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Abstract:  A surface-illuminated photoconductive detector based on 

Ge0.9Sn0.1 quantum wells with Ge barriers grown on a silicon substrate is 

demonstrated. Photodetection up to 2.2µm is achieved with a responsivity 

of 0.1 A/W for 5V bias. The spectral absorption characteristics are analyzed 

as a function of the GeSn/Ge heterostructure parameters. This work 

demonstrates that GeSn/Ge heterostructures can be used to developed SOI 

waveguide integrated photodetectors for short-wave infrared applications. 
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1. Introduction  

Silicon (Si) and Germanium (Ge) are the dominant materials for electronic integrated circuits. 

However, the indirect bandgap of these group IV elements prevents them from being used to 

realize efficient light-emitting components. Therefore, the interest in the GeSiSn material 

system has significantly increased over the last few years. In theory, these materials can be 

used to achieve a direct energetic transition in a lattice-matched heterostructure grown on a Si 

substrate [1-2]. Even though the lattice mismatch between Ge and Sn is large, recent progress 

in growth has been reported, showing the realization of a fully strained Ge0.92Sn0.08 layer on 

Ge [3-4]. This technological development allows evaluating the emission and absorption 

properties of these lattice-matched heterostructures. In this paper we demonstrate the use of a 

GeSn/Ge heterostructure-based photodetector in the short-wave infrared (SWIR) wavelength 

range, which is very attractive for several applications. For instance, the field of spectroscopic 

sensing relies on the strong gas/liquid/solid absorption features in this wavelength range [5]. 

By waferbonding GaInAsSb/GaSb photodiodes on top of silicon waveguide circuits, photonic 

integrated circuits are now being developed for applications in the 2-2.5µm wavelength range 

[6]. However, combined with the recent progress in the integration of Ge photodetectors on 

Silicon-On-Insulator (SOI) for telecom-band applications [7], GeSn-based integrated 

photodetectors can become an attractive approach for monolithically integrated SWIR 

photodetectors. Moreover, recent results show that adding Sn in the p-i-n Ge detector matrix 

also increases the responsivity of the detector in the telecom wavelength range [8-9] and 

extends the cut-off wavelength beyond 1.7μm [10-11]. In this paper, we present 

photoconductive detectors based on a highly strained Ge0.90Sn0.10/relaxed Ge heterostructure 

grown on silicon with a cut-off wavelength of 2.4μm. 
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2. Band structure analysis 

Figure 1-a shows the evolution of the band parameters of Ge1-xSnx between Ge and strained 

Sn grown on Ge. The unstrained parameters for Sn extracted from [12] are presented in the 

dashed box. By taking into account the effect of the strain in the Krijn-Van de Walle model 

[13-14], the compressive strain in the Sn splits the valence band and shifts the conduction 

band towards higher energy. By applying the unstrained bowing parameters, we find a 

bandgap still dominated by the L-valley, which is not the case for the unstrained GeSn alloys 

[15-16]. Nevertheless, a clear red-shift of the material absorption edge as a function of 

increasing Sn-content can be observed. From the band parameters presented in Figure 1(a), 

the band diagram and the energetic levels in quantum confined structures can be calculated. 

Figure 1(b) presents the typical Ge/GeSn lattice-matched epitaxial stack discussed in this 

work. In this example, a strained Ge0.9Sn0.1 quantum well with a thickness of 20nm is 

embedded in relaxed Ge. The effective masses are extracted from [17-19] except for the GeSn 

hole masses, which are currently unknown. Because the GeSn hole effective mass is 

substantially lower than that of Ge [17], we assume a heavy hole effective mass which is one 

order of magnitude lower compared to Ge, however this assumption is not critical for the 

determination of the effective bandgap (0.5% change compared to using the heavy hole mass 

of Ge). The effective bandgaps are estimated to be 0.59eV with respect to the Γ-valley and 

0.49eV with respect to the L-valley. In this work, the influence of the quantum well thickness 

and the Sn-content will be experimentally studied. 

 

Figure 1: a) Band parameters of Ge1-xSnx lattice-matched to Ge; b) Band diagram and carrier 

presence probability for the Ge0.9Sn0.1/Ge heterostructure (20nm thick quantum well) used in 

this work  

 
3. Photodetector fabrication 

The GeSn/Ge heterostructures are grown by atmospheric pressure chemical vapor 

deposition using an ASM Epsilon-like EPI reactor on a 200mm (001) Si substrate with a 

relaxed Ge buffer (~0.5um thick). GeSn quantum wells were grown separated by 100nm thick 

Ge barriers. The GeSn growth conditions are reported in [3] and [20]. Measured by X-ray 

diffraction (XRD), up to 10% Sn content can be reached. Figure 2(a) shows an example of 

XRD measurements together with the modeling done by the software “Philips X-pert 

Epitaxy” for a Ge0.9Sn0.1 heterostructure (a single 25nm thick quantum well with a 100nm 

thick Ge cap layer). The XRD measurements reveal a lattice-matched Ge0.9Sn0.1 layer on Ge 

with periodic fringes illustrating the abrupt Ge/GeSn interfaces. The Si substrate is also 

visible on the measurement with a linewidth narrower than that of the Ge because the 

thickness of the Ge relaxed buffer is only 0.5µm. Comparing with the modeling of the layers 

on a Ge substrate, we obtain a good correlation, showing a high crystallographic quality of the 

GeSn/Ge heterostructure. 



 

Fig. 2. : a) Measured (solid line) and simulated (dashed line) XRD rocking curve of the 

epitaxial stack with a 25nm Ge0.9Sn0.1 strained quantum well on Ge with a 100nm Ge cap layer; 

The generalized layer stack is shown in the inset; b) Top view of the processed GeSn 
photoconductive detector for surface illumination.  

In order to study the GeSn absorption in the near-infrared and short-wave infrared 

wavelength range, photoconductive detectors were processed in these epitaxial layer stacks. 

Figure 2(b) presents a top view of a realized photodetector. Interdigitated electrodes with 2µm 

wide fingers separated from each other by 6µm are connected to two independent contact 

pads. Only the combs are in contact with the sample because the pads are isolated from the 

epitaxial stack by a DVS-BCB spacer layer. The process starts with the photolithography of 

the DVS-BCB (4022-25) followed by an annealing step at 250°C for 2 hours. The BCB 

exposure time is voluntarily increased to obtain a sloped DVS-BCB profile for improved 

electrode coverage. The electrodes are defined using a lift-off process. Electron-gun 

evaporation was used to deposit the electrodes, consisting of 10nm Ni and 200nm Au. 

 

4. Photodetector characterization   

FTIR-based calibrated measurements were done to access the spectral responsivity [21]. 

First, the internal tungsten halogen source of a Fourier Transform InfraRed (FTIR) 

spectrometer was modulated in a Michelson interferometer with one moving mirror and 

focused on the photoconductive detector by a set of gold mirrors. The photoconductors were 

driven with a current of 0.2mA and the voltage drop over the photoconductor was sent back to 

the FTIR electrical input to calculate the spectral dependence of the responsivity (in arbitrary 

units). For the calibration in A/W, another measurement was done using surface illumination 

of the photodetector using several fiber coupled sources: a red LED (~0.7µm), 

semiconductor lasers (1.3 and 1.55µm, 1.7µm) and a Cr:ZnSe laser (2.1-2.4µm). Figure 3(a) 

presents the current versus voltage characteristic of different realized photoconductors in the 

dark. In sample A, a 45nm Ge0.9Sn0.1 layer was grown on top of the Ge buffer. For sample B, 

N Ge0.9Sn0.1 quantum wells (N=0,1,2,3) with a thickness of 20nm were grown, separated by 

100nm Ge barriers. From this graph it is clear that when the top surface is GeSn (sample A on 

the Figure 3(a)), the dark current strongly increases as a function of applied voltage. However, 

when a Ge cap layer is used on top of the GeSn/Ge hetero-structure (sample B on the Figure 

3(a)), the dark conductivity of the structure is much lower. For this reason, Ge cap layers were 

used to develop photoconductive detectors with GeSn quantum wells. Figure 3(b) shows the 

measured current versus voltage as a function of the optical power in the fiber at 1.55µm for a 

Ge photoconductive detector (sample B with N=0 on the Figure 3-a). Under illumination, the 

series resistance dramatically changes from a dark resistivity of 12k to 2.2kunder 

illumination with 3mW optical power. This already shows an improved conductivity 

compared to earlier developed Ge photoconductive devices [22]. A nonlinear relation between 

photocurrent and optical power can be observed, which is often observed in photoconductive 

detectors [23-24]: the responsivity increases when the input power decreases until it reaches  



 

Fig.3: I(V) measurements of processed photoconductive detectors: a) dark current for sample 

A without Ge cap layer and sample B with N=0,1,2 or 3 Ge0.9Sn0.1 quantum wells; b) under 

1.55μm illumination for a Ge photoconductive detector 

1.5A/W (for a 5V bias) at 0.1mW optical input power. Figure 4 presents the normalized 

detector responsivities (measured with an FTIR) as a function of the wavelength for different 

GeSn/Ge designs. This measurement allows accessing the intrinsic absorption features of the 

GeSn/Ge structure. The influence of the number of GeSn quantum wells on the detector 

responsivity can be seen in Figure 4(a). The Ge0.9Sn0.1 quantum wells with a thickness of 

20nm are separated by 100nm Ge barriers. Photodetection for photon energies below the Γ-

bandgap of Ge is only possible when GeSn quantum wells are present in the structure. 

Photodetection up to 2.4μm can be observed. In the structure with 3 quantum wells, two 

energetic transitions in the absorption spectrum can be observed, indicated by the vertical 

lines. This level discretization is confirmed by the absorption spectrum of the Ge0.91Sn0.09/Ge 

structures with 3 quantum wells presented in Figure 4(b). These quantum wells have a 

thickness of 20 or 13nm and are separated by 25nm of Ge. Two distinctive energetic 

transitions are also observed in case of 20nm thick quantum wells and a shift of the effective 

bandgap is detected compared to the 20nm thick Ge0.9Sn0.1 quantum well structure. Figure 4-c 

presents the responsivity spectrum of one 40nm quantum well as a function of the Sn content. 

In this case, the state density is closer to a continuum and the discretisation of the state density 

is not observed. However, the bandgap values can be measured to be at 0.63eV for Ge0.95Sn0.05 

and 0.57eV for Ge0.91Sn0.09. Due to the strain, these observed bandgaps are slightly higher 

compared to unstrained GeSn alloys [25-28].  

 

Fig.4: Normalized detector responsivity as function of wavelength for GeSn/Ge 
photoconductive detectors: a) with 1, 2 or 3 Ge0.9Sn0.1 quantum wells with a thickness of 

20nm; b) with 3 Ge0.91Sn0.09 quantum wells with a thickness of 13 or 20nm; c) for a single 

quantum well with a thickness of 20nm with different Sn content.  



In order to implement the photodetectors in a short-wave infrared system, measurements of 

the absolute responsivity in A/W at a fixed 5V bias were carried out using several calibrated 

fiber coupled sources. As previously presented, the samples B (Figure 3(a)) were grown with 

N=0,1,2 or 3 Ge0.9Sn0.1 quantum wells. Figure 5 presents the responsivity versus wavelength, 

the solid lines referring to the FTIR characterization method and the dots corresponding to the 

calibration with several sources at 5V bias (for 1mW optical input power). Higher 

responsivities are obtained when the number of GeSn quantum wells is increased. The best 

responsivities are reported for the structure with 3 quantum wells at the wavelength of 0.75, 

1.5, 1.75 and 2.2µm with respectively 2A/W, 1A/W, 0.3A/W and 0.1A/W. These high 

responsivities illustrate the good quality of the highly strained Ge0.9Sn0.1 quantum wells on 

Ge. Higher responsivities can even be envisaged when using a waveguide-coupled GeSn 

photodector, since in this case the responsivity is decoupled from the actual absorber 

thickness, which is limited in this case. 

 

Fig 5. Responsivity as a function of wavelength at 5V bias for structures with 0,1,2 or 3 

Ge0.9Sn0.1 quantum wells embedded in Ge. The dots are measured using surface illumination 

with a fiber-coupled source and the solid lines are extracted from FTIR-based measurements 

Nevertheless, the sensitivity of the photoconductive detector in a practical system is limited 

by the device dark current. In order to improve the sensitivity, a lock-in detection system can 

be used. A photodetector bandwidth above 2MHz was observed for these devices, which is 

sufficient to remove the 1/f noise contribution in the dark current noise spectral density. 

Another approach that can be envisaged is the incorporation of these GeSn quantum wells in a 

Ge-based p-i-n (waveguide based) photodetector, which in recent years has been implemented 

for pure Ge detectors for telecom applications [7]. From this work, we can conclude that 

GeSn-based detectors are a serious candidate for short-wave infrared photodetection in silicon 

photonic integrated circuits. 

 

5. Conclusion 

In this article, the first photoconductive detector based on strained Ge0.9Sn0.1 quantum wells 

was investigated. Compared to Ge photoconductive detectors, an improvement of the 

responsivity is reported over the whole wavelength range from 0.75 µm to 2.4µm. This allows 

envisioning integrated GeSn/Ge photodetectors on Si waveguides by selective growth for 

near-infrared and short-wave infrared applications. 
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