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Abstract

This article contains a proof of the MDS conjecture fox 2p — 2. That is, that
if S is a set of vectors dF’(j in which every subset of of sizek is a basis, where
q = p", pis prime andy is not andk < 2p — 2, then|S| < ¢ + 1. It also contains a
short proof of the same fact fér < p, for all q.

1 Introduction

Let S be a set of vectors dﬂ”; in which every subset of sizeis a basis.
In 1952, Bush [2] showed that if > ¢ then|S| < k£ + 1 and the bound is attained if
and only if S is equivalentto{ey, ..., ex,e1 + ...+ er}, where{ey, .. ., e} is a basis.
The main conjecture for maximum distance separable cotdesMDS conjecture),
proposed (as a question) by Segre [9] in 1955 is the following

CONJECTUREL.1. A setS of vectors of the vector spa@’%, with the property that every
subset ofS of sizek < ¢ is a basis, has size at magt+ 1, unless; is even andc = 3 or
k = q — 1, in which case it has size at mast- 2.

In this article we shall prove the conjecture for all< 2p — 2, whereq = p", pis
prime andy is not prime.

We shall also prove the conjecture fpprime, which was first proven in [1]. It may
help the reader to look at the first four sections of [1], althiothis article is self-contained
(with the exception of the proof of Lemma 2.1) and can be reddpendently. The proof
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here is based on the ideas of [1] which themselves are basttkonitial idea of Segre
in [8].

For a complete list of when the conjecture is known to holdgfoon-prime, see [4]
and also [5].

The best known bounds, up to first-order of magnitudeafe constants), are that
for ¢ an odd non-square, the conjecture holdsiot ,/pq/4 + ci1p, Voloch [11]. For
q = p*", wherep > 5 is a prime, the conjecture holds fér< V/4/2 + c2, Hirschfeld
and Korchmaros [3], and here we shall prove the conjecturk K 2,/q + c; in the case
q = p?. The conjecture is known to hold for all< 27 and for allk < 5 andk = 6 with
some exceptions.

Conjecture 1.1 has implications for various problems in bmratorics, most notably
for maximum distance separable codes (whence the name)doding theory and the
uniform matroid from matroid theory.

A linear maximum distance separable cade linear code of length, dimensionk
and minimum distancé overF,, for whichd = n — k£ 4 1. Conjecture 1.1 implies that a
linear maximum distance separable code has lengthmost; + 1 unlessg is even and
k =3 ork = q— 1, inwhich case it has length at mast- 2. For more details on codes
and MDS codes in particular, see [6].

A matroid M = (E, F) is a pair in whichE is a set and” is a set of subsets df,
calledindependent setsuch that (1) every subset of an independent set is an indepe
subset; and (2) for alA C FE, all maximal independent subsets 4fhave the same
cardinality, called theank of A and denoted(A). The maximal independent sets of the
uniform matroidof rankr are all ther element subsets of the gét Conjecture 1.1 implies
that the uniform matroid of rank, with | E| > r + 2, is representable ovét, if and only
if |E| < ¢+ 1,unlesy is even and = 3 orr = ¢ — 1, in which case it is if and only if
|E| < q + 2. For more details on matroids and representations of nutioiparticular,
see [7].

2 Thetangent function and the Segre product

For any subseY” of & — 2 elements of5, since there are at mokt— 1 vectors ofS in a
hyperplane, there are exactly

t=q+1—-(|S|—k+2)=q+k—-1—-|5|

hyperplanes containing and no other vector of.
We shall assume throughout that 1, which is no restriction since we are trying to
prove|S| < ¢+ 1fork > 4.



Let ¢y be a set of linearly independent linear maps frdFQ to IF, with the property
that for eache € ¢y, Ker(a) is one of thet hyperplanes containing” and no other
vector of S.

Thetangent function at” is defined (up to scalar factor) as

Ty(x) = ] al),
acdy
and is a map fron¥! to F,.
The following is a coordinate-free version of Segre’s lenwh#&angents [10] and is
from [1].

LEMMA 2.1. Let D be a set ok — 3 elements of. Forall z,y,2 € S\ D

Tiwyon W) Tion(2)Tizyop (@) = (—1) " Tayun (2) Tyon () Tiyun (v)-

Since we wish to writelet(A) where A = {a,,...,a;} is a subset of5, to mean
the determinantlet(ay,...,ax), we order the elements &f from now on. We write
det(A4,..., A,) to mean the determinant in which the elementsipfcome first, then
the elements ofl,, etc.

The following, which follows from interpolating the tangduanction, is also from [1].

LEMMA 2.2, If |S| > k+t > k then for anyY” of sizek — 2 and E of sizet + 2, disjoint
subsets of,
0= ZTy(a) H det(z,a,Y) "
ackE z€FE\{a}
Let A = (aq,...,a,) @andB = (by,...,b,_1) be two subsequences 6fof the same
lengthn and letD be a subset of \ (A U B) of sizek —n — 1.
We define theésegre product ofi and B with baseD to be

n

TDU{ar, @i bisersbr_1} (@)
P A,B: 150009 @i—1,045...,0n—1
D ) }1 TDuar i1 bisesbn1} (bi-1)

andPp(0,0) = 1.
The following lemmas are a consequence of Lemma 2.1.

LEMMA 2.3.
Pp(A*,B) = (=1)""'Pp(A, B),

where the sequencé” is obtained fromA by interchanging two elements.

Proof. It is enough to prove the lemma for two adjacent elementd gince the trans-
position (7 ¢) can be written as the product 8f¢ — j) + 1 transpositions of the form
(nn+1).



The only terms in the Segre product which differ when we ttiange:; anda;; are
the terms in the product far= 5 andi = j + 1. Trivially

TDU{aly---yajflybjybj+1 ----- bn—l}(aj) TDU{a1,~~~,aj71,aj7bj+1 ~~~~~ bn—1}<aj+1>

TDU{Gla---yaj—lvijbj-kl ----- bnfl}(bjfl) TDU{al,---ﬂ,;'—l7aj,bj+1 ----- bn71}(bj>

is equal to
TAU{bj}(aj) TAU{aj}(ajH)
Tavip;y(bj-1) Tavga;3(b)
whereA = DU {ay,...,aj-1,bj4+1,...,b,—1}, Which is equal to
(_1)t+1 TAU{bj}<aj+1) TAU{%H}(CLJ)
Taugs;3(bj-1) Tavga 13 (05)
by Lemma 2.1. O

In the same way the following lemma also holds.

LEMMA 2.4,
Pp(A, B¥) = (—=1)""'Pp(A, B),

where the sequendg* is obtained fromB by interchanging two elements.
The following lemma will also be needed.
LEMMA 2.5. If A and B are subsequences Sfand|A| = |B| — 1 then

Tpus(Y)
Tpus(z)

Proof. Using the definition of the Segre product and Lemma 2.1,

PDU{Z/}({:C} U A, B) = <_1)t+1PDU{$}({y} UA, B)

Tous(y)
Tpus(z)

T T
PDu{y}({SU} UA,B) = pus(Y) DU{b1,....bn—1,y} (x)

a Ppugen (A, B\ {b
TDUB(:C) TDU{bl,...,bn_l,y}(bo) DU ’y}( \ { 0})

t+1 TDU{bl,...,bn_l,x} (y)
TDU{b1 ,...,bn_l,fl'} (bO)

=(-1) Ppugayy (A, B\ {bo}) = (=1)"" Ppugy({y} U A, B).

O

3 Themain lemma

For any subseB of an ordered set, leto(B, L) be(t + 1) times the number of transpo-
sitions needed to order so that the elements @f are the las{B| elements.



LEMMA 3.1. Let A of sizen, L of sizer, D of sizek — 1 — r and) of sizet + 1 — n be
pairwise disjoint subsequences®flf n <r < n+p—1andr <t + 2, whereqg = p”,
then

> (1) BB Py (A, B) [ det(z, A, L\B,D)™ =

|B|§L 2€QUB

B|=n

(_1)(rfn)(nt+n+l) Z Pp(AUA, L) H det(z,A,A,D)*l_
m?QQ 2€(Q\A)UL

Proof. By induction onr. The case = n is straightforward.
Fix anz € L and apply the inductive step 10\ {z} and{z} U D,

> (=1 BRED Py (A B) ] det(z, A, L\ (BU{x}),2, D) =

BCL\{z} 2€QUB
|Bl=n

(D) N Py (AUA LN {z}) [  det(z, A, Az, D)

ACQO z€(Q\A)UL
|Al=r—n—1

Let A be a subset d of sizer—n—1. The sef2\ A has sizé+1—n—(r—n—1) = t+2—r
and so since < ¢t+2we can apply Lemma 2.2, with = LU(Q2\A) andY = DUAUA,
and get

0= ZTpuAuA(x) H det(z, A, A, z, D)

zel 2E(@\A)U(L\{})
+ Z TDUAUA(y) H det(z,A,A,y,D)_l.
yeQ\A ze(Q\({y}UA))UL

Multiply this equation byPp (AUAUd, L)Tp,aua(d) ™! for somed for whichTpaua (d) #
0. By Lemma 2.4 we can rearrangeso that the last element:is which changes the sign
by o(x, L). This gives

0="> (-1)"“BPp(AUA, L\ {z}) 11 det(z, A, A, z, D)~ '+

zel z€(N\A)U(L\{=z})

> Pp(AUAU{y} L) 11 det(z, A, A, y, D)7},

ye\A ze(@\(Au{y}))uL

since
Pp(AUA U {d}, L)Tpuaua(z)Tpuava(d) ™ = Poua(AUA, L\ z)
and by Lemma 2.5 (and Lemma 2.3)



Note that in the second term we can order {y} in any way we please without changing
the sign since, by Lemma 2.3, interchanging two elements 0f{y} in
Pp(AU A U {y}, L) changes the sign biy-1)"*!, exactly the same change occurs when
we interchange the same vectors in the product of deterrtsinan

Therefore, when we sum this equation over subdeté 2 of sizer —n — 1 and apply
the induction hypothesis, we get

_ Z(_1)0(3&,L)+(r—n—1)(nt+n+1) Z (_1><7(B,L\{ac})PDU(L\B)(A7 B)

z€L BCL\{z}
|B|l=n

[T det(z A L\ (BU{a}),z, D)""+

z€QUB

(r—n) Y Pp(AUAL) [ det(z,4,A D)".

ACQ z€(Q\A)UL
|Al=r—n

Since
o(B,L)=o0(x,L)+o(B,L\{z}) +o(z,L\ (BU{x}))+n(t+1),
this equation gives

(D)=t — ) Y (=1)7 PP Py sy (A, B) [ det(z, A, L\ B, D)™ =

lgch z€QUB
=n

(r—n) Y Pp(AUAL) [ det(z,4,A D),

ACQ z€(Q\A)UL
|Al=r—n

which is what we wanted to prove. O
THEOREM 3.2. If k£ < pthen|S| < ¢+ 1.

Proof. If |S| = ¢ + 2 thent = k — 3. If ¢ is prime then, by [1, Lemma 5.1], we may
dualise inF¢*2, if necessary, to assume thak (¢ + 1)/2 and sok +t < g + 2.
Sincek +t < g+ 2 we can apply Lemma 3.1 with=¢+ 2 = k — 1 andn = 0 and
get
H det(z,L)"' =0,

z€Q

which is a contradiction. O



4 Thecase|S| =g+ 2and gisnon-prime.

For any subsequenceé = {z;,...,z,,} of Sandr C {1,2,...,m}, define the subse-
quenceX, = {x; |i € T}.

LEMMA 4.1. Suppose thatS| = ¢ + 2 andn > k — p. Let A of sizen — m, L of size
k—1—m,Q of sizek — 2 —n, X of sizem, Y of sizem be disjoint subsequences®f
Then

Z Z U(B L)+o(X-, )JF‘T'P(L\B)UXM\ (A U YT7 BUX )

BCL 1CM
|B|l=n—m

X H det(Z,A,X]\/I\TayTaL\B)_l

2€EQUBUXUY )\~

whereM = {1,...,m}.

Proof. By induction onm. Form = 0 this is Lemma 3.1 withr = ¢ + 2 = k — 1, which
gives the bouna. > k& — p.

Suppose thak andY have sizen and thatz,y € S are not contained iX, Y, L or
A. We wish to prove the equation fof U {z}, Y U{y}, L andA, where|L| = k—2—m
and|A| =n—m — 1.

Apply the inductive step t¢y} U L, AU {z}, X andY.

Writing the first sum as two sums depending on whefheontainsy or not, we have

Z Z 1)7BR+e P pyuoxan, (AU{z} U Y, BU X,

BCL 71CM
|B|=n—m

X 11 det(z, A, z, Xppnr, Yo, y, L\ B)™

ZEQUBUXTUYJ\/I\T
n Z Z o({y}UB,{y}UL)+0 (X, X)+\T|P(L\B)UXM\T(AU{:£}UYT, {y}UBUX,)
BCL  1CM
|B|:n—m—1
X H det(z, A, z, Xopr, Yo, L\ B) ™
2€QUBUXUY - U{y}

By Lemma 2.3, then Lemma 2.5 and then Lemma 2.3 again, we have

Trux (y)

Ty () B0 (AU {2} VY BUX,) =

m T
(_1)(n +1)(t+1)MP(L\B)u{y}uXM\T({x} UAUY,, BUX,) =
Ilux(ﬁ)

(=)D Py pyugeyuxan, (¥} UAUY:, BUX,)



= (=)™ P syuguxy, (AU{y} U Y, BUX,),
and by Lemma 2.3 and the definition of the Segre product

Trux(y)

Tyox(r) L B (AU UV fy UBUX) =

n—m Trux(y
(—1)! “)(Hl)ﬁSTXEx;P(L\B)uXM\T({ﬂ?} UAUY, {y}UBUX;) =

(_1)(nfm+1)(t+1)P(L\B)UXM\TU{J;} (AUY,, BUX,).

Thus, multiplying the equation before By, x (y)Trux (z)~! and noting that

oc{y}UB,{y}UL)=0(B,L)+ (k—n—1)(t+1),

we have
Z Z oB LI P Byutayuxon, (AU {y} U Y., BU X,)
BCL 1CM
\B\:nfm
X H det(Z,A,xgxM\T7YT7y7L\B)il
ZGQUBUXTUY]\/[\T
n Z Z o(B,L)+0(Xr X)+|7|+(k—m—1)(t+1 )P(L\B)UXM\TU{QC}(A UY,, BUX),)
BCL TCM
\B\:n—m—l
X H det(z,A,LXM\nYraL\B)_l
ZEQUBUXTUY]\J\TU{ZJ}

Applying the inductive step t§z} U L, AU {y}, X andY and writing the sum as two
sums depending on whethB8rcontainsr or not, gives an equation similar to the above.
The first sum in both equations vary only in the positioncandy in the determinants.
Switching these in the above, multiplying by 1), and equating the two second sums
gives,

D D (S CE XHIHEEED Py gy ey (AU Y, BU XG)

BCL TCM
|B|l=n—m—1

X H det(Z,A,x,XM\’raY:HL\B)_l

2€QUBUXUY - U{y}

_ Z Z (_1)0(B,L)+0(XT,X)+|T\+(kfn71)(t+1)P(L\B)UXM\T (AU{y}UYT, {ZL’}UBUXT)

X 11 det(z, A, y, Xans, Yo, L\ B) ™!

ZEQUBUXT UY]\/[\.,—U{{L'}



Note that on the right-hand side of the equality we use
oc{z}UB,{z}UL)=0(B,L)+ (k—n—1)(t+1)

Rearranging the order of the vectors in the Segre produtieafight-hand side (applying
Lemma 2.3 and Lemma 2.4) and the vectors in the determinasgs g

> D (=B RTETEI P Oy gy oy (AU Y, BUX)
BCL TCM
|B|:n—m—1
X H det(z,A,XM\T7x7YT7L\B>71
zGQUBUXTUY]u\TU{y}
_ Z Z o(B,L)+0(Xr, X)+|7 \p(L\B)UXM\T (AUY, U{y}, BUX, U{z})
BCL TCM
\B\:nfmfl
X H det(Z,A,XM\T7YT7y7L\B)_1
ZEQUBUXTUY]\/[\TU{‘T}

Finally, note that
o((X U{z})r, X U{z}) = 7|t + 1) + o(X:, X)

and that
(X U{z})rumen, X U {z}) = o(X,, X),

from which we deduce that

o(B,L)+o (X7 X F)+|7] - +
Z Z P(L\B)UXIH\T(AUYT ,BUXT)
BCL  1CM
|Bl=n—m—1
x 1T det(z, A, Xjpu, Y, L\ B)™!
zeQUBUX+UY]C;+\
o(B,L)+0o X+ XH)+H|T
- Z Z +o( )+ IP(L\B)UXL+\T+ (AUY L, BUXY)
BCL  tCM
|B|l=n—m—1
X H det(z, A XAJZ+\ LYL L\ B
zEQUBUX+ UYM+\ N

whereXt = X U{z}, YT =Y U{y}, 7" =7U{m+ 1} andM* = M U {m + 1},
which is what we wanted to prove. O
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5 Themain theorem

The following follows from Laplace’s formula for determimizs.

LEMMA 5.1. Suppose thdf’UL is a basis off* and| X | = nandW = {wy.ws, ..., wn41}.
Then

n+1
> (=1) " det(y, W\ wy, L) det(w;, X, L) = det(W, L) det(y, X, L).

j=1
THEOREM5.2. If ¢ is non-prime and: < 2p — 2 then|S| < ¢ + 1.

Proof. By Theorem 3.2, we can restrict ourselves to the cases + 1.
SupposéS| = ¢ + 2 and apply Lemma 4.1 with = m = k — p. Then

0= > (-D)HOP i, LX) [ det(z, Xans, Yo, L)
7C{1,..n} 2EQUX-UY ) »
where|L| =p—1,Q=p—2and|M| =k —p.
Let W = {wy,ws,...,ws,} be a subsequence dfdisjoint fromL U X UY U F,
whereF is a subset of? of sizep — 2 —n = 2p — k — 2. DefinelV; = {wy, wo, ..., w;}.
We shall prove the following by induction on< n,

0= > (=) COP (Ve Xo) [ ] det(Wnga—is Xans, Y, L)

T7C{1,..n} i1
11 det(z, Xpn\r, Yr, L)L,
ZEEUXTUYA4\TUWn+T
Forr = 0 this is the above witkl = EUWV,,. Applying the inductive step withV/,,.,_; =
Wiin \ {w;}, wherej € {r,r +1,..., 7+ n}, we have

r—1

0= Z (—1)lrHo X pLUxM\T(YT,XT)Hdet(ynﬂ,l-,XM\T,YT, L)

T7C{1,..n} =1
det(w;, Xanr, Yr, L) 11 det (2, Xapr, Yy, L) 70
ZEEUXTUYAI\TUWn+7-
Multiplying by (—1)’~* det(y+1-r, Wair \ (W,—1U{w;}), L), summing ovey € {r,r+
1,...,r +n} and applying Lemma 5.1 proves the induction.

Forr = n every term in the sum is zero apart from the term correspagntdin = 0,
which gives
0= Hdet(ynﬂ,l-,X, L) H det(z, X, L)},
=1 zeEUYUWo,

which is a contradiction. O
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COROLLARY 5.3. If ¢ is non-prime and; — 2p + 4 < k < g then|S| < ¢ + 1.

Proof. Suppose thdtS| = ¢+2. Then by [1, Lemma 5.1] we can construct a set of vectors
S’ of IE‘g*H of sizeq + 2 with the property that every subset&fof sizeq + 2 — kis a
basis offZ2~*. m

6 Appendix

Using the Segre product and the lemmas from Section 2 we waraghort proof of [1,
Lemma 4.1], the main tool used to prove thgit < ¢+ 1 and classify the cagé| = ¢+1,
for k < p,in[1].

LEMMA 6.1. Let L of sizer, D of sizek — 1 — r and(2 of sizet + 2 be pairwise disjoint
subsequences 6t If 1 <r < ¢+ 2andr < p — 1, whereg = p", then

0=>Y Pp(AL) [  det(zA D),
ACQ 2€(Q\A)U(L\Lo)
|Al=r
where/, is the first element af.

Proof. By induction onr. The case = 1 follows by dividing the equation in Lemma 2.2,
with £ = Q andY = D, by T'r ().
Fix = € L and apply the induction step 10\ {z} and{z} U D,

0= > Ppua(A L\ {z}) 1T det(z, A, z, D)~",

ﬁ_@ﬁl 2€(NA)U(L\{fo,})

Let A be a subset d? of sizer — 1. Applying Lemma 2.2 withF = (QU L)\ (AU{4})
andY = AU D, we get

0= Z Tpua(x) H det(z, A, z, D)~

xeL\{lo} 2€(Q\A)U(L\{4o,z})
+ 3 Tpoaly) 11 det(z,A,y, D).
ye\A ze(Q\(AU{y}))U(L\{fo})

Multiplying by Pp(A U d, L)Tpua(d)~t for somed for which Tp,aua(d) # 0. By
Lemma 2.4 we can rearrande so that the last element is which changes the sign
by o(x, L). This gives

0= > (=1)7"HPpy(A, L\ {z}) 1T det(z, A, z, D)~'+

z€L\{fo} z€(Q\A)U(L\{¢o,z})

> Pp(AU{y}, L) 1T det(z,A,y, D)"Y,

yeQ\A 2€(Q\(AU{y}))UL\{£o}
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since
Pp(AU{d}, L)Tpua(2)Tpua(d)™ = Poupy (A, L\ {z})

and by Lemma 2.5 (and Lemma 2.3)

Pp(AU{d}, L)Tpua(y)Tpuald)™ = Po(A U {y}, L).

Note that in the second term we can orderU {y} in any way we please with-
out changing the sign since, by Lemma 2.3, interchangingei®ments ofA U {y} in
Pp(A U {y}, L) changes the sign by-1)"*!, exactly the same change occurs when we
interchange the same vectors in the product of determinants

Therefore, when we sum this equation over subdets$ 2 of sizer — 1 and apply the
induction hypothesis, the first sum is zero and the secondysues

0=r ) Pp(AL) 11 det(z,A, D).

@I%Q ze(Q\A)U(L\{€})
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