Modelling of methane partial oxidation in an asymmetric multilayered membrane reactor

Panagiotis N. Kechagiotopoulos, Joris W. Thymbart, Ludmilla N. Bobrova, Vladislav A. Sadykov and Guy B. Marin

Laboratory for Chemical Technology
Krijgslaan 281 (S5), 9000 Ghent, Belgium
http://www.lct.UGent.be E-mail: Joris.Thymbart@UGent.be

INTRODUCTION

- Dense O₂ permeable Mixed Ionic Electronic Conductors (MIEC) ceramic membranes have great potential for catalytic high-temperature processes.
- Permeability, however, may become limited by bulk diffusion, if the membrane becomes too thick.
- A promising approach is the consecutive deposition of MIEC nanocomposite layers with graded porosity and chemical composition on a robust macroporous substrate.
- In the framework of the OCMOL project asymmetric MIEC supported membranes are designed aiming at the separation of O₂ from air.
- In the current work, a mathematical model of a multilayered membrane reactor is developed and validated with previously reported experimental data.

COMPARISON OF SIMULATED AND EXPERIMENTAL RESULTS

Effect of CH₄ inlet flow rate

- Increase of CH₄ flow rate leads to a decrease of its conversion.
- Increase in syngas production due to the higher participation of reforming reactions over combustion.
- Adequate prediction of methane conversion.
 - O₂ flux through the membrane predicted correctly by the model.
 - Selectivity in CO and H₂ follows the experimental trends.

Effect of CH₄ inlet concentration

- CH₄ conversion satisfactorily predicted.
 - Slight drop due to the changing balance between the O₂ that diffuses through the air side and the available CH₄ at the reaction side.
 - Change in balance leads to a higher production of syngas, which is adequately reproduced by the model.

Effect of air side flow rate

- Experimental decrease in CH₄ conversion attributed to the possible oxidation of the catalyst due to the low saturation of CH₄.
- Simulations show, as expected based on the simple kinetic scheme implemented, an increase in CH₄ conversion.
- Experimentally observed drop in CO and H₂ due to higher fraction of oxidation over reforming reactions is predicted by the model, although less pronounced in order.

CONCLUSIONS

- A CH₄ partial oxidation membrane reactor model has been constructed assuming diffusion through meso- and micro-porosities layers deposited on top of the dense layer.
- The model has been validated against experimental data, obtaining a good qualitative agreement.
- The model could be further enhanced by:
 - including more detailed kinetic models
 - accounting for oxygen adsorption on and transport through the dense layer

ACKNOWLEDGEMENTS

This paper reports work undertaken in the context of the project "OCMOL, Oxidative Coupleing of Methane followed by Oligomeration to Liquids". OCMOL is a Large Scale Collaborative Project supported by the European Commission in the 7th Framework Programme (GA n°228943). For further information about OCMOL see:
http://www.ocmol.eu
http://www.ocmol.com