that the associated community rapidly incorporated ¹³C-compounds originating from CH₄ oxidation processes by MOB. In an additional test, this metabolic networking allowed a methylotrophic yeast to grow indirectly on CH₄ in the presence of an active MOB culture. These results prove that metabolic networking takes place within the methanotrophic microbiome, creating CH₄ derived food webs with possible industrial potential.

Lastly, the symbiotic interaction between MOB and autotrophic microalgae, described as the methalgae concept, was developed. It was observed that MOB and algae can be cocultured with CH₄ as sole carbon source. While algae metabolize the methanotrophic end product, CO₂, they produce in situ O₂, which is subsequently used by the MOB to oxidize CH₄. By means of this cooperation, both CO₂ and CH₄ are treated simultaneously, while at the same time applications with MOB are no longer restricted to aerobic environments. Moreover, methalgae cultures adapted easily to, and grew readily on, an industrial digestate. Even under anoxic conditions, considerable methanotrophic activity was observed, due to the fact that MOB could rely on in situ O₂ production by algal
photosynthetic processes. Proof was obtained that this *methylalgae* interaction occurs in a facultative waste stabilization pond, a key unit of many low-cost wastewater treatment plants. A pilot pond was used to evaluate the fate of CH₄ when it reaches the oxygenated pond surface layer, after being produced at the bottom of the pond. On site emission analyses showed that such facultative ponds are substantial CH₄ sources. Yet, part of the produced CH₄ is consumed by MOB before it can reach the atmosphere. At least 10⁴ cultivable MOB mL⁻¹ were observed in the upper layer of the pond, while enrichments showed a high methane oxidizing activity of 190±5 mg CH₄ L⁻¹ liquid d⁻¹. As algae were needed to supply the MOB with O₂, they have an essential supportive role in the CH₄ oxidation and could therefore influence the carbon footprint of such ponds to a substantial extent. This *methylalgae* interaction could take place in other water bodies too, and therefore deserves further attention. Finally, a biotechnological application for *methylalgae* communities was explored. While biogas produced by anaerobic digestion is typically converted into electricity, a new sink was created by transforming biogas into valuable bioproducts. As proof of principle, the production of feed additives, i.e. lipids and poly-hydroxy-butyrate was evaluated. In a first stage, the CO₂ in a synthetic biogas was photosynthetically fixed by an algal *Scenedesmus* sp. culture at an average rate of 192±9 mg CO₂ L⁻¹ liquid d⁻¹, resulting in concomitant O₂ production. After an N depleted growth phase, more than 30% of the 220±7 mg lipids g⁻¹ total organic carbon were unsaturated. In a second stage, the theoretical resulting gas mixture of 60% CH₄ and 40% O₂ was treated by a methane oxidizing *Methylocystis parvus* culture, with methane oxidation rates up to 603±9 mg CH₄ L⁻¹ liquid d⁻¹. By repeated N limitation, concentrations of 295±50 mg intracellular poly-hydroxy-butyrate g⁻¹ cell dry weight were achieved. Finally, a one-stage approach with controlled coculturing of both microbial groups resulted in harvestable bioflocs. This is the first time that a total microbial conversion of both greenhouse gases into biomass was achieved without external O₂ provision. Based on these results, a biotechnological approach is discussed whereby all kinds of biogas can be transformed into valuable bioproducts.
The current study has increased the knowledge on the behavior of methanotrophic microbiomes. While innovative molecular technologies will definitely result into an expansion of the knowledge on the ecology and physiology of MOB and methanotrophic communities in general, biotechnological obstacles seem harder to tackle. An effort was made to approach methanotrophic applications from a non-traditional angle, thereby creating novel CH₄ sinks, relying on the interactions between MOB and associated microorganisms. While these concepts were positively evaluated on a lab scale, future research should focus on a better understanding of the potential of these approaches. This should allow further evaluation of the feasibility to apply methanotrophic microbiomes as drivers for environmental biotechnology.
SAMENVATTING

Extracts in vials for HPLC analysis, LabMET
Samenvatting

Sinds de start van de industriële revolutie is de gemiddelde temperatuur op aarde significant gestegen, voornamelijk door de enorme toename in antropogene uitstoot van broeikasgassen. Terecht wordt veel aandacht besteed aan het verminderen van koolstofdioxide (CO₂) emissies. Hierbij mogen de methaan (CH₄) emissies echter niet uit het oog verloren worden. Dit gas is immers op gewichtsbasis een 25 maal sterker broeikasgas dan CO₂ en verantwoordelijk voor ongeveer 18% van de huidige wereldwijde opwarming. Een verlaging van de huidige CH₄ emissies met minstens 6% is noodzakelijk, teneinde de globale CH₄ balans terug in evenwicht te krijgen. Er bestaan fysico-chemische technologieën om CH₄ te behandelen, maar deze vergen een grote hoeveelheid energie. Een microbiëel alternatief is voorhanden in de vorm van methanotrofe micro-organismen, welke in staat zijn de stabiele CH₄-molecule te oxideren. Een methanotrofe subgroep bestaat uit de aerobe alfa- en gamma-proteobacteriële Methaan Oxiderende Bacteriën (MOB), welke het voornaamste onderwerp vormen van deze verhandeling. Deze MOB zijn in staat CH₄ als enige koolstof- en energiebron aan te wenden. Zij vormen de kern van methanotrofe microbiomen, i.e. gehele microbiële gemeenschappen die voor groei en activiteit direct of indirect afhangen van CH₄. In deze verhandeling werden twee belangrijke aspecten onderzocht die belangrijk zijn met het oog op milieubiotechnologische toepassingen. Het eerste aspect betreft de invloed van externe parameters op deactiviteit en structuur van methanotrofe gemeenschappen. Het tweede aspect betreft de interacties welke plaats vinden tussen de verschillende leden van zulke methanotrofe microbiomen.

Om deze onderzoeksvragen eenvoudiger te kunnen beantwoorden, werd in deze verhandeling vooreerst een extinctie-gebaseerde isolatieterietechniek ontwikkeld die toeliet de beschikbare methanotrofe diversiteit te vergroten. Binnen een microbiële kader verhoogt immers de kans op succesvolle applicaties aanzienlijk wanneer de specifieke noden voor een biotechnologische toepassing kunnen gelinkt worden met de karakteristieken van beschikbare micro-organismen. MOB zijn echter berucht voor hun
moeilijke isolatie en bewaring, wat ertoe geleid heeft dat de methanotrofe diversiteit slechts beperkt beschreven is. De ontwikkelde geminutiuriseerde techniek liet toe MOB met gewenste eigenschappen te isoleren en te screenen op biotechnologisch potentieel. Met behulp van deze nieuwe aanpak werden 22 snel groeiende MOB succesvol geïsoleerd uit verschillende omgevingen, hoewel simultane traditionele uitplatingen geen enkele isolaat opleverden. De toepasbaarheid werd eveneens bevestigd door de geslaagde isolatie van een diverse groep MOB uit een facultatieve lagune. Hierbij werden MOB species geïsoleerd behorende tot de drie beschreven types, i.e. type Ia, Ib en II, waarbij enkele stammen hoogstwaarschijnlijk behoren tot een nieuw genus. Hieruit kan besloten worden dat geminutiuriseerde extinctie-gebaseerde cultivatie een efficiënte en effectieve techniek is die een snelle isolatie toelaat van diverse MOB met gewenste karakteristieken.

Met het oog op milieubiotechnologische toepassingen, is het belangrijk de invloed van externe parameters op de methanotrofe microbiomen in kaart te brengen. Een potentiële niche voor methanotrofe microbiomen is de behandeling van opgelost CH4 in effluenten van anaerobe vergisters. Deze anaerobe effluenten vormen een onderschatte bron van broeikasgassen aangezien ze vaak (over)verzadigd zijn met CH4 en CO2. Semi-continu gevoede reactoren werden gebruikt als modelsystemen om zodoende de invloed te evalueren van beïnvloedende groefactoren op de activiteit en samenstelling van methanotrofe gemeenschappen. Zo leidde een verhoging van de Cu2+-concentratie tot de expressie van particulair methaan monooxygenase (pMMO), hetgeen resulteerde in een verhoging van de CH4 oxidatiesnelheid met een factor 1,5. Bovendien vertoonden deze gemeenschappen een verhoogde resistentie ten opzichte van zouttoedieningen. Daarnaast werd de invloed van verhoogde NH4+-N concentraties op de activiteit en samenstelling van methanotrofe gemeenschappen onderzocht. Methanotrofe gemeenschappen bleken een opmerkelijke resistentie te vertonen ten opzichte van een graduale NH4+-N verhoging. Dit was in tegenstelling met een plotse concentratieverhoging, waarbij een significant lagere methanotrofe activiteit werd waargenomen. Voor het eerst werd substantiële methaan oxidatieactiviteit vastgesteld bij concentraties tot 2500 mg NH4+-N L⁻¹. Het geheel van deze resultaten toont aan dat methanotrofe gemeenschappen
kunnen worden ingezet voor de behandeling van CH₄ verzadigde effluenten, zelfs wanneer verhoogde zout of NH₄⁺-N concentraties aanwezig zijn.

Hoewel MOB (vaak) de kern vormen van methanotrofe microbiomen, dient voldoende aandacht te worden besteed aan de aanwezige niet-methanotrofe leden. In alle geobserveerde methanotrofe gemeenschappen vormden heterotrofe bacteriën immers een belangrijke fractie, hoewel geen organische koolstofbronnen werden toegediend. Dit toont aan dat er een betekenisvolle interactie plaatsvindt tussen MOB en de geassocieerde heterotrofen. Bij testen waarbij een methanotrofe gemeenschap voor 30 dagen werd blootgesteld aan drie verschillende koperconcentraties, i.e. 0.1, 1.0 en 10 µM Cu²⁺, bleek de geassocieerde heterotrofe gemeenschappen continu verschuivingen te vertonen. Met de tijd bleken alle gevormde gemeenschappen echter naar een vergelijkbare samenstelling te evolueren, onafhankelijk van de koperconcentratie. Dit geeft aan dat MOB specifieke heterotrofen uitselecteren. Deze laatsten voeren mogelijk vitale processen uit, zoals de verwijdering van inhiberende intermediaire metabolieten.

Terzelfdertijd vindt er tussen de MOB en de geassocieerde micro-organismen een uitwisseling plaats van koolstof. Wanneer pure MOB culturen werden opgekweekt met CH₄ als enige koolstofbron, bevond 25% van het organisch materiaal zich in het groeimedium. Daarenboven kon met behulp van stable isotope probing technieken worden aangetoond dat na 96h tot 100% van de banden welke werden geobserveerd in DGGE profielen (op basis van het 16S rRNA gen) ook aanwezig waren in de ¹³C gelabelde gradiënt fracties. Deze resultaten tonen aan dat de geassocieerde gemeenschap snel ¹³C-metabolieten incorporeert, afkomstig van CH₄ oxidatie processen door MOB. Dit metabolisch netwerken liet eveneens toe een methylotrofe gist indirect op CH₄ te cultiveren in aanwezigheid van een actieve MOB cultuur. Hieruit valt te concluderen dat het metabolisch netwerken binnen methanotrofe microbiomen tot CH₄ afhankelijke voedselketens leidt met mogelijk een industrieel potentieel.

In de laatste hoofdstukken werd het methalgen concept ontwikkeld, i.e. de symbiotische interactie tussen MOB en autotrofe micro-algen. In eerste instantie werd aangetoond dat
Samenvatting

Tot slot werd een biotechnologische toepassing van methalgen gemeenschappen onder de loep genomen. Biogas (vaak een samenstelling van ongeveer 60% CH₄ en 40% CO₂), afkomstig van anaerobe vergisters wordt typisch omgezet naar elektriciteit. Als alternatief werd een nieuwe sink onderzocht, waarbij het biogas microbiëel wordt getransformeerd naar waardevolle biocomponenten. De productie van voederradditieven, i.e. lipiden en poly-hydroxy-butyrat (PHB), werd conceptueel geëvalueerd. In een eerste compartiment
werd het CO₂ uit een synthetisch biogas fotosynthetisch gefixeerd door een *Scenedesmus* sp. algencultuur aan een gemiddelde snelheid van 190±5 mg CH₄ l⁻¹ vloeistof d⁻¹, wat resulteerde in stijgende O₂ concentraties. Na een N gelimiteerde groeifase bleek bovendien meer dan 30% van de 220±7 mg lipiden g⁻¹ totale organische koolstof onverzadigd. In een tweede compartiment werd het theoretisch resulterende gasmengsel, bestaande uit 60% CH₄ en 40% O₂, behandeld door een methanotrofe *Methylocystis parvus* cultuur, welke resulteerde in CH₄ oxidatiesnelheden met waarden tot 603±9 mg CH₄ l⁻¹ vloeistof d⁻¹. Door herhaalde N gelimiteerde groei werden bovendien concentraties van 295±50 mg intracellulaire PHB g⁻¹ cel droog gewicht behaald. Parallel werd een aanpak geëvalueerd waarbij de MOB en de algen samen in eenzelfde compartiment werden gecultiveerd, hetgeen resulteerde in oogstbare biovlokken. Voor het eerst werd een totale microbiële omzetting bewerkstelligd van beide broeikasgassen naar biomassa zonder externe zuurstofvoorziening. Op basis van deze resultaten werd een biotechnologisch concept voorgesteld dat toelaat allerhande biogassen te transformeren in waardevolle biocomponenten.

De voorliggende studie heeft geleid tot een kennisuitbreiding wat betreft methanotrofe microbiomen. Innovatieve moleculaire technologieën zullen zonder twijfel leiden tot een verdere expansie van de kennis rond de ecologie en fysiologie van MOB en - meer algemeen - methanotrofe gemeenschappen. Daartegenover staan de noodzakelijke evoluties van technologisch aspecten, welke momenteel een grotere uitdaging vormen. In deze verhandeling werd getracht om methanotrofe toepassingen vanuit een nieuwe invalshoek te benaderen. Hierbij werden nieuwe CH₄ sinks voorgesteld, waarbij werd uitgegaan van het potentieel dat de interacties tussen MOB en geassocieerde microorganismen bezitten. Hoewel deze concepten positief werden geëvalueerd in laboratoriumomstandigheden, dient verder onderzoek zich te richten op een beter begrip van deze processen op grotere schaal, teneinde het ware potentieel van de voorgestelde concepten te bepalen. Dit moet toelaten de toepasbaarheid van methanotrofe microbiomen als drijvende kracht voor milieubiotechnologische toepassingen beter in te schatten.
CURRICULUM VITAE
Curriculum Vitae

Personal information

Name: David J. M. van der Ha
Date of birth: May 16, 1983
Place of birth: Sint-Niklaas, Belgium
Address: Hoogstraat 5, 9280 Lebbeke, Belgium
E-mail: David.vanderHa@Gmail.be

Education

2007-2012 Doctoral School of (Bioscience) Engineering
2004-2007 Master in Bioscience Engineering, option environmental technology, Faculty of Bioscience Engineering, Ghent University
 Master thesis: New forms of added value for the microbial fuel cell technology
 Promotor: Prof. dr. ir. Willy Verstraete
2001-2004 Bachelor in Bioscience Engineering, Faculty of Bioscience Engineering, Ghent University
1995-2001 High school, option Science and Mathematics, St. Lodewijkscollege, Lokeren, Belgium

Professional activities

2009-2012 PhD in Applied Biological Sciences (personal IWT grant SB-83259), Faculty of Bioscience Engineering, Ghent University
 Methanotrophic microbiomes as drivers for environmental biotechnology
 Promotors: Prof. dr. ir. Nico Boon and Prof. em. dr. ir. Willy Verstraete
2007-2012 Scientific collaborator at the Laboratory of Microbial Ecology and Technology
 - Tutor of 9 master thesis students, 2 bachelor projects and 1 internship
 - Teaching activities:
 - Practical exercises “Molecular-microbial techniques”
 - Calculations “Environmental Technology: biotech processes”
 - Calculations “Microbial re-use technology”
 - Calculations “Introduction to environmental microbiology”
 - Reviewer for Industrial & Engineering Chemistry Research
2007-2008 Scientific collaborator with Dehouse scholarship on the Industrial Research Funds project (IOF-Vlaanderen) ‘Valorization of the anti-microbial potential of Microsil, nanosilver produced with a probiotic matrix’
Professional training

Workshops and summer schools

2012 **Ghent Bio-based Economy summer school** - 07/08-10/08/2012, Ghent, Belgium – organized by Ghent University and the ‘Biotechnology for a sustainable economy’ consortium

2011 **Summer course in Environmental Biotechnology** - 10/06-23/06/2011, Lausanne, Switzerland – organized by the US-EU Working Group on Environmental Biotechnology, the University of Lausanne and the BACSIN consortium

2011 **Workshop for Young Water Professionals at the IWA Leading-Edge Conference** - 06/06/2011, Amsterdam, The Netherlands – organized by the International Water Association (IWA)

2011 **Workshop ‘Algae Harvesting and Processing for Value Added Applications’** - 26/05-27/05/2011, Brussels, Belgium – organized by the Algae Technology Platform

Specialized courses and skills

2012 **Seminar in transferable skills ‘Popular Scientific Writing’** – 18/06-20/06/2012, Ghent, Belgium – organized by the Doctoral School of Bioscience Engineering

2010 **Specialization course ‘Basic course Gas Chromatography’** – 29/04/2010, Ghent, Belgium – organized by Interscience Netherlands

2010 **Specialization course ‘Environmental Impact of Global Change’**, Ghent, Belgium – organized by the Doctoral School of Bioscience Engineering

2010 **Specialization course ‘Sociomicrobiology’** – 12/10/2009 - 28/02/2010, Ghent, Belgium – organized by the Doctoral School of Bioscience Engineering

2010 **Seminar in transferable skills ‘Teaching skills for assistants’** – 23/02-04/03/2010, Ghent, Belgium – organized by the Doctoral School of Bioscience Engineering

2009 **Seminar in transferable skills ‘Research Methodology’**, Ghent, Belgium – organized by the Doctoral School of Bioscience Engineering

2008 **Specialization course ‘Molecular-Microbial Techniques’**, Ghent, Belgium – organized by the Doctoral School of Bioscience Engineering

Scientific awards

First poster price at the 1th international symposium on MRM with “Sustainable carbon neutral methane oxidation in anaerobic effluents through a partnership of methanotrophs and microalgae”. Ghent, Belgium, June 30th – July 1th 2011.

EOS-award for most creative research presentation at the 16th PhD Symposium on Applied Biological Sciences with “Methalgae: the road to applications”. Ghent, Belgium, December 20th 2010.
Services and collaborations

International study leaves

2012
Research on the modeling of interactions between algae and methane oxidizing bacteria, in cooperation with the Department of Environmental Engineering, Technical University of Denmark (DTU), Lyngby, Denmark (08-09/2012)

2012
On-site research on co-cultures of algae and bacteria on wastewater treatment plants, in cooperation with the Institute for Environmental Biotechnology (EBRU), Rhodes University, Grahamstown, South Africa (01-04/2012)

Collaboration with industry

2011
Research on microbial assisted removal of methane in anaerobic wastewater treatment plants, in cooperation with Agristo NV, Harelbeke, Belgium

2008
Joint research on the influence of electrolysis on bacterial contaminants in drinking water, in cooperation with Ecodis NV, Schoten, Belgium

2007
Joint research on the valorization of the anti-microbial potential of Microsil, nanosilver produced with a probiotic matrix resulting in two patents, in cooperation with Avecom NV, Wondelgem, Belgium

Internal services

2010-2012
Representative of the scientific personnel, Faculty Bioscience Engineering, Ghent University in the ‘Doctoral Committee’ and ‘Faculty Board’

2011
Chairman of the ‘Board of Scientific Personnel’, Faculty Bioscience Engineering, Ghent University

2009-2012
Representative of the scientific personnel in the ‘Doctoral School Committee for Life Sciences’, Ghent University

Scientific contributions

International peer reviewed articles

CURRICULUM VITAE

VAN DER HA D., GORTEMAN D., HO A., HOEFMAN S., SCHNEIDER B., DE VOS P., BOON N. Selection and characterization of a methane oxidizing consortium resistant to high ammonium loads. Environmental Microbiology Reports (submitted)

HOEFMAN S., VAN DER HA D., BOON N., VANDAMME P., DE VOS P., HEYLEN K. Miniaturized medium screening enables rapid growth optimization of methane-oxidizing bacteria within the genus Methylomonas. (in preparation)

National peer-reviewed articles

National and International conferences

DANKWOORD

BAIE DANKIE – Merci – Danke – Obrigada – Thanks – Gracias – Euχαριστώ

GRAZIE – Tak skal du have – ከወንጀት – Ako – Enkosi – Terima kashi
Dankwoord

‘Waardering van de vrijwilliger’, het is een Kazouiaans begrip, verwijzend naar het feit dat je een helpende hand op gepaste wijze moet waarderen én bedanken. Al schat ik de waarde van woorden niet te hoog in, er werd geen letter teveel neergepnd in wat hierna volgt, integendeel.

Wie het al voldoende lang met me uithoudt weet dat een doctoraat nooit tot de plannen behoorde. Dat het toch zover kwam, is voor een heel groot deel te danken aan mijn thesistorantje tussen de MFC’s (van BES zal ik nooit een fan worden). De invloed van een thesistor mag dan wel veel te vaak onderschat worden, ik weet wat ‘de mijne’ heeft betekend. Peter, ter aanvulling van het dankwoord van ondertussen 6 jaar geleden wil ik je bijkomend bedanken voor het hart onder de riem op die duistere dag des thesisooreels, het toevallig gesprekje tussen fatboy en slimboy dat me mee overtuigd heeft om de hele PhD-ervaring dan toch maar een tweede kans te geven, maar bovenal om een goed tutorsprofiel voor me uit te tekenen. (Uiteraard ook enorm bedankt dat ik je mooie doctoraatsjabloon mocht overnemen, zie het als een hulde…).

Nooit was ik een doctoraat begonnen zonder de hulp van mijn microbiële legertjes. Dat had voor elen groot stuk te maken met de lessen en het thesisspromotorschap van Prof. Verstraete. Willy, thank you for giving me the opportunity to enter the microbial playground and the possibility to do - initially for a short while - research in LabMET. Nico, over the years, I have been jumping like a bouncing ball from one topic to another. Thanks for your faith in me and for realizing that the engaged rockets eventually would find their target. Moreover, it has always been a pleasure to have those ad-hoc brainstorm, sometimes resulting in 1 + 1 being 3.

Ik had de luxe om vòòr mijn ‘echt’ doctoraat, te mogen opwarmen op allerhande topics. Het grootste deel van die hectische periode ging op aan nanosilver (en zowat de halve tabel van Mendeljev). Het waren niet altijd de beoogde lessen, maar desalniettemin was het een zeer leerrijk jaar in een volledig nieuwe biotoop, letterlijk en figuurlijk. Wim, bedankt voor de opportuniteiten. Jan, bedankt voor de relativerende babbeltjes, de broodnodige humor, handige tips and tricks en het overdragen van de beste stek in het moleculair labo. Liesje, aan jou heb ik de nodige leercurve in semi-moleculair werk te danken. Plaatjes gieten, pipetten gebruiken zonder blaren te krijgen, groecurves opstellen, noem het maar op, het is later een groot voordeel gebleken.

Maar uiteindelijk nam de heimwee naar microbiële gemeenschappen de bovenhand. Dank aan het IWT (en dus ook aan u, liefste belastingbetaler) om me vier jaar lang op professionele wijze te ondersteunen. Starten op een nieuw onderwerp in het labo is geen
Dankwoord

lachertje en wordt onvoorstelbaar onderschat. Het is dan ook niet verwonderlijk dat we de hulp van meerdere mensen nodig hadden om te staan waar we nu staan. Professor Boeckx, het was voor ons allen altijd een plezier om de oase van gastvrijheid in uw labo te mogen opzoeken. Samuel, Dries, Katja en Jan, dank voor alle hulp, tips, babbels, zangstondes en de bereidwilligheid om jullie noodzakelijke gas-kennis op te laten zuigen.

In mijn doctoraatsonderzoek is de inbreng van het Labo voor Microbiologie (aka ‘De Ledeganck’ in mijn dagelijks jargon) niet te onderschatten. Prof. De Vos, ook in uw labo voelde ik me steeds als een zeer welkome gast. Het was een waar plezier om samen met jullie aan het GOAP-verhaal te hebben mogen bouwen. Dank voor de vlotte samenwerking en de hulp bij het denk- en schrijfwerk.

Sven, we zijn samen begonnen aan een onbekend avontuur. Het was en is een ongelooflijke steun om iemand te hebben die het bloed, zweet en tranen heeft gedeeld en weet van het bestaan van het vele ‘niet-neergeschreve’. Ik weet niet goed waar juist te beginnen, maar ik wil je alleszins bedanken voor alle hulp bij het uitdenken, uitvoeren, verwerken en neerschrijven van het onderzoek. Evenzeer voor het onvoorstelbare professionalisme waar ik heel veel van opgestoken heb. Niet alleen het gestructureerd werken à la de ‘Sventabel’, maar ook de doordachte opzetten, ingenieuze testen en perfecte communicatie hebben mij vaak eerbiedig het hoofd doen buigen. En ik beloof, vanaf nu hou ik ‘than’ and ‘then’ uit elkaar; dat bespaart je direct de helft verbeterwerk. Meer nog wil ik je bedanken als persoon. Dat eerste toogklapke buiten het labo moeten we dringend regelen, maar alleszins bedankt om dienst te doen als relativerend klankbord en me er telkens aan te herinneren dat het hele doctoraatsgebeuren in the end om die ene vraag draait: “… maar heb je er veel uit geleerd?”. Kim, ook jou ben ik een grote dankjewel verschuldigd om verscheidene redenen. In de eerste plaats om me van tijd tot tijd scherp te houden, om me op sleeptouw te nemen in het academisch wereldje, voor het vertrouwen en de wijze woorden wanneer ze nodig waren.

Eveneens mijn grote dank aan de thesisstudenten waarmee ik het genoegen had om samen te werken. Eerst en vooral aan de bachelorstudenten die ik heb mogen begeleiden. Uit niets haalde ik meer voldoening en het waren bovendien zeer leuke en leerrijke samenwerkingen. Gwynet & Inka, bedankt voor het vertrouwen om me daarna als thesisstudent bij te staan in het MOB-onderzoek (en voor veel meer!). Ook Marie, Vicky, Bert, Zuwarat, Devi, Dorien en Leen wil ik bedanken voor de steentjes die werden bijgedragen aan dit eindwerk. Jullie hebben zowat allemaal samen met mij door eenzelfde moeras moeten ploeteren en het was dan ook niet verwonderlijk dat jullie er op het einde van de rit vaak zowat even afgepeigerd uitzagen als ik nu. Ik hoop echt dat jullie nu het gevoel hebben dat het een leerrijke periode was en jullie jullie ding hebben mogen en kunnen doen. Daarnaast dien en wil ik eveneens Lieve, Assaye, Bart en Niels bedanken voor de intensieve samenwerking.
The opportunity of working and living for a couple of months in South-Africa (EBRU) and Denmark (DTU) was priceless. Although both environments were complete opposites in so many ways, they had three things in common: unforeseen logistic issues, a certain tranquility and enormous hospitality. Prof. Cowan and Smets, thanks for allowing me to be truly a part of your respective research teams. Both my stays really made an enormous impression on me. The colleagues and friends I have met also deserve a big thanks: Richard, Michelle, Gila, David and the whole technical staff of EBRU for their support and trust. Also thanks to all my colleagues for the nice moments around the pond; Lerato, Lwazi and Bonga for one. I still hope that one day I can pass by and we can meet again, but in a bit more relaxed setting ;). Kopenhagener, you are being missed. Thanks for the warm welcome! Uli, a very special thanks for you. Kind of a chip of the same block; thanks for babysitting me, for showing me around, helping me out and for having damn good fun! Lastly, a huge ‘miss you guys’ for the incredible Lausanne summer school gang. It were unforgettable days and nights at the lake, which I never thought I would experience again.

Er zijn nog vele andere onderzoeksgroepen die ik dien te bedanken, maar vergeef me dat ik het wat korter houd. In de eerste plaats wil ik de algenvrienden bedanken. Sofie (en bij uitbreiding HOWEST), je bent de goedheid zelve en stond altijd paraat om bijstand te verlenen. Annick (en bij uitbreiding de vakgroep Protistology & Aquatic Ecology), bedankt voor de leuke samenwerking, de algenpromomomenten en de geboden hulp van jullie groep. Daarnaast ook de labo’s van Prof. Bossier, Steppe, Fievez, Du Laing, Höffte, Smagghe, Nopens en Verliefde die zonder enig probleem bepaalde apparatuur ter beschikking stelden. Ik wil ook de industriële hulplijnen bedanken. Ik neem graag Marc De Smet van Interscience als pars pro toto voor alle vertegenwoordigers die hun best doen om hun klanten zo goed mogelijk bij te staan.

Ik mag ook niet vergeten om alle collega’s te bedanken uit de verschillende academische raden waar ik me heb mogen amuseren. Wanneer geëngageerde mensen elkaar vinden is er toch wel wat mogelijk, al is het resultaat vaak slecht of veel later zichtbaar. Dank aan allen, in de eerste plaats Jan, Stijn, Jana, Nick en de collega’s van de doctoraatscommissie.

Also my deepest appreciation for the jury members, who really took the time to read my thesis thoroughly and were very supportive (of course, when writing this, I did not know how though the questions are...). Thanks for your invested time and energy.

<< Halfweg en ik heb mijn vooropgesteld pagina-aantal bereikt. >>

Toen ik vier jaar geleden nietsvermoedend de trap naar ‘t tweede’ werd opgestuurd bleek mijn komst een ware volksverhuizing teweeg te brengen. Ineens had ik een allegaartje van redelijk onbekende collega’s rondom mij. Six completely different characters put together on an island; it is a guarantee for some memorable moments. It were though but interesting times for all of us, and I for one am very happy I could share them with you.
Dankwoord

Thanks for all the laughters and serious stuff, and for trying to make our biotope a better place. Liesje, het kloppend hart van ‘den buro’, bedankt om regelmatig een extra geut warmte door het leven te blazen. Pieter, als geen ander kon jij sluipend vergif neutraliseren met al die, tsja, Pieterheid. Tot het laatste moment heb ik dat enorm gemist. Varvara, people that can take almost any shot and fire a torpedo back are rare, and I am thankful you were around for that. I wish you the best with finishing that damn thing!! Yu, my little ping pong ball going from completely wakawaka to a serious talk about the meaning of life to hardcore science, ending up with a stupid comment on my clothes, all in 10 minutes, it was the best relaxation therapy ever. I had a great time with the grown up talks in Copenhagen too, so I for one would like to have you soon back in Europe. Joan, ondanks dat ik na vier jaar extensieve training tussen vijf vrouwen toch een aanvaardbaar niveau aan complimenteren denk te hebben behaald, is dat bij jou nooit een groot succes gebleken;) Ik hou het dan ook eenvoudig, ondubbelzinnig en gemeend: BEDANKT.

Daarnaast wil ik uiteraard ook mijn collega’s van goede wil niet vergeten. Tim, kgage missen vent. Bedankt om altijd paraat te zijn voor last-minute GOA requests, om mij moleculaire technieken bij te brengen, voor alle hulp aan ons MOB-team, dat ik mocht zingen en West-Vlaams mocht proberen (nadruk) klappen in tblotjes, voor een jaarlijkse co-management en voor alle after-hour momenten. Robin, voor ons werkmieren was jouw komst een immens verschil; bedankt voor de hulp bij de reactortoestanden! Aan de bereidwillige ATP’ers: merci om bij te springen waar nodig. Carlos, thanks for all the advice on the algae and for maintaining them. Gio, Adrian, FM, Bram, thanks for the assistance and good luck. Aan de buro beneden, dank om me even op te vangen, het was me een eer.

Karen - wie beter om dit paragraafje af te sluiten - bedankt voor alle leuke momenten.

Naast de (semi-)professionele ondersteuning, was de after-hours ondersteuning even of zelf meer onontbeerlijk om toch even de dagelijkse zorgen in de koelkast te kunnen zetten. In de eerste plaats dank je wel aan de Kazou-collega’s en vrienden, zeker mijn kampgenoten, mede C-teamers en ADO-vriendjes. Ook zij die andere gevolgde cursusjes, opleidingen en bezigheden hebben opgefleurd, wil ik hier niet vergeten.

Dit doctoraat was er nooit gekomen zonder de massale mentale ondersteuning van vrienden en familie. Er zijn er wel een paar die weten hoe ‘de beslissing’ vaak een dubbeltje op zijn kant was, en mede dankzij jullie uiteindelijk op deze zijde is gevallen.

B., our last chapter was not how it was planned, but I am very grateful that you were my backbone for an extensive part of the past period. Thanks for all the selfless support and help.

Ik heb over de jaren met heel wat vrienden onder een dak gewoond. Zij hebben de nodige lading frustraties over zich gekregen, en ik wil hen enorm bedanken voor de volharding.

Rik, David, Thomas, de vele café-uren waren niet alleen nuttig om de nodige inspiratie op te doen, maar lieten tegelijk toe de stress te laten verdampen, toogfilosofie te
Dankwoord

verkondigen en de waarde van een doctor te blijven kaderen. Daarbij vergeet ik uiteraard niet al die ettelijke zalige momentjes waarop we volgende week nog eens kunnen terugkijken. Renske, bedankt om enerzijds telkens een rustpuntje te zijn en anderzijds me meer dan één keer mee te trekken, de wijde wereld in. Je bent tevens niet alleen een super-skipartner, maar je hebt me ook heel leuke mensen doen ontmoeten. Jullie doen vriendschap soms verbazingwekkend eenvoudig lijken... Met dank aan jullie goede smaak in vrienden en geliefden is onze gekleurde weekendjes-bende over de jaren gevormd. De uitstapjes, weekendjes en etentjes; het zijn altijd momenten om enorm naar uit te kijken.

Dieter, ik heb het serieus gevoeld toen jij niet meer dagelijks in mijn buurt was om van gedachten te wisselen, het verhaal van de dag te vertellen of gewoonweg iets leuk te doen. Komen jullie snel terug wat dichter?! ;)

Annelies, you always had my back. Bedankt om mij de way of life wat beter te leren begrijpen, de toffe avondjes in ’t dorp, het vertrouwen en luisterend oor voor wat dan ook.

Goedele, je hebt de onschatbare gave om vaste grond onder mijn voetjes te stecken en me tegelijkertijd uit mijn winterslaapjes te halen. 15 down, 51 to go.

Er zijn uiteraard nog veel meer mensen die ik dien te bedanken (en velen dringend moet weerzien). Truyen, Jasper, Nele, Marijke, Machteld, Adiari, Sue, Pieter, Chris, Jacoba, Geert en Erika (om er maar al enkele te noemen), gaande van een bepalend moment tot jarenlange vriendschap: enorm bedankt.

Een mens heeft twee benen nodig om op te lopen, naast vrienden is er dan ook familie om te bedanken. Mam, bijna dag op dag 12 jaar geleden besloot een onbeduidend virusje mijn onbezorgd leven overhoop te gooien. De verwezenlijking vandaag is niet om een nieuw diploma op te halen, maar hier überhaupt nog te staan. Als het niet was voor de onvoorwaardelijke steun op alle vlakken zag het plaatje er ongetwijfeld anders uit. Ik mag dan altijd kwaad lijken als er ineens allerlei zaken zoals eten uit de lucht vallen, weet dat ik het altijd zeer appricieer. Frans, het is altijd een plezier om naar Lebbeke af te zakken, dank dat je dat mogelijk maakt. Cat, Michaelis, thanks for being always welcome under the friendly Southern sun. Thanks for the times-off, the nice trips, the interesting talks and most of all, those amazing kids. Oli, regelmatig eens met de van der Haatjes er van onder muizen blijft een schitterende onthaastingsmethode. Oja, nu heb ik eindelijk tijd om dat huis van u wat te helpen opknappen, als ik thuis ben tenminste ;).

Tot slot draag ik dit werkje op aan zij die tegen beter in blijven roeien tegen de stroom in, in een poging de verdwaasde meerderheid mee te krijgen. Helaas én godzijdank zijn er teveel om op te noemen. Ik heb het onvoorstelbare geluk gehad deze zwarte zwanen regelmatig tegen te komen. Als ik één wens heb is het dat dát nooit verandert.

D.avid

Berlin, February 14th, 2013