Synthesis, characterization, adsorption and catalytic properties of an amino functionalized Metal Organic Framework: NH$_2$-MIL-47 (V)

Karen Leus1, Sarah Couck2, Matthias Vandichel3, Ying-Ya Liu1, Joeri Denayer2, Michel Waroquier2, Veronique Van Speybroeck3 and Pascal Van Der Voort1

1Department of Inorganic and Physical Chemistry, COMOC: Center for Ordered Materials, Organometallics and Catalysis Ghent University, Ghent, Belgium, 2Vrije Universiteit Brussel, Department of Chemical Engineering, Belgium, 3Center for Molecular Modeling, Technologiepark 903, 9052 Zwijnaarde, Belgium

In recent years MOFs have become more and more a topic of interest in heterogeneous catalysis1,2. The rigidity of some MOFs allows further functionalization without changing the original topology, either by a post-functionalization or by the use of a prefunctionalized linker. This way, subtle changes can be induced in the catalytic or sorption properties. In this contribution, we report on the synthesis of the amino functionalized V-MOF with MIL-47 topology. This NH$_2$-MIL-47 is fully characterized. The CO$_2$ and CH$_4$ adsorption properties of this NH$_2$-MIL-47 have been investigated and are compared to the parent MIL-47 (Fig.1 A). It is concluded that amino groups only enhance the CO$_2$ adsorption in MOFs if they influence the flexibility of the network, which is not the case in the rigid NH$_2$-MIL-473. Moreover, the NH$_2$-MIL-47 was post-functionalized with TiO(acac)$_2$ (Fig.1 B). The resulting [Ti] NH$_2$-MIL-47 is being tested for it's photocatalytic performance in the oxidation of cyclohexene using molecular oxygen as oxidant.

Fig 1 A) Adsorption isotherms of CO$_2$ and CH$_4$ on MIL-47 and NH$_2$-MIL-47 B) Post-functionalization of NH$_2$-MIL-47 with TiO(acac)$_2$