Linear gradient copolymers exhibit a gradual linear shift in the monomer composition from one chain end to the other:

Model Based Determination of Linear Gradient Quality of ATRP Copolymers

P.H.M. Van Steenberge\(^1\), D.R. D’hooge\(^1\), Y. Wang\(^2\), M. Zhong\(^2\), D. Konkolewicz\(^2\), M.-F. Reyniers\(^1\)*, K. Matyjaszewski\(^2\) and G.B. Marin\(^1\)

\(^1\) Laboratory for Chemical Technology, Krijgslaan 281 (S5), 9000 Ghent, Belgium

http://www.lct.UGent.be E-mail: MarieFrancoise.Reyniers@UGent.be

\(^2\) Center for Macromolecular Engineering, Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA

Acknowledgments

This work is supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen), the ‘Long Term Structural Methusalem Funding by the Flemish Government’ and the Science Foundation (CHE 10-26060)

Conventional simulation: Average polymer properties

Chemical composition – chain length distribution

Dormant polymer

Dead polymer

Kinetic Monte Carlo (kMC) simulation flow sheet

Linear Gradient quality (x\(_m\))

Dormant polymer

Dead polymer

Importance of reactivity ratios

Graindation evaluation

Catalyst choice for optimal gradient quality
