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1. Introduction

Answer set programming (ASP) is a tool for modeling combinatorial
search problems in a declarative way [1]. Specifically, a search problem is
translated into an ASP program, i.e. a set of rules of the form α← β. Such
a rule indicates that whenever the body β holds, the head α holds as well.
The expression α is a disjunction of literals and β a conjunction of extended
literals. A literal is an atom or an expression of the form ¬a with a an atom
and ¬ classical negation. An extended literal is a literal or an expression
of the form not l with “not” the negation-as-failure operator and l a literal.
In ASP we have two types of negation: classical negation and negation-as-
failure. The difference between these two is that ¬a is true if we can derive
¬a, whereas not a is true is we fail to derive a. As a result of the occurrence
of negation-as-failure, answer set programming is a form of nonmonotonic
reasoning. Given an ASP program, the idea is to find a minimal set of lit-
erals that can be derived from the program. A program can have several of
such “answer sets” or none at all. The answer sets then correspond to the
solutions of the original search problem.

Logic programming, which contains ASP as a special case, has had a
significant impact on the development of nonmonotonic logics and vice versa
[2]. In what follows we will focus on the relationship between ASP and
autoepistemic logic, a logic introduced by Moore [3] as a way to reason about
one’s own beliefs. Consider for instance my reason for believing that I do
not have an older sister. I simple believe that if I had one, I would surely
know about it. In autoepistemic logic, one would write “I believe I have a
sister.” as the formula B a, with B interpreted as “is believed” and a an atom
representing the property “I have a sister.” Both ASP and autoepistemic
logic are nonmonotonic forms of commonsense reasoning. Autoepistemic
logic is nonmonotonic because we can make statements that allow to draw
conclusions from a lack of beliefs. For instance, we can express that “If I
do not believe P , then Q is true.” Hence, if P cannot be inferred, Q can
be derived. On the other hand, if P is added to the set of premises, Q can
no longer be derived. Autoepistemic logic is intended to model the beliefs
of an ideally rational agent reflecting upon his own beliefs. However, the
semantics defined in [3] make it difficult to prove the existence of sets of
beliefs satisfying the constraints of autoepistemic logic. Therefore, Moore
proposed an alternative possible-world semantics in [4]. If we consider a set
of atoms A, truth is defined relative to a pair (I, S) where S ⊆ P(A) is a
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complete S5 structure that represents the agent’s beliefs and I ∈ P(A) is the
actual world. Note that I does not have to be an element of S, because we
want to model belief rather than knowledge.

The research oriented towards the relationship between ASP and au-
toepistemic logic has its roots in the problem of defining semantics for pro-
grams with negation-as-failure. Consider for instance the rule a← b ∧ not c.
Gelfond [5] observed that in autoepistemic logic, this rule can be expressed
naturally as the formula b ∧ ¬(B c) → a. Gelfond and Lifschitz [6] showed
that the answer sets of programs P without classical negation and only one
atom in the head of a rule correspond to the models of the autoepistemic
logic theory λ(P ) obtained from P by interpreting rules as material implica-
tion and replacing all expressions of the form not a by ¬(B a). Unfortunately
this translation does not work for programs with more than one atom in the
head of rules. For instance the program consisting of the single rule a∨ b←
would correspond to the autoepistemic formula a ∨ b which has exactly one
model. The program itself however has two answer sets {a} and {b}. If
classical negation is allowed and disjunction in the head is not allowed, prob-
lems arise since material implication is contrapositive and rules in ASP are
not. This observation led Gelfond and Lifschitz [7] to reject autoepistemic
logic as a tool for the study of logical programming, using a semantics based
on default logic instead. In [8] however, Lifschitz and Schwarz showed that
programs with classical negation and disjunction in the head can easily be
represented by autoepistemic theories. In this translation, a rule of the form

a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck

is transformed into the autoepistemic formula

(b1 ∧ B b1) ∧ . . . ∧ (bm ∧ B bm) ∧ ¬(B c1) ∧ . . . ∧ ¬(B ck)→

(a1 ∧ B a1) ∨ . . . ∨ (an ∧ B an).

The results in [8] are based on the logic of minimal belief and negation as
failure (MNBF) ([9], [10]), which uses two independent modal operators cor-
responding to resp. a “minimal belief” modality and negation-as-failure. This
correspondence was independently found by Chen [11], also using MBNF as
a starting point. The negation-as-failure modality in MBNF exactly corre-
sponds to negative introspection in autoepistemic logic. MBNF is thus an
extension of autoepistemic logic with the “minimal knowledge operator” due
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to Halpern and Moses [12]. A simplified version of MBNF (from [10]), which
will also be used in this paper, can be used to simulate some forms of default
logic and circumscription, as well as some logic programming languages.

Fuzzy answer set programming (FASP) (e.g. [13], [14]), is a generalization
of ASP based on fuzzy logics [15], a class of logics whose semantics are based
on truth values taken from the unit interval [0, 1]. In a FASP program, a
rule of the form α← β intuitively means that the truth degree of α must be
greater than or equal to the truth degree of β. By allowing infinitely many
truth degrees, FASP can model search problems with continuous domains,
entirely similar as ASP does for search problems with discrete domains.

In this paper we combine autoepistemic logic and fuzzy logics. The re-
sulting fuzzy autoepistemic logic is useful to reflect on one’s beliefs about
the degrees to which some properties are satisfied. Consider for example my
reason for not believing that my sister smokes a lot. If she smoked a lot,
her breath would smell often. Since I do not smell it often, I do not believe
she smokes a lot. Intuitively, if the truth value of Bϕ is equal to c, this
means that it is fully believed that ϕ is true at least to degree c. Hence, from
one point of view ϕ is believed to the degree c and from another point of
view, there is a Boolean form of belief that the truth value of ϕ is at least
c. Furthermore, note how these views generalize the notion of belief from
classical autoepistemic logic, in the sense that having Bϕ false corresponds
to having ϕ true to at least degree 0, i.e. being completely ignorant about ϕ,
and having Bϕ true corresponds to having ϕ true at least to degree 1, i.e. be-
lieving ϕ to be true. We show that many important properties from classical
autoepistemic logic remain valid when generalizing to fuzzy autoepistemic
logic. For programs with exactly one atom or constant in the head, we show
that the answer sets of a FASP program correspond to the models of an
associated fuzzy autoepistemic logic theory. Specifically, it turns out that a
straightforward generalization of the translation from ASP to autoepistemic
logic works. However, this correspondence is not valid for programs with
more complex formulas in the head. To deal with such FASP programs, we
will introduce a fuzzy version of MBNF. This will provide us with a tool to
show that for these type of programs the answer sets correspond to partic-
ular models of an associated fuzzy autoepistemic theory. The fact that this
important relationship is preserved provides further insight into the nature
of FASP, and at the same time serves as a justification for the particular
fuzzy autoepistemic logic we introduce in this paper.

Note that the language of (fuzzy) autoepistemic logic is much more ex-
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pressive than the theories we need to represent the (fuzzy) answer set pro-
grams. Among others purposes, this could serve as a useful basis to define
or compare extensions to the basic language of ASP since the computational
complexity does not increase when moving from ASP to autoepistemic logic.
Although we have not yet analyzed the computational complexity of fuzzy
autoepistemic logic we have no reason to assume that it would be harder
than FASP. This might open doors to define extensions for FASP.

This paper is an extension of [16] in which we introduced fuzzy autoepis-
temic logic and presented some of its proporties. The main result of [16] is a
method to translate a normal FASP program (cf. Section 3.4) into a fuzzy au-
toepistemic theory T . In this paper, we will extend this result to more general
FASP programs. As we will show by a counterexample, the straightforward
translation from [16] cannot directly be extended to this more general set-
ting. Therefore, we propose a new translation which remains valid for more
general FASP programs. Furthermore, the proofs for all results have been
added in an appendix.

In the next sections we discuss some related work and relevant background
on ASP, autoepistemic logic and FASP. In Section 4 we introduce fuzzy
autoepistemic logic, investigate some of its properties and in Section 5 we
give a motivating example. In Section 6 we analyze the relationship between
FASP with singletons in the heads of rules and fuzzy autoepistemic logic. In
Section 7, we show that fuzzy autoepistemic logic generalizes a rather general
form of FASP. To do so, we will define fuzzy MBNF. A conclusion is given
in Section 8.

2. Related work

Epistemic logic. Epistemic logic, the logic of epistemic notions such as knowl-
edge and belief, is a major area of research in artifical intelligence. Von
Wright’s seminal work [17] is widely recognized as having initiated the formal
study of epistemic logic as we know it today. Since then, various axiomatiza-
tions have been proposed, mainly in terms of possible-worlds semantics. An
overview is given in [18]. Note that in general, epistemic logics may allow to
model the beliefs of several agents, whereas autoepistemic logic is restricted
to one’s own beliefs.

Moore’s work about autoepistemic logic [3] was originally based on ideas
from McDermott and Doyle ([19], [20]). In [20] an operator M was introduced
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which has to be read as “consistent”. Nonmonotonicity was introduced be-
cause of the inference rule that “MP is derivable if ¬P is not derivable.”
However, as pointed out in [20], MP is not inconsistent with ¬P . In [19] the
standard modal logics T, S4 and S5 were extended to nonmonotonic logics,
although in the case of S5 it was shown that introducing nonmonotonicity is
redundant: the theories of nonmonotonic S5 are exactly those of the standard
version of S5. Moore [3] shows why some of the problems McDermott and
Doyle encountered arise and how they can be avoided. The language Moore
defines is much like McDermott and Doyle’s; a propositional logical language
augmented by an epistemic modal operator B interpreted as “is believed”.

Autoepistemic logic is closely related to the work of Halpern and Moses
[12], the major difference being that in [12] a logic of knowledge rather than
belief is considered. Truth is now defined relative to pairs (I, S) with I an
interpretation and S a set of interpretations such that I ∈ S. It then follows
that B p → p (with B here interpreted as “is known”) is an axiom. It was
obtained independently by Moore and by Halpern and Moses that the sets
of formulas that are true in every world of some S5 structure, in which every
world is accessible from every world, are exactly the stable autoepistemic
theories.

In [21] a recently defined epistemic modal logic can be found. In this
paper Meta-Epistemic Logic, which deals with how an agent reasons about
what he knows about the beliefs of an other agent, is introduced. Like with
autoepistemic logic, the epistemic states are families of non empty subsets of
classical interpretations.

Embedding ASP in autoepistemic logic. Before Lifschitz and Schwarz pro-
posed their translation for programs with classical negation and disjunction
in the head, other translations of logic programming to autoepistemic logic
had been investigated in [22], [23], [24] and [25], but none of them seemed
to extend to logic programs with classical negation and disjunction in a nat-
ural way. Besides autoepistemic logic and MBNF, reflexive autoepistemic
logic has also been used to characterize the semantics of ASP [8]. Reflexive
autoepistemic logic [26] has several almost identical semantic characteriza-
tions of expansions as autoepistemic logic but defines the modality so that
it models knowledge rather then belief. A formula is believed if it is true
in all possible worlds w.r.t. the beliefs of the agent and in the actual world.
The major difference with autoepistemic logic is that belief allows cyclic ar-
guments and knowledge does not. Reflexive autoepistemic logic turns out
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to be very convenient to study answer sets of programs with disjunction in
the head and classical negation in front of atoms. The translation of an
ASP program to a reflexive autoepistemic theory is even simpler than to an
autoepistemic theory.

FASP. In recent years a variety of approaches to FASP have been proposed
(e.g. [13], [14], [27], [28], [29], [30], [31], [32], [33]). Although it has been
studied by several authors, FASP is by far not as developed as ASP. For
example, very little is known about its computational complexity and few
techniques are known to compute the answer sets of FASP programs. Also,
many extensions proposed for ASP have not yet been considered in FASP.
With the exceptions of e.g. [27], [34] and [35], most work is even restricted
to FASP programs with exactly one atom in the head. In this paper, we
consider a rather general form of FASP programs; the heads of rules are not
restricted to single atoms and connectives can in principal be interpreted by
arbitrary [0, 1]n → [0, 1]-mappings. The fuzzy equilibrium logic introduced
in [34], another generalization of FASP, also allows such constructs. In [34]
a correspondence between fuzzy equilibrium logic models and answer sets
of FASP programs was shown. Apart from these exceptions and the current
manuscript, it appears that little work has been done on nonmonotonic fuzzy
logics and their relationship with fuzzy answer set programming.

Note that FASP is not used to deal with uncertainty, but with partial
truth. See [36] for a discussion on the difference between these two concepts.
To deal with uncertainty, ASP can be extended with possibilistic logic (e.g.
[37]) or with probability theory (e.g. [38]).

Fuzzy modal logics. Our work is also related to fuzzy modal logics (e.g. [15],
[39], [40]). The semantics of fuzzy autoepistemic logic is closely related to
the Kripke-style semantics used in most (fuzzy) modal logics. As will become
clear in Section 4, in fuzzy autoepistemic logic there is no accessibility rela-
tion. Finite many-valued modal logics with graded accesibility relations have
been studied in for example [41] and [42]. In [43] this work is extended to
finite many-valued non-monotonic modal logics. In particular autoepistemic
logic is generalized by allowing a finite number of truth values and an ax-
iomatic definition is given. In [44], reflexive autoepistemic logic is generalized
by allowing a finite set of truth values. All these generalizations use finitely
many truth values. In our paper we introduce a continuous generalization
for autoepistemic logic.
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3. Preliminaries

3.1. Answer set programming (ASP)

Consider a set of atoms A. A disjunctive ASP program is a finite set of
rules of the form

r : a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck,

with ai, bj, cl literals (atoms or negated atoms) and/or constants (1 or 0, i.e.
true or false) with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . , k}. The
operator “not” is the negation-as-failure operator. Intuitively, not a is true
if there is no proof to support a. We refer to the rule by its label r. The
expression a1∨. . .∨an is called the head of r and b1∧. . .∧bm∧not c1∧. . .∧not ck
is the body. The set of literals occurring in the program is denoted as LP

and the set of atoms in the program as BP . A rule of the form 0 ← a is
usually written as “← a” and a rule of the form a← 1 as “a←”. We define
some special types of programs. If P contains only rules without negation-
as-failure, it is called a positive disjunctive ASP program. If P contains no
literals of the form ¬a and each rule has exactly one atom in the head, it is
called a normal ASP program. If P is a normal program that is positive it
is called a simple ASP program.

A (disjunctive) ASP program can be used to encode a certain search
problem. The purpose of the answer set semantics, which we will now recall,
is to find solutions to this problem. In what follows we will denote the set of
subsets of a set A as P(A). An interpretation I of P is any consistent set in
P(LP ). A consistent set I of literals is such that for each literal a it is not
true that a ∈ I and ¬a ∈ I. A literal a is true w.r.t. to I, denoted as I |= a,
iff a ∈ I. This interpretation is extended to formulas and rules as follows:

• I |= 1, I 2 0, I |= not a iff I 2 a

• I |= (α1∧α2) iff I |= α1 and I |= α2, I |= (α1∨α2) iff I |= α1 or I |= α2

• I |= (α1 ← α2) iff I 2 α2 or I |= α1

An interpretation I is called a model of a disjunctive ASP program if I |= r
for all rules r ∈ P . A model I is minimal if there exists no model J such that
J ⊂ I. An interpretation I is called an answer set of a positive disjunctive
ASP program P if it is a minimal model of P . For simple programs P
the minimal model is unique. It equals the least fixpoint of the immediate
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consequence operator ΠP [45] which maps interpretations to interpretations
and is defined as

ΠP (I) = {a | (a← β) ∈ P and β ⊆ I},

for an interpretation I. To define the semantics for disjunctive ASP programs
containing negation-as-failure, we start from a candidate answer set I and
compute the Gelfond-Lifschitz reduct P I [6]. In particular, to obtain the
positive disjunctive ASP program P I we remove all rules in P that contain
expressions of the form not a with a ∈ I. In the remaining rules in P , we
remove all expressions of the form not a. The interpretation I is called an
answer set of P iff I is an answer set of P I . Remark that an answer set I of
a program P has to be seen as an epistemic state and not as “truth”. For
instance a /∈ I does not mean that a is false, but that it is not known that a
is true.

Example 1. Consider the normal ASP program P with BP = {a, b}:

b ← not a
a ← not b

The interpretation M1 = {a} is an answer set of P since it is a minimal
model of PM1:

a ←

Similary, the interpretation M2 = {b} is also an answer set of P . One can
easily verify that there are no other answer sets.

3.2. Autoepistemic logic

The formulas of autoepistemic logic are built from a set of atoms A, the
constants true (1) and false (0), the usual connectives and a modal operator
B, interpreted as “is believed’. For example, if ϕ is a formula, then Bϕ
indicates that ϕ is believed. Also, B(¬ϕ) indicates that ¬ϕ is believed and
¬(Bϕ) that ϕ is not believed. We write L for the language of all propositional
formulas over A and LB for the extension of L with the operator B. Formulas
without the operator B are called objective and formulas from LB are called
unimodal. An autoepistemic theory is a set of unimodal formulas. We define
A′ = A ∪ {Bϕ | ϕ ∈ LB}, which is an infinite set, even if A is finite. For
technical reasons, we sometimes treat A′ as a set of atoms, and consider
interpretations I ′ ∈ P(A′). Thus for example, expressions of the form B(a ∧
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B b) and B(B a) are atoms but a∧B b is not. This trick allows us to deal with
autoepistemic theories in a purely propositional fashion and soundness and
completeness theorems from propositional logic are inherited. For clarity, we
will refer to the corresponding propositional language as L′. Moore originally
defined the semantics for autoepistemic logic by considering interpretations
I ′ ∈ P(A′). He defined an interpretation I of an autoepistemic theory T as
a subset of A′ that conforms to the usual truth recursion for propositional
logic and a formula Bα is said to be true in I iff α ∈ T . A model of T is an
interpretation in which all formulas in T are true.

Autoepistemic logic is intended to model the beliefs of an ideally ratio-
nal agent reflecting upon his own beliefs. These beliefs should possess some
closure conditions; they should include whatever the agent can infer by ordi-
nary logic and by reflecting on what he beliefs. Formally, an autoepistemic
theory T representing the beliefs of such an agent should satisfy the following
conditions:

1. If α1, . . . , αn are in T and β is a logical consequence w.r.t. L′

of α1, . . . , αn, then β is also in T .

2. If α is in T , then Bα is in T .

3. If α is not in T , then ¬(Bα) is in T .

Stalnaker [46]2 describes the state of belief characterized by such a theory as
stable: no further conclusions can be drawn by an ideally rational agent in
such a state. Theories satisfying these conditions are called stable autoepis-
temic theories. A theory E is called semantically complete iff it contains all
of its logical consequences and it is sound w.r.t. an initial set of premises T
iff every interpretation of E that is a model of T is also a model of E. Moore
[3] showed that the stable autoepistemic theories are exactly those that are
semantically complete. Stability alone gives no soundness results; we do not
know what an agent should not believe. However, by imposing syntactical
constraints on the theory, the notion of soundness can be captured. For a set
of premises T , we look for extensions that make it stable: stable expansions.

Definition 1. Consider autoepistemic theories E and T . Then E is a stable
expansion of T iff

E = Cn(T ∪ {Bϕ | ϕ ∈ E} ∪ {¬Bϕ | ϕ /∈ E}),

2Article based on the unpublished manuscript (1980) to which Moore referred in [3].
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where Cn(X) denotes the set of propositional consequences of X w.r.t. the
language L′.

As Moore [3] showed, an autoepistemic theory E is sound w.r.t. an initial
set of premises T if E is a stable expansion of T .

Using Definition 1, the following proposition can be shown.

Proposition 1. [47] Consider an autoepistemic theory T . If all formulas in
T are objective, then T has exactly one stable expansion.

Example 2. We show that T = {¬(B a)→ b,¬(B b)→ a} with a, b ∈ A has
two stable expanions.

Consider the autoepistemic theory Q = {a}. Since Q is a set of objective
formulas, it has exactly one stable expansion E (Proposition 1):

E = Cn(Q ∪ C)

with
C = {Bα | α ∈ E} ∪ {¬(Bα) | α /∈ E}.

We will show that E is also a stable expansion of T by proving that

Cn(T ∪ C) = Cn(Q ∪ C).

First, we prove that a ∈ Cn(T ∪ C). Since b /∈ E, we have ¬(B b) ∈ C and
thus a ∈ Cn(T ∪ C), hence Cn(Q ∪ C) ⊆ Cn(T ∪ C). Conversely, since
a ∈ E, we have B a ∈ C and thus (¬(B a)→ b) ∈ Cn(Q ∪ C). We also have
(¬(B b)→ a) ∈ Cn(Q ∪ C), which implies that Cn(T ∪ C) ⊆ Cn(Q ∪ C).

By symmetry, it follows that the unique stable expansion of {b} is also a
stable expansion of T .

Moore [4] showed that stable autoepistemic theories can be simply char-
acterized by a Kripke-style possible world semantics. Truth is defined rela-
tive to a structure (I, S) with I ∈ P(A) representing the actual world and
S ⊆ P(A) representing all worlds considered possible; the beliefs of an agent:

1. (I, S) |= 1 and (I, S) 2 0

2. For atoms p, (I, S) |= p iff p ∈ I.

3. For a unimodal formula α, (I, S) |= Bα iff for every J ∈ S it holds
that (J, S) |= α.
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4. For unimodal formulas ϕ and ψ, the propositional connectives are han-
dled in the usual way e.g. (I, S) |= (ϕ∧ψ) iff (I, S) |= ϕ and (I, S) |= ψ.

Intuitively, a unimodal formula α is believed if it is true in every inter-
pretation which is considered possible.

Definition 2. Consider an autoepistemic theory T and S ⊆ P(A). Then S
is an autoepistemic model of T iff

S = {I ∈ P(A) | ∀ϕ ∈ T : (I, S) |= ϕ} .

In other words, the set of possible worlds w.r.t. the beliefs of the agent
is an autoepistemic model of T if it is exactly the set of worlds in which all
formulas of T are true.

Definition 3. Consider an autoepistemic theory T and S ⊆ P(A). Then T
is called the autoepistemic theory of S iff

T = {ϕ ∈ LB | ∀I ∈ S : (I, S) |= ϕ} = {ϕ ∈ LB | ∀I ∈ P(A) : (I, S) |= Bϕ},

We will write Th(S) to denote this set of formulas.

The set Th(S) thus contains exactly those formulas that are true in every
world that is considered possible w.r.t. the beliefs of an agent.

The following proposition describes the relation between stable expan-
sions and autoepistemic models.

Proposition 2. [4] Consider an autoepistemic theory T . An autoepistemic
theory E is a stable expansion of T iff E = Th(S) for some autoepistemic
model S of T .

Example 3. Let us now explicitely compute the stable expansion of theory
Q = {a} from Example 2. Since there is exactly one stable expansion, we
know by Proposition 2 that there is also exactly one autoepistemic model. By
definition, S is an autoepistemic model of Q iff

S = {I ∈ P(A) | (I, S) |= a} = {I ∈ P(A) | a ∈ I} .

Hence, the unique autoepistemic model of Q = {a} is the set of all interpre-
tations that contain a. By Proposition 2, the unique stable expansion of Q
is

E = Th(S) = {ϕ ∈ LB | ∀I ∈ P(A) : a ∈ I ⇒ (I, S) |= ϕ} .
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We will now discuss the relationship between answer set programming and
autoepistemic logic. Gelfond [5] proposed the following transformation from a
normal ASP program P not containing constants to an autoepistemic theory
λ(P ). For each rule c ← a1, . . . , am, not b1, . . . , not bn in P , the unimodal
formula a1 ∧ . . . ∧ am ∧ ¬B b1 ∧ . . . ∧ ¬B bn → c is added to λ(P ). The
following result clarifies the relationship between the answer sets of P and
the stable expansions of λ(P ).

Theorem 1. [6] Consider a normal ASP program P . M is an answer set
of P iff λ(P ) has a stable expansion E such that M = E ∩ BP .

Example 4. Consider the normal ASP program P from Example 1 with
BP = {a, b}:

b ← not a
a ← not b

This program has two answer sets: M1 = {a} and M2 = {b}. By Exam-
ples 2 and 3, we know that the sets E1 and E2 are stable expansions of λ(P )
with

E1 = {ϕ ∈ LB | ∀I ∈ P(A) : a ∈ I ⇒ (I, S) |= ϕ}

and
E2 = {ϕ ∈ LB | ∀I ∈ P(A) : b ∈ I ⇒ (I, S) |= ϕ}.

We find E1 ∩ BP = M1 and E2 ∩ BP = M2.

3.3. Fuzzy logics

Fuzzy logics [15] are a class of logics whose semantics are based on truth
degrees taken from the unit interval [0, 1]. We will consider fuzzy logics whose
formulas are built from a set of atoms A, constants c for each c ∈ [0, 1] ∩Q
and arbitrary n-ary connectives for each n ∈ N. A fuzzy interpretation is a
mapping I : A→ [0, 1], also called a fuzzy set on A. The set of all fuzzy sets
on A will be written as F(A). We can extend this fuzzy interpretation I as
follows. Each n-ary connective f is interpreted by a function f : [0, 1]n →
[0, 1]. We define [f(α1, . . . , αn)]I = f([α1]I , . . . , [αn]I) for formulas αi (1 ≤
i ≤ n). For c ∈ [0, 1] ∩ Q we have [c]I = c. If C is a set of formulas we say
that I is a fuzzy model of C iff [α]I = 1 for all α ∈ C; we write this as I |= C.
For fuzzy interpretations I1, I2 ∈ F(A) we write I1 ≤ I2 iff I1(a) ≤ I2(a) for
all a ∈ A. A model I is a minimal fuzzy model of a set of formulas T if there
does not exist a fuzzy model J of T such that J < I.
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We will now recall some generalizations of the classical connectives. In
examples, we will often use these semantics, although all theorems will be
valid for arbitrary connectives and their interpretations. Specifically, trian-
gular norms (short t-norm) are used to generalize the classical conjunction.
These are mappings T : [0, 1]2 → [0, 1] that are commutative, associative,
increasing and for which it holds that T(x, 1) = x for each x ∈ [0, 1]. Dis-
junction can be generalized by a triangular conorm (short t-conorm). These
are mappings S : [0, 1]2 → [0, 1] that are commutative, associative, increasing
and for which holds that S(x, 0) = x for each x ∈ [0, 1]. Logical implication
can be generalized by an implicator, i.e. a function I : [0, 1]2 → [0, 1] such
that I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0 and I is decreasing in the
first component and increasing in the second. Given a t-norm T, the residual
implicator IT of T, defined as

IT(x, y) = sup{λ | λ ∈ [0, 1] and T(x, λ) ≤ y}

satisfies all these conditions. For left-continuous t-norms we have the follow-
ing property:

Proposition 3. [15] If T is a left-continuous t-norm, then for all x, y ∈ [0, 1]
it holds that

x ≤ y iff IT(x, y) = 1.

Consider a residual implicator I and a t-norm T. The biresiduum of I
and T is the mapping ET,I : [0, 1]2 → [0, 1]:

ET,I(x, y) = T(I(x, y), I(y, x)).

This function is a generalization of the logical equivalence. Note that I

does not need to be the residual implicator of T. By Proposition 3 and the
definition of a t-norm, we can infer that ET,I(x, y) = 1 iff x = y. Finally,
negation can be generalized by a negator. A negator is a function N : [0, 1]→
[0, 1] such that N is decreasing, N(1) = 0 and N(0) = 1. Every implicator I

induces a negator NI defined as NI(x) = I(x, 0).
Logics whose semantics are based on triangular norms form an impor-

tant subclass of fuzzy logics; they generalize the classical logical connectives
in a natural way. In examples we will often use the fuzzy logic based on
the  Lukasiewicz t-norm. For the connectives conjunction ⊗, disjunction ⊕,
implication → and negation ¬ and a fuzzy interpretation I ∈ F(A) we have
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1. [α⊗ β]I = max([α]I + [β]I − 1, 0)

2. [α⊕ β]I = min([α]I + [β]I , 1)

3. [α→ β]I = min(1− [α]I + [β]I , 1)

4. [¬α]I = 1− [α]I

We will also use the Rescher implicator which is defined as

[α→R β]I =

{
1 if [α]I ≤ [β]I
0 otherwise

 Lukasiewicz logic is often used in applications because it preserves many nice
properties from classical logic. Moreover, among the t-norm based logics,
 Lukasiewicz logic is the only one with a continuous implicator. This means
that a set of formulas in  Lukasiewicz logic can be seen a set of constraints
on continuous functions. This logic is also closely related to mixed integer
programming. McNaughton [48] showed this in a non constructive way and
Hähnle [49] gave a concrete translation from a set of formulas in  Lukasiewicz
logic into a mixed integer program.

3.4. Fuzzy Answer Set Programming (FASP)

Consider a set of atoms A. A (general) FASP program is a finite set of
rules of the form

r : g(a1, . . . , an)← f(b1, . . . , bm, not1 c1, . . . , notk ck),

with ai, bj, cl atoms or constants c with c ∈ ([0, 1] ∩ Q) (i ∈ {1, . . . , n},
j ∈ {1, . . . ,m} and l ∈ {1, . . . , k}), ← an implication and f and g resp.
(m + k)-ary and n-ary connectives. For each n-ary function h (for each
n ∈ N) that is occurring in the head or the body of a rule, we assume there
is a corresponding connective h : [0, 1]n → [0, 1] that is increasing in all its
arguments. Typically these functions will correspond to the connectives from
a given fuzzy logic (Section 3.3), but other choices, e.g. averaging operators,
can be useful as well. For ←, we assume there is a residual implicator. Each
negation-as-failure operator notj is associated with a negator Nj. We refer to
the rule by its label r. The expression g(a1, . . . , an) is called the head rh of r
and f(b1, . . . , bm, not c1, . . . , not ck) is the body rb. As for ASP (Section 3.1),
we consider some special types of programs. Programs without negation-as-
failure are called positive, programs with exactly one atom in the head are
called normal and normal programs that are positive are called simple. A
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fuzzy interpretation I of a general FASP program P is an element of F(BP ),
with BP the set of atoms occurring in P . We can extend this mapping as
follows: [c]I = c for c ∈ [0, 1] ∩ Q, [a]I = I(a) and [notj a]I = Nj([a]I) for
a ∈ BP and [r]I = I([rb]I , [rh]I), for a rule r : rh ← rb and a corresponding
implicator I. For fuzzy interpretations I1 and I2 we write I1 ≤ I2 iff I1(a) ≤
I2(a) for all a ∈ BP . A fuzzy interpretation I is called a fuzzy model of P iff
[r]I = 1 for all r ∈ P . A model I is a minimal fuzzy model of P if there does
not exist a fuzzy model J of P such that J < I.

A fuzzy interpretation I is an answer set of a positive FASP program P
iff it is a minimal fuzzy model of P . Remark that a positive FASP program
can have none, one or several answer sets [35]. If P is a simple program, the
answer set is unique and it coincides with the least fixpoint of the immediate
consequence operator ΠP [28]. This operator maps fuzzy interpretations to
fuzzy interpretations and is defined as

ΠP (I)(a) = sup{[rb]I | (a← rb) ∈ P},

for a ∈ BP and I a fuzzy interpretation. For programs that are not positive,
a generalization of the Gelfond-Lifschitz reduct is used [13]. More precisely,
let P be a general FASP program and I a fuzzy interpretation. The reduct
of P w.r.t. I is obtained by replacing in each rule r all expressions of the
form notj a by the interpretation [notj a]I , obtaining a new rule rI . The
reduct P I =

{
rI | r ∈ P

}
is then a positive FASP program and I is called

an answer set of P iff I is an answer set of P I .

Example 5. Consider the normal FASP program P with BP = {a, b}:

b ← not a
a ← not b

We assume that ← and not correspond to resp. the  Lukasiewicz implicator
and the  Lukasiewicz negator and show that for each x ∈ [0, 1], Mx with
Mx(a) = x and Mx(b) = 1− x is an answer set of P . We first compute the
reduct PMx:

b ← 1− x
a ← x

The minimal model of PMx is then exactly Mx. Note that there are infinitely
many answer sets.
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Remark 1. Note that a reduct of a FASP program can contain irrational
constants, but this does not cause any problems to the main reasoning tasks
for FASP. Indeed, from the analysis of the geometrical structure underlying
fuzzy equilibrium models [34], it follows that the geometrical space of all an-
swer sets of a program can be described in terms of polyhedra for which all
vertices have rational coordinates. Hence, there is no problem for the “inter-
esting” answer sets. However, semantically one wants to have a continuum
of answer sets and thus conceptually, a more general language needs to be
used for definitions in terms of reducts.

4. Fuzzy autoepistemic logic

In this section, we combine the ideas of autoepistemic logic (Section 3.2)
and fuzzy logics (Section 3.3). This will provide us with a tool to reason about
one’s beliefs in the degree to which one or more properties are satisfied.

The formulas in fuzzy autoepistemic logic are built from a set of atoms A,
constants c for each c ∈ [0, 1]∩Q, the set F = ∪n∈NFn with Fn the set of n-ary
connectives f and a modal operator B, interpreted as “is believed”. We will
denote this language as L̃B. As for classical autoepistemic logic, we will make
the distinction between objective and unimodal formulas. A fuzzy autoepis-
temic theory in L̃B is a set of formulas in L̃B. Like in classical autoepistemic
logic, beliefs of an agent can be represented by fuzzy autoepistemic theories.

As before, we define A′ = A ∪
{

Bϕ | ϕ ∈ L̃B

}
.

We define a generalization of stable expansions (Definition 1). Recall that
in Definition 1, a classical stable expansion E of an autoepistemic theory T is
such that the set of classical models of T ∪{Bϕ | ϕ ∈ E}∪{¬Bϕ | ϕ /∈ E} is
exactly the set of classical models of E. Note that if I is a consistent classical
model of {Bϕ | ϕ ∈ E} ∪ {¬Bϕ | ϕ /∈ E} that this means that Bϕ ∈ I iff
ϕ ∈ E. For fuzzy sets I ′ and E, this can be generalized by demanding that
[Bϕ]I′ = E(ϕ).

Definition 4. Consider a fuzzy autoepistemic theory T in L̃B and E ∈
F(L̃B). We call E a fuzzy stable expansion of T if for each α ∈ L̃B

E(α) = inf
{

[α]I′ | I ′ |= T, [Bϕ]I′ = E(ϕ) for each ϕ ∈ L̃B and I ′ ∈ F(A′)
}
.

Remark 2. Suppose E is a fuzzy stable expansion of {α} with α ∈ L̃B.
By definition of E we thus have that [Bα]I′ = E(α) ≤ [α]J ′ for all J ′ ∈
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F(A′) such that J ′ |= T and [Bϕ]J ′ = E(ϕ) for each ϕ ∈ L̃B. Thus [Bα]I′
determines a lower bound on the truth degree of α.

We will now generalize Definitions 2 and 3. First, we need to define
the satisfaction relation for unimodal formulas. Consider I ∈ F(A) and
S ⊆ F(A):

1. For atoms p, [p](I,S) = I(p).

2. For constants c, [c](I,S) = c.

3. For a unimodal formula α: [Bα](I,S) = infJ∈S[α](J,S).

4. For unimodal formulas αi (1 ≤ i ≤ n) and f ∈ Fn (n ∈ N) which is
interpreted by f : [0, 1]n → [0, 1]:
[f(α1, . . . , αn)](I,S) = f([α1](I,S), . . . , [αn](I,S)).

Remark 3. Note that the following are equivalent expressions for a formula
α, c ∈ [0, 1] ∩Q and S ⊆ F(A):

∀I ∈ S : [Bα](I,S) ≥ c ⇔ ∀I ∈ S : infJ∈S[α](J,S) ≥ c
⇔ ∀J ∈ S : [α](J,S) ≥ c
⇔ ∀J ∈ S : [c→ α](J,S) = 1
⇔ ∀I ∈ F(A) : [B(c→ α)](I,S) = 1

Hence on the one hand, c reflects the degree of belief on α and on the other
hand there is a Boolean form of belief on the formula c→ α.

Remark 4. In possibilistic logic, the semantics are defined in terms of a
possibility distribution over propositional interpretations, i.e. by mappings
π : P(A)→ [0, 1]. Such a mapping encodes for each interpretation or possible
world I to what extent it is possible that it refers to the real world, or in other
words, to what extent available knowledge does not exclude I from being the
real world.

Syntactically, a formula in possibilistic logic corresponds to a propositional
formula, encapsulated by a graded modality. In particular formulas are of the
form (α, λ), with α a formula in classical propositional logic and λ ∈ [0, 1],
with the intended meaning that sup {π(I) | I 6|= α} ≤ 1− λ.

Hence, there is a clear duality between the semantics of fuzzy autoepis-
temic logic as we have defined it here and the semantics of possibilistic logic.
Indeed, whereas we have defined the semantics of fuzzy autoepistemic logic in
terms of a classical set of fuzzy interpretations, possibilistic logic is defined
in terms of a fuzzy set of classical interpretations. This duality also reflects
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the different way in which the modality should be interpreted. In possibilistic
logic, and in a number of graded modal logics, the strength by which an agent
believes a proposition can be expressed. Degrees of belief are then used to ex-
press that some propositions are considered to be more plausible than others.
In contrast, our approach does not deal with such strengths of belief; believing
a proposition α to degree λ is interpreted as a Boolean belief in the proposi-
tion λ → α, i.e. degrees of belief are used to express that some propositions
are true to a greater extent than others. Of course, one can also imagine a
logic based on fuzzy sets of fuzzy interpretations, as was proposed for example
in [50].

Definition 5. Consider a fuzzy autoepistemic theory T in L̃B and S ⊆ F(A).
We call S a fuzzy autoepistemic model of T if

S =
{
I ∈ F(A) | ∀ϕ ∈ T : [ϕ](I,S) = 1

}
.

Similar as for classical autoepistemic logic, the set of possible worlds w.r.t.
the beliefs of the agent is a fuzzy autoepistemic model of T if it is exactly
the set of worlds in which T is true.

Example 6. Suppose T = {¬(B a)→ b,¬(B b)→ a} with a, b ∈ A and the
negation and implication from  Lukasiewicz logic. Consider I ∈ F(A) and
S ⊆ F(A). For the first formula of T we have

[¬(B a)→ b](I,S) = 1 ⇔ [¬(B a)](I,S) ≤ [b](I,S)

⇔ 1− [B a](I,S) ≤ I(b)

⇔ 1− inf
J∈S

J(a) ≤ I(b)

⇔ 1− I(b) ≤ inf
J∈S

J(a)

By symmetry we also have [¬(B b) → a](I,S) = 1 ⇔ 1 − I(a) ≤ infJ∈S J(b).
It follows that if S is a fuzzy autoepistemic model of T , then

S =

{
I ∈ F(A) | 1− I(b) ≤ inf

J∈S
J(a) and 1− I(a) ≤ inf

J∈S
J(b)

}
.

For such a set S, let x = infJ∈S J(a) and y = infJ∈S J(b). We prove that
y = 1− x. For each J ∈ S, we have 1− J(b) ≤ x and thus

1− y = 1− inf
J∈S

J(b) = sup
J∈S

(1− J(b)) ≤ x.
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Hence x+y ≥ 1. S contains all fuzzy interpretations I such that 1−I(b) ≤ x
and 1− I(a) ≤ y, thus there is certainly a fuzzy interpretation is I0 ∈ S with
I0(a) = 1− y. We obtain x = infJ∈S J(a) ≤ I0(a) = 1− y, hence x+ y ≤ 1.
From x + y ≤ 1 and x + y ≥ 1, it follows that x + y = 1. Thus, if S is a
fuzzy autoepistemic model of T , then

S = {I ∈ F(A) | I(b) ≥ 1− x and I(a) ≥ x}

for some x ∈ [0, 1]. Moreover, we can prove that each set of this form is
a fuzzy autoepistemic model of T , such that we can conclude that the fuzzy
autoepistemic models of T are exactly all sets of this form. Define for each
x ∈ [0, 1]

Sx = {I ∈ F(A) | I(b) ≥ 1− x and I(a) ≥ x} .
To conclude that Sx is a fuzzy autoepistemic model of T , we consider I ∈ Sx

and observe that for all J ∈ Sx we have 1− I(b) ≤ x ≤ J(a), thus 1− I(b) ≤
infJ∈Sx J(a). Similary, 1− I(a) ≤ infJ∈Sx J(b).

Definition 6. Consider S ⊆ F(A). The fuzzy autoepistemic theory of S is

the fuzzy set Th(S) on L̃B such that for each unimodal formula ϕ

Th(S)(ϕ) = inf
I∈S

[ϕ](I,S) = [Bϕ](J,S),

with J ∈ F(A) arbitrary.

We now present some lemmas that will help us to prove generalizations
of Propositions 1 and 2 in respectively Proposition 5 and 4. To prove Propo-
sition 4 we will use the result from Propostion 5. For proofs of the lemmas
and propositions we refer to the appendix. For a fuzzy set I ′ : A′ → [0, 1],
we define I ′|A as the fuzzy set I ′|A : A→ [0, 1] : a 7→ I ′(a).

Lemma 1. Let Q ⊆ F(A′) such that for each I ′ ∈ Q and ϕ ∈ L̃B we have

that [Bϕ]I′ = infJ ′∈Q[ϕ]J ′. Then, for α ∈ L̃B, S =
{
I ′|A | I ′ ∈ Q

}
and I ′ ∈ Q

we have

[α](I′|A,S) = [α]I′ .

Lemma 2. Let S ⊆ F(A) and I ′ ∈ F(A′) such that for each ϕ ∈ L̃B we

have [Bϕ]I′ = Th(S)(ϕ). Then, for α ∈ L̃B we have

[α](I′|A,S) = [α]I′ .
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Proposition 4. Consider a fuzzy autoepistemic theory T in L̃B.

1. If E ∈ F(L̃B) is a fuzzy stable expansion of T , then E = Th(S) with S
a fuzzy autoepistemic model of T .

2. If S ⊆ F(A) is a fuzzy autoepistemic model of T , then E = Th(S) is a
fuzzy stable expansion of T .

Example 7. Reconsider the fuzzy autoepistemic theory

T = {¬(B a)→ b,¬(B b)→ a}

from Example 6. All fuzzy autoepistemic models are of the form

Sx = {I ∈ F(A) | I(b) ≥ 1− x and I(a) ≥ x} ,

with x ∈ [0, 1]. Hence, all fuzzy stable expansions of T are of the form
Ex with x ∈ [0, 1] defined by Ex(a) = Th(S)(a) = infI∈S I(a) = x and
Ex(b) = Th(S)(b) = infI∈S I(b) = 1− x.

Proposition 5. Every set of objective formulas in L̃B has a unique fuzzy
stable expansion.

Remark 5. Suppose T is an objective fuzzy autoepistemic theory, such that
T contains α and ¬α with α an objective formula and ¬ interpreted by a
negator. In such a case, the theory T does not have any fuzzy models, but it
still has the empty set as its unique fuzzy autoepistemic model.

5. Motivating example

In this section we will demonstrate how fuzzy autoepistemic logic as de-
fined in Section 4 can be used in a real world scenario.

Forest fires cause massive loss of vegetation and animal life. If a fire is
detected on time, suppression units are able to reach the fire in its initial
stages which is important to avoid huge losses. Moreover suppression costs
will be considerably reduced. Wireless sensor networks can be effectively
used for this purpose [51]. These networks consist of a number of devices that
can sense their environment and communicate wirelessly. We will use fuzzy
autoepistemic logic to determine, given measurements made by the sensors
about the temperature, if there are sensors that are not working optimally
and if so, within what range we can reasonably assume the temperature to
be.
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Suppose we have n sensors. For each sensor i (i ∈ {1, . . . , n}), we denote
the exact temperature at its location as ti and the measured temperature as
t′i. By assuming an appropriate linear rescaling, we can see temperature as
a value in [0, 1]. The sensor network defines a weighted graph G as follows.
The vertices are the sensors and there is an edge with weight wij ∈ [0, 1]
between the vertices corresponding to sensor i and sensor j. The value wij is
such that we can reasonably assume, based on the locations of sensors i and
j that the temperature difference between these locations must be less than
wij. We will now present two strategies to determine bounds on the actual
temperatures, given the values wij and t′i (i, j ∈ {1, . . . , n}). We will use the
connectives from  Lukasiewicz logic and the Rescher implicator →R.

Recall that (classical) autoepistemic logic originally was intended to model
the beliefs of an agent. These beliefs are represented by a set of formulas;
autoepistemic theories. The formulas we propose also represent belief rather
than absolute truth.

5.1. Is the sensor broken or not?

First we suppose bi represents the boolean property “sensor i is broken”.
The formula max(bi,¬bi) can be used to impose that the truth value of bi is
a binary value. An alternative could be to use the formula bi ⊕ bi → bi. If
bi has truth value 1, it means that sensor i is broken. If it has truth value
0, the sensor works normally. Suppose that each sensor can only display a
temperature in [0, 1] with a limited granularity of one decimal but we have no
idea how the grounding of decimal numbers is defined and that for a sensor
that is not broken the maximum measurement error is 0.01. If for example
the actual temperature is ti = 0.095 and the sensor is not broken, then the
measured temperature will be between 0.085 and 0.105. Since we do not
know how the grounding works it is possible that the displayed temperature
t′i is equal to 0.2. In formulas (2)-(9) we will provide bounds on the actual
temperatures that are large enough to take into account all possible scenarios.
We can now write the following formulas with i, j ∈ {1, . . . , n}:

(1) max(bi,¬bi)
(2) (0.2→R t′i)→ (B bi ⊕ (0.09→R ti))

(3) (0.3→R t′i)→ (B bi ⊕ (0.19→R ti))

(4) . . .

(5) (1→R t′i)→ (B bi ⊕ (0.89→R ti))

(6) (t′i →R 0)→ (B bi ⊕ (ti →R 0.11))
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(7) (t′i →R 0.1)→ (B bi ⊕ (ti →R 0.21))

(8) . . .

(9) (t′i →R 0.8)→ (B bi ⊕ (ti →R 0.91))

(10) (wij →R ¬(t′i ↔ t′j))→ (bi ⊕ bj)
(11) ¬B bi → ¬bi

Formulas (2) to (9) define the relationship between the measured and the
actual temperature based on what is believed about sensors being broken or
not and taking into account the granularity and the maximum measurement
error. For instance, suppose you believe that sensor i is not broken and it is
given that t′i = 0.4. This means that there is an interpretation (I, S) such
that [B bi](I,S) = 0 and I(t′i) = 0.4. Formulas (2) to (5) then impose that
0.29 ≤ I(ti) and formulas (6) to (9) that I(ti) ≤ 0.51. If you believe that
sensor i is broken, you cannot conclude anything about ti.

Formula (10) imposes that if the difference between t′i and t′j is too large
with respect to the weight wij, then at least one of the sensors must be
broken. Formula (11) captures the connection between broken sensors and
what you believe about them. It is needed to ensure that a sufficient number
of sensors is believed to be broken, which in turn ensures that we do not
derive more about the actual temperatures ti than is warranted. In other
words, (11) enforces some form of minimality.

Consider as a concrete example a forest with three sensors. Suppose we
have t′1 = 0.4, t′2 = 0.9 and t′3 = 0.5 and w1,2 = 0.2, w1,3 = 0.2 and w2,3 = 0.2.

We obtain the following degrees of similarity. For an arbitrary interpre-
tation (I, S) we have

• [t′1 ↔ t′2](I,S) = 0.5

• [t′1 ↔ t′3](I,S) = 0.9

• [t′2 ↔ t′3](I,S) = 0.6

For a structure (I, S) to model formulas (10) and (11) for each sensor i,
it must hold that

(a) 1 ≤ I(b1) + I(b2)

(b) 1 ≤ I(b2) + I(b3)

(c) I(b1) ≤ [B b1](I,S)
(d) I(b2) ≤ [B b2](I,S)
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(e) I(b3) ≤ [B b3](I,S)

For a fuzzy autoepistemic model S of formulas (10) and (11) it holds
by inequalities (c)-(e) that there is a unique fuzzy interpretation I ∈ S.
Morevover it is a minimal fuzzy interpretation such that inequalities (a) and
(b) are satisfied. It follows that there are only 2 fuzzy autoepistemic models
of formulas (10) and (11):

S1 = {I | I(b1) = 0, I(b2) = 1 and I(b3) = 0}

and
S2 = {I | I(b1) = 1, I(b2) = 0 and I(b3) = 1} .

Finally, by including the formulas (2)-(9), we get two fuzzy autoepistemic
models S1 and S2:

S1 = {I | I(b1) = 0, I(b2) = 1, I(b3) = 0,

0.29 ≤ I(t1) ≤ 0.51, 0 ≤ I(t2) ≤ 1 and 0.39 ≤ I(t3) ≤ 0.61}

and
S2 = {I | I(b1) = 1, I(b2) = 0, I(b3) = 1,

0 ≤ I(t1) ≤ 1, 0.79 ≤ I(t2) ≤ 1 and 0 ≤ I(t3) ≤ 1} .

5.2. How big is the error on the measurement?

Now we suppose that ei represents the error on the temperature measured
by sensor i. We can then write the following formulas with i, j ∈ {1, . . . , n}:

1. t′i → (B ei ⊕ ti)
2. ¬t′i → (B ei ⊕ ¬ti)
3. ¬(t′i ↔ t′j)⊗ ¬wij → (ei ⊕ ej)
4. ¬B ei → ¬ei
Formulas (1) and (2) define the relationship between the measured and

the actual temperature. For an interpretion (I, S) we have that I(t′i) −
[B ei](I,S) ≤ I(ti) ≤ I(t′i) + [B ei](I,S).

Formula (3) imposes that if the difference between t′i and t′j is too big
with respect to the weight wij, then there must be something wrong with
the sensors. The size of the error depends on how big the difference between
t′i and t′j is. Note that for an interpretion (I, S) we have [¬(t′i ↔ t′j) ⊗
¬wij](I,S) = max([¬(t′i ↔ t′j)]I − [wij]I , 0).
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Reconsider the previous example: t′1 = 0.4, t′2 = 0.9 and t′3 = 0.5 and
w1,2 = 0.2, w1,3 = 0.2 and w2,3 = 0.2.

For a structure (I, S) to model formulas (3) and (4) for each sensor i, it
must hold that

(a) 0.3 ≤ I(e1) + I(e2)

(b) 0.2 ≤ I(e2) + I(e3)

(c) I(e1) ≤ [B e1](I,S)

(d) I(e2) ≤ [B e2](I,S)

(e) I(e3) ≤ [B e3](I,S)

For a fuzzy autoepistemic model S of formulas (3) and (4) it holds by in-
equalities (c)-(e) that there is a unique fuzzy interpretation I ∈ S. Morevover
it is a minimal fuzzy interpretation such that inequalities (a) and (b) are sat-
isfied. There are infinitely many fuzzy autoepistemic models S. However, we
know by the minimality of I ∈ S that I(e1) must be less or equal than 0.3,
and I(e3) less or equal than 0.2.

Let us consider some examples.

S1 = {I | I(e1) = 0.01, I(e2) = 0.29, I(e3) = 0,

0.39 ≤ I(t1) ≤ 0.41, 0.6 ≤ I(t2) ≤ 1 and I(t3) = 0.5}
and

S2 = {I | I(e1) = 0.29, I(e2) = 0.01, I(e3) = 0.19,

0.11 ≤ I(t1) ≤ 0.69, 0.89 ≤ I(t2) ≤ 0.91 and 0.31 ≤ I(t3) ≤ 0.69} .

6. Relation between normal FASP and fuzzy autoepistemic logic

We will now show that the important relation between autoepistemic logic
and ASP (Theorem 1) is preserved: fuzzy autoepistemic logic generalizes
normal FASP. Suppose we have a normal program P in which each rule is of
the form

r : a← f(b1, . . . , bm, not1 c1, . . . , notk ck),

with a an atom, bi, cj atoms and/or constants (i ∈ {1, . . . ,m}, j ∈ {1, . . . , k})
and f an (m + k)-ary function such that f is increasing in each of its argu-
ments. The residual implicator associated with ← will be written as I.
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We use a similar transformation as for normal ASP. For rule r we define
the associated fuzzy autoepistemic formula λ(r) as

f(b1, . . . , bm, N1(B c1), . . . Nk(B ck))→ a,

where Nj is the negation that is interpreted by the same negator Nj as for
notj. The resulting fuzzy autoepistemic theory is λ(P ) = {λ(r) | r ∈ P}.
First we provide a lemma that characterizes the relationship between sta-
ble expansions of λ(P ) and stable expansions of the autoepistemic theory
corresponding to a specific reduct of the program P .

Lemma 3. Consider E ∈ F(L̃B) and a normal FASP program P . Then E

is a fuzzy stable expansion of λ(P ) iff E is a fuzzy stable expansion of λ(P Ê)
with Ê = E|BP

.

Now we can prove the generalization of Theorem 1.

Theorem 2. Consider a normal FASP program P . M is an answer set of
P iff λ(P ) has a fuzzy stable expansion E such that E|BP

= M .

Example 8. Consider the FASP program P under the  Lukasiewicz semantics
from Example 5:

b ← not a

a ← not b

We compute the answer sets by using the characterization from Theorem 2.
We compute the fuzzy stable expansions of λ(P ) = {¬(B a)→ b,¬(B b)→ a}.
Note that this is the fuzzy autoepistemic theory T we encountered in Examples
6 and 7. All fuzzy stable expansions of T are thus of the form Ex with
x ∈ [0, 1] such that Ex(a) = x, Ex(b) = 1 − x. Hence all answer sets are of
the form Mx with x ∈ [0, 1] such that Mx(a) = x and Mx(b) = 1 − x. Note
that for x = 0 and x = 1 we get the answer sets from Example 1.

Remark 6. The result in Theorem 2 can be generalized to normal FASP
programs also containing contraints i.e. rules with a constant in the head.
If such rules may occur in a normal FASP program, it can be handled as
follows. A fuzzy interpretation I is an answer set of a program P ∪C with P
a normal program with only atoms in the heads and C a set of constraints,
iff I is an answer set of P and a fuzzy model of C. For example, consider
the general FASP program from the previous example and add the constraint
0.3 ← a. All answer sets are now of the form Mx with x ∈ [0, 1] such that
Mx(a) = x, Mx(b) = 1− x and x ≤ 0.3.
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Remark 7. Theorem 2 cannot be generalized to programs in which more
complex formulas are allowed in heads of rules. For example, consider the
general FASP program P containing the single rule

a⊕ b← 1

with a and b atoms and ⊕ and ← connectives from  Lukasiewicz logic. The
corresponding fuzzy autoepistemic theory would be

λ(P ) =
{

1→ a⊕ b
}
.

All formulas in λ(P ) are objective, thus by Proposition 5, λ(P ) has only 1
fuzzy stable expansion. The program P however has infinitely many answer
sets: for x ∈ [0, 1], one can easily verify that Mx(a) = x and Mx(b) = 1− x
defines an answer set of P .

In Section 7 however, we will show that FASP can be embedded in fuzzy
autoepistemic logic. We will return to this example in Example 9.

7. Relation between FASP and fuzzy autoepistemic logic

In this section we will investigate the relationship between FASP, the
fuzzy logic of minimal belief and negation-as-failure (FMBNF) which we
will define in Section 7.2 and the fuzzy autoepistemic logic introduced in
Section 4. In particular, in Section 7.3 we will show how the answer sets of a
general FASP program correspond to the models of a corresponding FMBNF
theory. In Section 7.4, we will then use this result to embed FASP in fuzzy
autoepistemic logic.

First we provide some background on the classical logic of minimal belief
and negation-as-failure.

7.1. Logic of minimal belief and negation-as-failure (MBNF)

Lin and Shoham [9] defined a propositional nonmonotonic logic which
uses two independent modal operators. One of them represents minimal
belief and the other is related to the ideas of justification and of negation-
as-failure. In this paper we consider a special case of such system: logic of
minimal belief and negation-as-failure (MBNF)[10]. It extends the logic of
grounded knowledge of Lin and Shoham [9] with the theories of epistemic
queries by Levesque [52] and Reiter [53]. Formulas of the propositional logic
of MBNF are built from a set of atoms A, the constants true and false, the
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standard propositional connectives and two modal operators B and “not”. If
a formula contains neither B nor “not” it is called objective. To make a clear
distinction with autoepistemic logic, the formulas in MBNF are often called
bimodal.

Truth is defined relative to a triple (I, Sb, Sn) with I ∈ P(A), Sb ⊆ P(A)
and Sn ⊆ P(A). Sb is the set of possible worlds for defining the meaning of
the operator B and Sn for “not”. If a formula is true in each world in Sb, it
is believed by the agent. If there exists a world in Sn in which a formula is
not true, then the agent does not believe it. In autoepistemic logic the sets
Sn and Sb coincide. The interpretation of formulas is defined as usual, e.g.

• (I, Sb, Sn) |= p iff p ∈ I

• (I, Sb, Sn) |= (¬α) iff (I, Sb, Sn) 2 α

• (I, Sb, Sn) |= Bα iff for every J ∈ Sb, (J, Sb, Sn) |= α

• (I, Sb, Sn) |= notα iff for some J ∈ Sn, (J, Sb, Sn) 2 α

for p ∈ A and a bimodal formula α.

Definition 7. Consider I ∈ P(A), S ⊆ P(A) and a MBNF theory T . The
structure (I, S) is a MBNF model of T iff

1. for each α ∈ T : (I, S, S) |= α and
2. there is no structure (I ′, S ′) such that S ⊂ S ′ and (I ′, S ′, S) |= α for

all α ∈ T .

The maximality of S in Definition 7 expresses the idea of minimal belief:
if the set of possible worlds is larger, then fewer propositions are believed. As
Lin and Shoham pointed out, minimizing knowledge is not sufficient to model
a rational agent’s knowledge or beliefs. Intuitively, the agent’s conclusions
based on negation-as-failure should be supported by his knowledge.

Disjunctive ASP programs can be simulated by theories in MBNF. For
each rule

r : a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck,

in a disjunctive ASP program P , the formula µ(r)

B b1 ∧ . . . ∧ B bm ∧ not c1 ∧ . . . ∧ not ck → B a1 ∨ . . . ∨ B an

is added to the theory µ(P ) in MBNF. Lifschitz proved the following theorem
with Mod(M) the set of all interpretations I such that M ⊆ I.
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Theorem 3. [10] Consider a disjunctive ASP program P . M is an answer
set of P iff there exists a structure (I, S) which is a MBNF model of µ(P )
such that S = Mod(M).

Remark that in Theorem 3, the interpretation I is arbitrary, which follows
easily from the fact that all occurrences of literals in µ(P ) are encapsulated
by either B or “not”. Using Theorem 3, Lifschitz and Schwarz [8], showed
that disjunctive ASP programs (even with classical negation) can also be
modelled in autoepistemic logic: For each rule

r : a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck,

in a disjunctive ASP program P , the formula σ(r)

(b1∧B b1)∧. . .∧(bm∧B bm)∧not c1∧. . .∧not ck → (a1∧B a1)∨. . .∨(an∧B an)

is added to the autoepistemic theory σ(P ).

Theorem 4. [8] Consider a disjunctive ASP program P . M is an answer
set of P iff Th(Mod(M)) is a stable expansion of σ(P ).

7.2. Fuzzy logic of minimal belief and negation-as-failure (FMBNF)

In a natural way we will generalize the definitions from Section 7.1 and
use these to establish the relationship between FASP and fuzzy autoepistemic
logic in Section 7.4. Formulas in fuzzy logic of minimal belief and negation-
as-failure (FMBNF) are built from atoms in A, constants c (c ∈ [0, 1] ∩ Q),
n-ary connectives f (n ∈ N) and the modal operators B and notj. A theory
in FMBNF is a set of formulas in FMBNF. If a formula contains neither
B nor notj it is called objective. Arbitrary formulas in FMBNF are called
bimodal.

The semantics are defined relative to a triple (I, Sb, Sn) with I ∈ F(A),
Sb ⊆ F(A) and Sn ⊆ F(A). Sb is the set of possible worlds for defining the
meaning of B and Sn for the operators notj. The interpretation of formulas
is defined as follows:

• For atoms p: [p](I,Sb,Sn) = I(p)

• For constants c: [c](I,Sb,Sn) = c

• For a bimodal formula α: [Bα](I,Sb,Sn) = infJ∈Sb [α](J,Sb,Sn)
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• For a bimodal formula α: [notj α](I,Sb,Sn) = Nj
(
infJ∈Sn [α](J,Sb,Sn)

)
,

where notj is interpreted by the negator Nj.

• For unimodal formulas αi (1 ≤ i ≤ n) and f ∈ Fn (n ∈ N) which is
interpreted by f : [0, 1]n → [0, 1]:
[f(α1, . . . , αn)](I,Sb,Sn) = f([α1](I,Sb,Sn), . . . , [αn](I,Sb,Sn))

Definition 8. Consider I ∈ F(A) and S ⊆ F(A). The structure (I, S) is a
FMBNF model of a theory T in FMBNF iff

1. for each α ∈ T : [α](I,S,S) = 1 and

2. there is no structure (I ′, S ′) such that S ⊂ S ′ and [α](I′,S′,S) = 1 for all
α ∈ T .

For a fuzzy interpretation I ∈ F(A), we define Mod(I) as the set of all
fuzzy interpretations K ∈ F(A) such that I ≤ K. With this definition, we
have the following property.

Lemma 4. Consider M,M ′ ∈ F(A). Then M < M ′ iff Mod(M ′) ⊂
Mod(M).

Remark 8. For fuzzy sets I ∈ F(B) with B ⊂ A, we define Mod(I) =
Mod(Ī) with Ī ∈ F(A) defined as follows: Ī(x) = I(x) if x ∈ B and Ī(x) = 0
if x /∈ B. Lemma 4 then also holds for M,M ′ ∈ F(B).

7.3. Embedding FASP in FMBNF

First, we investigate the relationship between FMBNF and FASP. A gen-
eral FASP program is translated to a theory in FMBNF as follows. Consider
a general FASP program P . For each rule

r : g(a1, . . . , an)← f(b1, . . . , bm, not1 c1, . . . , notk ck),

the formula µ(r)

f(B b1, . . . ,B bm, not1 c1, . . . , notk ck)→ g(B a1, . . . ,B an)

is added to the theory µ(P ) in FMBNF.
To prove the correspondence between the answer sets of P and the models

of µ(P ), we define for a general FASP program P and a fuzzy interpretation
M ∈ F(BP ), a set of fuzzy interpretations Π(P,M) ⊆ F(BP ).
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Definition 9. Consider a general FASP program P and M ∈ F(BP ). Define

πM
P = {I ∈ F(BP ) | ∀α ∈ µ(P ),∀J ∈ F(A) : [α](J,Mod(I),Mod(M)) = 1}

and
Π(P,M) = {I ∈ F(BP ) | I minimal such that I ∈ πM

P }.
Note that πM

P may not contain any minimal elements, and may even be
empty. Accordingly, in such a situation, the program P will have no answer
sets. Also, note that in Definition 9, since all atoms in µ(P ) are preceded by
a modal operator, the choice of the fuzzy interpretation J is irrelevant.

Lemma 5. Consider a positive FASP program P and M ∈ BP . Then I ∈
Π(P,M) iff I is an answer set of P .

For a general FASP program we have the following result:

Lemma 6. Consider a general FASP program P and M ∈ F(BP ). Then

Π(PM ,M) = Π(P,M).

Next, we will define a notion of equivalence for subsets of F(A).

Definition 10. Consider a FASP-program P and S1, S2 ⊆ F(A). We say
that S1 and S2 are inf-equivalent w.r.t. P if ∀x ∈ BP

inf
I∈S1

I(x) = inf
I∈S2

I(x).

For inf-equivalent sets of fuzzy interpretations we have the following re-
sult.

Lemma 7. Consider a general FASP program P and S1, S2 ⊆ F(A) inf-
equivalent w.r.t. P . Then for each r ∈ P we have

[µ(r)](I,S1,S) = [µ(r)](I,S2,S),

with I ∈ F(A) and S ⊆ F(A) arbitrary.

We need one more lemma.

Lemma 8. Consider a general FASP program P , I ∈ F(A) and S ⊆ F(A).
Then (I, S) is a FMBNF model of µ(P ) iff there exists M ∈ Π(P,M) such
that S = Mod(M).

Combining Lemmas 5-8, we get the following generalization of Theorem
3.

Theorem 5. Consider a general FASP program P , I ∈ F(A) and S ⊆ F(A).
A structure (I, S) is a FMBNF model of µ(P ) iff S = Mod(M) with M an
answer set of P .
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7.4. Embedding FASP in fuzzy autoepistemic logic

Using the result from Theorem 5, we will now generalize Theorem 4: fuzzy
autoepistemic logic generalizes FASP. The translation is done as follows. For
each rule

r : g(a1, . . . , an)← f(b1, . . . , bm, not1 c1, . . . , notk ck)

in a general FASP program P we add the formula σ(r):

f (min(b1,B b1), . . . ,min(bm,B bm), N1(B c1), . . . , Nk(B ck))→

g (min(a1,B a1), . . . ,min(an,B an)) ,

where Nj is the negation that is interpreted by the same negator Nj as for
notj to the fuzzy autoepistemic theory σ(P ).

First we provide some useful lemmas.

Lemma 9. Consider a general FASP program P and S ⊆ F(A). Then for
r ∈ P , I, J ∈ F(A) and S ′ = S ∪ {J} we have that

[µ(r)](I,S′,S) = [σ(r)](J,S).

Lemma 10. Consider a general FASP program P , I ′ ∈ F(A) and M,M ′ ∈
F(A) such that M ′ ≤M . Then for r ∈ P and for S, S ′ ⊆ F(A) such that S
and Mod(M) are inf-equivalent and S ′ and Mod(M ′) are inf-equivalent w.r.t.
P , we have that

[σ(r)](M ′,S) = [µ(r)](I′,S′,S).

We will now use Lemmas 9 and 10 to prove the main theorem:

Theorem 6. Consider a general FASP program P and M ∈ F(BP ). M is
an answer set of P iff Mod(M) is a fuzzy autoepistemic model of σ(P ).

Example 9. Reconsider the general FASP program P from Remark 7.

a⊕ b← 1

with a and b atoms and ⊕ and ← connectives from  Lukasiewicz logic. The
corresponding fuzzy autoepistemic theory is

σ(P ) =
{

1→ min(a,B a)⊕min(b,B b)
}
.
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We will use Theorem 6 to calculate all answer sets of P . Suppose I ∈ F(A)
is an arbitrary answer set of P . Rename I(a) = x and I(b) = y. By Theorem
6, it then follows that

S = Mod(I) = {J ∈ F(A) | J(a) ≥ x, J(b) ≥ y}

is a fuzzy autoepistemic model of σ(P ). Thus, what we want to know is for
which values x and y we have that S is a fuzzy autoepistemic model, or in
other words

S =

{
J ∈ F(A) | 1 ≤ min(J(a), inf

K∈S
K(a)) + min(J(b), inf

K∈S
K(b))

}
.

For an arbitrary J ∈ S we have

min(J(a), inf
K∈S

K(a)) + min(J(b), inf
K∈S

K(b)) = inf
K∈S

K(a) + inf
K∈S

K(b)

= x+ y

Hence x+ y ≥ 1 is a necessary condition. Now suppose that x+ y > 1. We
show that{

J ∈ F(A) | 1 ≤ min(J(a), inf
K∈S

K(a)) + min(J(b), inf
K∈S

K(b))

}
6⊆ S.

Indeed, consider J ∈ F(A) defined by J(a) = x and J(b) = 1−x. If x+y > 1
then

min(J(a), inf
K∈S

K(a)) + min(J(b), inf
K∈S

K(b)) = min(x, x) + min(1− x, y)

= x+ (1− x)

= 1

Thus J is an element of the set on the left hand side. If J ∈ S, then
1− x = J(b) ≥ y or x+ y ≤ 1, a contradiction. Hence J /∈ S.

8. Conclusions

In this paper we have introduced a fuzzy version of autoepistemic logic,
which can be used to reason about one’s beliefs about the degrees to which
properties are satisfied. The general theory of fuzzy autoepistemic logic is
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also useful for abductive reasoning about theories with gradual propositions.
We have shown that important properties of classical autoepistemic logic are
preserved and that the relation between answer set programming and au-
toepistemic logic remains valid when generalizing to fuzzy logics. Moreover,
we have presented two different but equivalent characterizations of answer
sets in fuzzy autoepistemic logic and in fuzzy logic of minimal belief and
negation-as-failure. These results lead to a better comprehension of how to
interpret fuzzy answer sets.

In future work, it would be interesting to see whether the implementation
of classical autoepistemic logic by using quantified boolean formulas [54] can
be extended to fuzzy logics using multi-level linear programming. If this is
indeed the case, it could be used as a basis to implement fuzzy autoepistemic
logic reasoners, as well as fuzzy answer set programming solvers. In practice,
for a general FASP program P we are interested in one of following problems:
finding an arbitrary answer set of P , finding an answer set I of P such that
for a particular atom a and a value λ ∈ [0, 1] ∩Q it holds that I(a) ≥ λ and
checking if for a particular atom a and a value λ ∈ [0, 1] ∩ Q it holds that
I(a) ≥ λ for each answer set I of P . Although it is not always possible to
list all answer sets of a program since there may be infinitely many, in [55]
we show that for an important type of general FASP programs we can solve
these problems using bilevel programming.

Appendix A. Proofs

Proof of Lemma 1

Lemma. Let Q ⊆ F(A′) such that for each I ′ ∈ Q and ϕ ∈ L̃B we have that

[Bϕ]I′ = infJ ′∈Q[ϕ]J ′. Then, for α ∈ L̃B, S =
{
I ′|A | I ′ ∈ Q

}
and I ′ ∈ Q we

have

[α](I′|A,S) = [α]I′ . (A.1)

Proof. If α is an objective formula, (A.1) is satisfied by the definition of the
satisfaction relation. For unimodal formulas, we will prove this by structural
induction.

Consider Bϕ such that (A.1) is satisfied for ϕ. For each I ′ ∈ Q it
holds by definition of Q that [Bϕ]I′ = infJ ′∈Q[ϕ]J ′ . By the induction hy-
pothesis, the latter is equal to infJ ′∈Q[ϕ](J ′

|A,S). By definition of S we have
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infJ ′∈Q[ϕ](J ′
|A,S) = infK∈S[ϕ](K,S). Finally by definition of the interpretation

of unimodal formulas, we have infK∈S[ϕ](K,S) = [Bϕ](I′|A,S).

Now suppose α = f(ϕ1, . . . , ϕn) such that (A.1) is satisfied for ϕi (i ∈
{1, . . . , n}). We conlude that

[f(ϕ1, . . . , ϕn)](I′|A,S) = f([ϕ1](I′|A,S), . . . , [ϕn](I′|A,S))

= f([ϕ1]I′ , . . . , [ϕn]I′) = [f(ϕ1, . . . , ϕn)]I′ .

Proof of Lemma 2

Lemma. Let S ⊆ F(A) and I ′ ∈ F(A′) such that for each ϕ ∈ L̃B we have

[Bϕ]I′ = Th(S)(ϕ). Then, for α ∈ L̃B we have

[α](I′|A,S) = [α]I′ . (A.2)

Proof. For objective formulas, (A.2) is satisfied by the definition of the sat-
isfaction relation. For unimodal formulas, we will prove this by structural
induction.

For formulas Bϕ with ϕ ∈ L̃B it follows easily. Indeed, by definition of
S and by Definition 6, we have [Bϕ]I′ = Th(S)(ϕ) = infK∈S[ϕ](K,S). By
definition of the interpretation of unimodal formulas, the latter is equal to
[Bϕ](I′|A,S). Thus we have shown

[Bϕ](I′|A,S) = [Bϕ]I′ .

Formulas of the form f(α1, . . . , αn) are handled as in the proof of Lemma
1.

Proof of Proposition 4

Proposition. Consider a fuzzy autoepistemic theory T in L̃B.

1. If E ∈ F(L̃B) is a fuzzy stable expansion of T , then E = Th(S) with S
a fuzzy autoepistemic model of T .

2. If S ⊆ F(A) is a fuzzy autoepistemic model of T , then E = Th(S) is a
fuzzy stable expansion of T .
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Proof. We prove this statement in two parts.

1. Suppose E is a fuzzy stable expansion of T . By Definition 4 we have
for α ∈ L̃B

[Bα]J ′ = E(α) = inf
I′∈Q

[α]I′ ,

with

Q =
{
I ′ ∈ F(A′) | I ′ |= T and [Bϕ]I′ = E(ϕ) for all ϕ ∈ L̃B

}
and J ′ ∈ Q arbitrary. Let us define

S =
{
I ′|A | I ′ ∈ Q

}
.

We prove that S is a fuzzy autoepistemic model of T and that E =
Th(S). By Lemma 1 we have that for α ∈ L̃B and I ′ ∈ Q

[α](I′|A,S) = [α]I′ .

We can now prove that S is a fuzzy autoepistemic model of T . For
I ∈ S we have that I = I ′|A for some I ′ ∈ Q. For every ϕ ∈ T , it then
holds that

[ϕ](I,S) = [ϕ](I′|A,S) = [ϕ]I′ = 1,

where the last equality follows from the observation that I ′ |= T . We
have now shown

S ⊆
{
I ∈ F(A) | ∀ϕ ∈ T : [ϕ](I,S) = 1

}
.

For the converse inclusion, consider an interpretation I ∈ F(A) such
that [ϕ](I,S) = 1 for each ϕ ∈ T . We will now construct I ′ ∈ Q such
that I ′|A = I. For a ∈ A, we define I ′(a) = I(a) and for a formula

α ∈ L̃B, we define [Bα]I′ = E(α). It is then clear that I ′|A = I. Indeed,
by definition of I and by Lemma 1 it follows that for each α ∈ T we
have [α]I′ = [α](I′|A,S) = [α](I,S) = 1. Hence I ′ |= T and thus I ′ ∈ Q. It

follows that

S =
{
I ∈ F(A) | ∀ϕ ∈ T : [ϕ](I,S) = 1

}
.

Finally, we prove that E(α) = Th(S)(α) for each unimodal formula α.
For any I ′ ∈ Q we have by definition that E(α) = [Bα]I′ and by Lemma
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1 that [Bα]I′ = [Bα](I′|A,S). We also have [Bα](I′|A,S) = infK∈S[α](K,S),

which is equal to Th(S)(α). We conclude

E(α) = Th(S)(α).

2. Now suppose we have a fuzzy autoepistemic model S of T . For each
unimodal formula α, we define E(α) as follows

E(α) = inf
I′∈M

[α]I′ ,

with

M =
{
I ′ ∈ F(A′) | I ′|A ∈ S and ∀ϕ ∈ L̃B : [Bϕ]I′ = Th(S)(ϕ)

}
.

We show that E = Th(S) and that E is a fuzzy stable expansion of T .

By Lemma 2, it follows that for I ′ ∈M and α ∈ L̃B

[α](I′|A,S) = [α]I′ .

Note that, similar as earlier in the proof, for each I ∈ S we can
find I ′ ∈ M such that I ′|A = I. Thus by definition of M we have

S =
{
I ′|A | I ′ ∈M

}
. These two observations lead to the equality

E = Th(S). Indeed, for α ∈ L̃B, we have

Th(S)(α) = inf
I∈S

[α](I,S) = inf
I′∈M

[α](I′|A,S) = inf
I′∈M

[α]I′ = E(α).

To see that E is a fuzzy stable expansion of T , it is sufficient to prove
that M is equal to

P =
{
I ′ ∈ F(A′) | I ′ |= T and [Bϕ]I′ = E(ϕ) for all ϕ ∈ L̃B

}
.

First, we show M ⊆ P . Let I ′ ∈ M . By Lemma 2, it follows that
I ′ |= T : for α ∈ T we have [α]I′ = [α](I′|A,S) = 1, where the last equality

holds since S is a fuzzy autoepistemic model of T . It remains to be
shown that [Bϕ]I′ = E(ϕ) for each ϕ ∈ L̃B. This follows easily:

E(ϕ) = Th(S)(ϕ) = inf
I∈S

[ϕ](I,S) = [Bϕ](I′|A,S) = [Bϕ]I′ ,

where the last equality follows from Lemma 2.
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To conclude the proof, we show that P ⊆ M . Recall that we already
showed E = Th(S). It follows that

P ⊆
{
I ′ ∈ F(A′) | ∀ϕ ∈ L̃B : [Bϕ]I′ = Th(S)(ϕ)

}
.

To show that P ⊆ M , it is sufficient to show that for I ′ ∈ P it holds
that I ′|A ∈ S. From Lemma 2 and the fact that I ′ |= T , we have that

[α](I′|A,S) = [α]I′ = 1,

for α ∈ T . This means that I ′|A ∈ S since S is a fuzzy autoepistemic
model of T .

Proof of Proposition 5

Proposition. Every set of objective formulas in L̃B has a unique fuzzy stable
expansion.

Proof. By Definition 5, S is a fuzzy autoepistemic model S of T iff

S =
{
I ∈ F(A) | ∀ϕ ∈ T : [ϕ](I,S) = 1

}
.

Since T only contains objective formulas, we have for ϕ ∈ T that [ϕ](I,S) =
[ϕ]I . Thus

S = {I ∈ F(A) | ∀ϕ ∈ T : [ϕ]I = 1}

is the unique fuzzy autoepistemic model of T . By Proposition 4 there is
exactly one fuzzy stable expansion.

Proof of Lemma 3

Lemma. Consider E ∈ F(L̃B) and a normal FASP program P . Then E is

a fuzzy stable expansion of λ(P ) iff E is a fuzzy stable expansion of λ(P Ê)
with Ê = E|BP

.
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Proof. We need to prove that for each α ∈ L̃B

inf
{

[α]I′ | I ′ |= λ(P ) and [Bϕ]I′ = E(ϕ) for all ϕ ∈ L̃B, I
′ ∈ F(A′)

}
= inf

{
[α]I′ | I ′ |= λ(P Ê) and [Bϕ]I′ = E(ϕ) for all ϕ ∈ L̃B, I

′ ∈ F(A′)
}

We will show this by proving that I ′ |= λ(P ) iff I ′ |= λ(P Ê) as soon as

[Bϕ]I′ = E(ϕ) for each ϕ ∈ L̃B.
Indeed, for such interpretations I ′ we have

[Nj(B c)]I′ = Nj([B c]I′) = Nj(E(c)) = Nj(Ê(c)) = [notj c]Ê,

for c ∈ BP . Thus, for a rule r

a← f(b1, . . . , bm, not1 c1, . . . , notk ck)

we have

[λ(rÊ)]I′ = [f(b1, . . . , bm, [not1 c1]Ê, . . . , [notk ck]Ê)→ a]I′

= I
(
f(I ′(b1), . . . , I

′(bm), [not1 c1]Ê, . . . , [notk ck]Ê), I ′(a)
)

= I
(
f(I ′(b1), . . . , I

′(bm), [N1(B c1)]I′ , . . . , [Nk(B ck)]I′), I
′(a)
)

= [f(b1, . . . , bm, N1(B c1), . . . , Nk(B ck))→ a]I′

= [λ(r)]I′

Proof of Theorem 2

Theorem. Consider a normal FASP program P . M is an answer set of P
iff λ(P ) has a fuzzy stable expansion E such that E|BP

= M .

Proof. (⇒) First suppose M is an answer set of P . By definition, M is the
minimal fuzzy model of PM and thus also the minimal fuzzy model of
λ(PM) since PM is a program without negation-as-failure. Since λ(PM)
is a set of objective formulas, it has exactly one fuzzy stable expansion
E (Proposition 5). By Proposition 4 we know that E = Th(S) with S
the fuzzy autoepistemic model of λ(PM):

S =
{
I ∈ F(A) | ∀α ∈ λ(PM) : [α]I = 1

}
.
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Since S contains all fuzzy models of λ(PM) and M is the unique min-
imal fuzzy model we have

E(a) = Th(S)(a) = inf
I∈S

I(a) = M(a)

for a ∈ BP . Hence E|BP
= M . It follows that E is a fuzzy stable ex-

pansion of λ(PM) = λ(P Ê), with Ê = E|BP
. By Lemma 3 we conclude

that E is a fuzzy stable expansion of λ(P ).

(⇐) Now suppose that λ(P ) has a fuzzy stable expansion E. We prove that
M = E|BP

= Ê is an answer set of P by showing that M is the minimal

fuzzy model of P Ê or thus the minimal fuzzy model of λ(P Ê) since P Ê

is a program without negation-as-failure. By Lemma 3 we know that
E is a fuzzy stable expansion of λ(P Ê). This implies by Proposition 4
that E = Th(S) with

S =
{
I ∈ F(A) | ∀α ∈ λ(P Ê) : [α]I = 1

}
.

We now prove that M is a fuzzy model of λ(P Ê) by using the definition

of S: for α ∈ λ(P Ê) we have

[α]M = [α]Ê = E(α) = Th(S)(α) = inf
I∈S

[α](I,S) = 1.

To show that M is the minimal fuzzy model, we consider an arbitrary
fuzzy model I of λ(P Ê). Since S contains all fuzzy models of λ(P Ê), I
must be an element of S. For a ∈ BP we then have

M(a) = Ê(a) = E(a) = Th(S)(a) = inf
K∈S

K(a) ≤ I(a).

Proof of Lemma 4

Lemma. Consider M,M ′ ∈ F(A). Then M < M ′ iff Mod(M ′) ⊂ Mod(M).

Proof. Remark that M ≤ M ′ iff Mod(M ′) ⊆ Mod(M). Suppose that M <
M ′. Since M ≤ M ′ it follows that Mod(M ′) ⊆ Mod(M). If Mod(M ′) =
Mod(M), then it would follow that M ′ ≤ M , a contradiction. Similary,
Mod(M ′) ⊂ Mod(M) implies that M < M ′.
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Proof of Lemma 5

Lemma. Consider a positive FASP program P and M ∈ BP . Then I ∈
Π(P,M) iff I is an answer set of P .

Proof. We need to prove that Π(P,M) is exactly the set of the minimal ele-
ments of {I ∈ F(BP ) | I |= P}. By definition of Π(P,M), it is thus sufficient
to prove that I ∈ πM

P iff I |= P .
A rule r in P is of the form

r : g(a1, . . . , an)← f(b1, . . . , bm).

Note that for I ∈ F(BP ) we have I(a) = infK∈Mod(I)K(a) for each a ∈ BP .
The statement then follows:

I |= P

⇔ ∀r ∈ P : f(I(b1), . . . , I(bm)) ≤ g(I(a1), . . . , I(an))

⇔ ∀r ∈ P : f( inf
K∈Mod(I)

K(b1), . . . , inf
K∈Mod(I)

K(bm))

≤ g( inf
K∈Mod(I)

K(a1), . . . , inf
K∈Mod(I)

K(an))

⇔ ∀r ∈ P, ∀J ∈ F(A) :

f([B b1](J,Mod(I),Mod(M)), . . . , [B bm](J,Mod(I),Mod(M)))

≤ g([B a1](J,Mod(I),Mod(M)), . . . , [B an](J,Mod(I),Mod(M)))

⇔ ∀r ∈ P, ∀J ∈ F(A) :

[f(B b1, . . . ,B bm)→ g(B a1, . . . ,B an)](J,Mod(I),Mod(M)) = 1

⇔ ∀α ∈ µ(P ),∀J ∈ F(A) :

[α](J,Mod(I),Mod(M)) = 1

Proof of Lemma 6

Lemma. Consider a general FASP program P and M ∈ F(BP ). Then

Π(PM ,M) = Π(P,M).
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Proof. By Definition 9, it is sufficient to check that for I ∈ BP :

∀α ∈ µ(P ),∀J ∈ F(A) : [α](J,Mod(I),Mod(M)) = 1

is equivalent with

∀α ∈ µ(PM),∀J ∈ F(A) : [α](J,Mod(I),Mod(M)) = 1

Hence for a rule in P

r : g(a1, . . . , an)← f(b1, . . . , bm, not1 c1, . . . , notk ck)

it is sufficient to prove that for each J ∈ F(A) we have

[µ(r)](J,Mod(I),Mod(M)) = 1⇔ [µ(rM)](J,Mod(I),Mod(M)) = 1.

Thus we need to show that for each atom cj (j ∈ {1, . . . , k}) we have

[notj cj](J,Mod(I),Mod(M)) = [B([notj cj]M)](J,Mod(I),Mod(M)).

But this follows easily by the definitions and since [notj cj]M is a constant:

[B([notj cj]M)](J,Mod(I),Mod(M)) = inf
K∈Mod(I)

[[notj cj]M ](K,Mod(I),Mod(M))

= [notj cj]M

= Nj(M(cj))

= Nj

(
inf

K∈Mod(M)
K(cj)

)
= [notj cj](J,Mod(I),Mod(M))

Proof of Lemma 7

Lemma. Consider a general FASP program P and S1, S2 ⊆ F(A) inf-
equivalent w.r.t. P . Then for each r ∈ P we have

[µ(r)](I,S1,S) = [µ(r)](I,S2,S),

with I ∈ F(A) and S ⊆ F(A) arbitrary.

Proof. The lemma follows straightforwardly from the way in which the se-
mantics of the modality B is defined in FMBNF.

42



Proof of Lemma 8

Lemma. Consider a general FASP program P , I ∈ F(A) and S ⊆ F(A).
Then (I, S) is a FMBNF model of µ(P ) iff there exists M ∈ Π(P,M) such
that S = Mod(M).

Proof. (⇒) First assume that (I, S) is a FMBNF model of µ(P ). By Defi-
nition 8, this means that

(a) for each α ∈ µ(P ): [α](I,S,S) = 1 and
(b) there is no structure (I ′, S ′) such that S ⊂ S ′ and [α](I′,S′,S) = 1

for all α ∈ µ(P ).

Define
M : BP → [0, 1] : x 7→ inf

J∈S
J(x).

For K ∈ S, we then have M(x) = infJ∈S J(x) ≤ K(x) for all x ∈
BP . Since M̄(x) = 0 ≤ K(x) for x /∈ BP , we conclude that S ⊆
Mod(M). By definition of M , we have that infJ∈S J(x) = M(x) =
infJ∈Mod(M) J(x) for all x ∈ BP . Hence S and Mod(M) are inf-equivalent
w.r.t P . By Lemma 7, it follows that [α](I,Mod(M),S) = [α](I,S,S) = 1 for
all α ∈ µ(P ). Now suppose that S ⊂ Mod(M), then we have a con-
tradiction since S is maximal under all S ′ such that [α](I,S′,S) = 1 for
all α ∈ µ(P ). Thus S = Mod(M) and [α](I,Mod(M),Mod(M)) = 1 for all
α ∈ µ(P ). To prove that M ∈ Π(P,M) it remains to show that M is
minimal under all M ′ ∈ F(BP ) such that for all J ∈ F (A) and for all
α ∈ µ(P ) it holds that [α](J,Mod(M ′),Mod(M)) = 1. Suppose this is not
the case and there exists an M ′ ∈ F(BP ) such that M ′ < M and for all
J ∈ F (BP ) and for all α ∈ µ(P ) it holds that [α](J,Mod(M ′),Mod(M)) = 1
By Lemma 4, it follows that S = Mod(M) ⊂ Mod(M ′). This is in
contradiction with the maximality of S.

(⇐) Now assume S = Mod(M) with M ∈ Π(P,M). By Definition 9, this
means that M is minimal under all M ′ ∈ F(BP ) such that for all
α ∈ µ(P ) and for all J ∈ F(A) it holds that [α](J,Mod(M ′),Mod(M)) = 1.
Thus, we already know that [α](I,S,S) = [α](I,Mod(M),Mod(M)) = 1 for all
α ∈ µ(P ). To show that (I, S) is a FMBNF model of µ(P ), it remains
to be showed that there is no structure (I ′, S ′) such that Mod(M) ⊂ S ′

and [α](I′,S′,Mod(M)) = 1 for all α ∈ µ(P ). Suppose there exists such a
structure (I ′, S ′). Define

M ′ : BP → [0, 1] : x 7→ inf
J∈S′

J(x).
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Similar as in the first part of the proof we have that S ′ ⊆ Mod(M ′)
and that S ′ and Mod(M ′) are inf-equivalent w.r.t. P . By Lemma 7 we
then have that [α](I′,Mod(M ′),Mod(M)) = [α](I′,S′,Mod(M)) = 1 for all α ∈
µ(P ). Since µ(P ) only contains atoms preceded by a modal operator,
it also follows that for all J ∈ F(BP ) and for all α ∈ µ(P ) we have
[α](J,Mod(M ′),Mod(M)) = 1. But this contradicts the minimality of M .
Indeed, since Mod(M) ⊂ S ′ ⊆ Mod(M ′), it follows by Lemma 4 that
M ′ < M .

Proof of Theorem 5

Theorem 7. Consider a general FASP program P , I ∈ F(A) and S ⊆ F(A).
A structure (I, S) is a FMBNF model of µ(P ) iff S = Mod(M) with M an
answer set of P .

Proof.

M is an answer set of P

⇔M is an answer set of PM (definition answer set)

⇔M ∈ Π(PM ,M) (Lemma 5)

⇔M ∈ Π(P,M) (Lemma 6)

⇔ (I,Mod(M)) is a FMBNF model of µ(P ) (Lemma 8)

Proof of Lemma 9

Lemma 11. Consider a general FASP program P and S ⊆ F(A). Then for
r ∈ P , I, J ∈ F(A) and S ′ = S ∪ {J} we have that

[µ(r)](I,S′,S) = [σ(r)](J,S).

Proof. Consider a rule r ∈ P

r : g(a1, . . . , an)← f(b1, . . . , bm, not1 c1, . . . , notk ck).
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Since S ′ = S ∪ {J} we have that infK∈S′ K(a) = min(J(a), infK∈S K(a)) for
each a ∈ A. It follows that

[µ(r)](I,S′,S) = [f(B b1, . . . ,B bm, not1 c1, . . . , notk ck)→ g(B a1, . . . ,B an)](I,S′,S)

= I

(
f

(
inf
K∈S′

K(b1), . . . , inf
K∈S′

K(bm), N1( inf
K∈S

K(c1)),

. . . , Nk( inf
K∈S

K(ck))

)
, g

(
inf
K∈S′

K(a1), . . . , inf
K∈S′

K(an)

))

= I

(
f

(
min

(
J(b1), inf

K∈S
K(b1)

)
, . . . ,min

(
J(bm), inf

K∈S
K(bm)

)
,

N1( inf
K∈S

K(c1)), . . . , Nk( inf
K∈S

K(ck))

)
,

g

(
min

(
J(a1), inf

K∈S
K(a1)

)
, . . . ,min

(
J(an), inf

K∈S
K(an)

)))
= [f(min(b1,B b1), . . . ,min(bm,B bm), N1(B c1), . . . , Nk(B ck))

→ g(min(a,B a1), . . . ,min(an,B an))](J,S)

= [σ(r)](J,S)

Proof of Lemma 10

Lemma. Consider a general FASP program P , I ′ ∈ F(A) and M,M ′ ∈
F(A) such that M ′ ≤M . Then for r ∈ P and for S, S ′ ⊆ F(A) such that S
and Mod(M) are inf-equivalent and S ′ and Mod(M ′) are inf-equivalent w.r.t.
P , we have that

[σ(r)](M ′,S) = [µ(r)](I′,S′,S).

Proof. Consider a rule r ∈ P :

r : g(a1, . . . , an)← f(b1, . . . , bm, not1 c1, . . . , notk ck).

Since S and Mod(M) are inf-equivalent w.r.t. P (Definition 10), we have
M(a) = infI∈Mod(M) I(a) = infI∈S I(a) for each a ∈ BP . By the inf-equivalence
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of S ′ and Mod(M ′), we have M ′(a) = infI∈Mod(M ′) I(a) = infI∈S′ I(a) for each
a ∈ BP . It follows that

[σ(r)](M ′,S)

=[f(min(b1,B b1), . . . ,min(bm,B bm), N1(B c1), . . . , Nk(B ck))

→ g(min(a1,B a1), . . . ,min(an,B an))](M ′,S)

=I

(
f

(
min

(
M ′(b1), inf

K∈S
K(b1)

)
, . . . ,min

(
M ′(bm), inf

K∈S
K(bm)

)
,

N1( inf
K∈S

K(c1)), . . . , NK( inf
K∈S

K(ck))

)
,

g

(
min

(
M ′(a1), inf

K∈S
K(a1)

)
, . . . ,min

(
M ′(an), inf

K∈S
K(an)

)))

=I

(
f

(
min

(
M ′(b1),M(b1)

)
, . . . ,min

(
M ′(bm),M(bm)

)
,

N1( inf
K∈S

K(c1)), . . . , NK( inf
K∈S

K(ck))

)
,

g

(
min

(
M ′(a1),M(a1)

)
, . . . ,min

(
M ′(an),M(an)

)))

=I

(
f
(
M ′(b1), . . . ,M

′(bm), N1( inf
K∈S

K(c1)), . . . , NK( inf
K∈S

K(ck))
)
,

g
(
M ′(a1), . . . ,M

′(an)
))

=I

(
f
(

inf
K∈S′

K(b1), . . . , inf
K∈S′

K(bm), N1( inf
K∈S

K(c1)), . . . , NK( inf
K∈S

K(ck))
)
,

g
(

inf
K∈S′

K(a1), . . . , inf
K∈S′

K(an)
))

=[f(B b1, . . . ,B bm, not1 c1, . . . , notk ck)→ g(B a1, . . . ,B an)](I′,S′,S)

=[µ(r)](I′,S′,S)
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Proof of Theorem 6

Theorem 8. Consider a general FASP program P and M ∈ F(BP ). M is
an answer set of P iff Mod(M) is a fuzzy autoepistemic model of σ(P ).

Proof. (⇒) First suppose that M is an answer set of P . By Theorem 5,
it follows that (I, S) with S = Mod(M) and I ∈ F(A) arbitrary is a
FMBNF model of µ(P ). By Definition 8 this means that
(a) for each α ∈ µ(P ): [α](I,S,S) = 1 and
(b) there is no structure (I ′, S ′) such that S ⊂ S ′ and [α](I′,S′,S) = 1

for all α ∈ µ(P ).
We need to prove that S is a fuzzy autoepistemic model of σ(P ), or by
Definition 5 that

S =
{
K ∈ F(A) | ∀ϕ ∈ σ(P ) : [ϕ](K,S) = 1

}
.

Let J ∈ S, thus S ∪ {J} = S. By Lemma 9 it follows that [σ(r)](J,S) =
[µ(r)](I,S,S) = 1 for all r ∈ P . Hence

J ∈
{
K ∈ F(A) | ∀ϕ ∈ σ(P ) : [ϕ](K,S) = 1

}
as soon as J ∈ S. Conversely, suppose that J ∈ F(A) such that
[ϕ](J,S) = 1 for every ϕ ∈ σ(P ). If J /∈ S define S ′ = S ∪ {J}. By
Lemma 9 it follows that [µ(r)](J,S′,S) = [σ(r)](J,S) = 1 for each r ∈ P .
This contradicts the maximality of S.

(⇐) Now suppose that S = Mod(M) is a fuzzy autoepistemic model of
σ(P ). By Theorem 5, it is sufficient to show that (I, S) with I an
arbitrary fuzzy interpretation in F(A) is a FMBNF model of µ(P ). By
Definition 8 we need to show that
(a) for each α ∈ µ(P ): [α](I,S,S) = 1 and
(b) there is no structure (I ′, S ′) such that S ⊂ S ′ and [α](I′,S′,S) = 1

for all α ∈ µ(P ).
Let J ∈ S, thus S∪{J} = S. By Lemma 9, it follows that [µ(r)](I,S,S) =
[σ(r)](J,S) for each r ∈ P . Since S is a fuzzy autoepistemic model of
σ(P ) and thus

S =
{
K ∈ F(A) | ∀ϕ ∈ σ(P ) : [ϕ](K,S) = 1

}
we have [α](I,S,S) = 1 for all α ∈ µ(P ). Now suppose there is a structure
(I ′, S ′) such that S ⊂ S ′ and [α](I′,S′,S) = 1 for all α ∈ µ(P ). Define

M ′ : BP → [0, 1] : a 7→ inf
J∈S′

J(a).
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For K ∈ S ′ it holds that M ′(a) = infJ∈S′ J(a) ≤ K(a) for all a ∈
BP , hence S ′ ⊆ Mod(M ′) and thus Mod(M) = S ⊂ S ′ ⊆ Mod(M ′).
By Lemma 4 it follows that M ′ < M . Note that S ′ and Mod(M ′)
are inf-equivalent w.r.t. P by definition of M ′. By Lemma 10 it then
follows that [σ(r)](M ′,S) = [µ(r)](I′,S′,S) = 1 which implies that M ′ ∈
S = Mod(M) since S is a fuzzy autoepistemic model of σ(P ). Hence
M ≤M ′, a contradiction.
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[49] R. Hähnle, Proof theory of many-valued logic - linear optimization - logic
design: connections and interactions, Soft Computing 1 (1997) 107–119.

[50] T. Alsinet, L. Godo, A complete calcultis for possibilistic logic program-
ming with fuzzy propositional variables, in: Uncertainty in Artificial
Intelligence, 2000, pp. 1–10.

[51] L. Yu, N. Wang, X. Meng, Real-time forest fire detection with wire-
less sensor networks, in: Proceedings of the Wireless Communication
Networking and Mobile Computing International Conference, 2005, pp.
1214–1217.

[52] H. Levesque, Foundations of a functional approach to knowledge repre-
sentation, Artificial Intelligence 23 (2) (1984) 155–212.

[53] R. Reiter, What should a database know?, Journal of Logic Program-
ming 14 (1991) 127–153.

[54] U. Egly, T. Eiter, H. Tompits, S. Woltran, Solving Advanced Reason-
ing Tasks Using Quantified Boolean Formulas, in: Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence, 2000,
pp. 417–422.

[55] M. Blondeel, S. Schockaert, M. De Cock, D. Vermeir, NP-completeness
of fuzzy answer set programming under  Lukasiewicz semantics, submit-
ted.

52


