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Bosons confined in optical lattices: The numerical renormalization group revisited
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A Bose-Hubbard model, describing bosons in a harmonic trap with a superimposed optical lattice, is studied
using a fast and accurate variational technigM&+NRG): the Gutzwiller mean-fieldMF) ansatz is com-
bined with a numerical renormalization grodNRG) procedure in order to improve on both. Results are
presented for one, two, and three dimensions, with particular attention to the experimentally accessible mo-
mentum distribution and possible satellite peaks in this distribution. In one dimension, a comparison is made
with exact results obtained using stochastic series expansion.
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I. INTRODUCTION (DMRG) [16,17, yielding the most accurate results at
present. Longer-range interactions can cause charge density
The recent experiments by Greiner al. [1] on bosons \ave, stripe or even supersolid ordé7—19. Disorder and
confined in an optical lattice demonstrated the transition beimpurities can have dramatic effecfs,11,17,20—-2p and
tween a Mott phase and a superfluid ph¢SE), as was first  |ead to even other phases. The model with a quadratic con-
predicted by Jaksclet al. [2]. The experiments are ad- fining potential[2] has been addressed in one dimen$isj
equately described by a single band Bose-Hubbard Hamiland for a small lattice in three dimensiof#4], using quan-
tonian with on-site repulsion only. This type of repulsion tum Monte Carlo methods.
leads to two different phases. A Mott insulating phase can In view of the enormous success of DMR[Z5] in
exist at commensurate fillings, with a quantum phase transi0sonic[17] and fermionic[26] real-space lattice models in
tion to a superfluid as the density is shifted or the interactiorPne dimension, DMRG has been extended beyond these
strength weakened. In the experiments however, the qudnodels, towards applications in metallic graifgs], quan-
dratic confining potential adds a new term to the Hamiltoniarfum chemistry[28,29, and first attempts have even been

that cuts off any long-range correlations, but Mott and supertndertaken towards applications in nuclear phygscs. Un-
fortunately, an exact DMRG study in all three dimensions of

fluid regions can still occur. The experiments led to a com—h B Hubbard model i feasible with
plete revival of interest in the bosonic model, thanks to then® Bose-Hubbard model Is not feasible with current com-

unprecedented control over the physical parameters con{?ﬁuete(r)lf’j‘;‘p’enrmagrigl V\rlsr?o? rﬁglti);;?igtrl]al |rr25g|)¥(ér)nmvﬁ“gg
pared to former realizations. g '

: o . . had only a poor reputation in dealing with long-range inter-
Other experimental realizations of bosonic lattice Systems, ions between fermior81,32, but we found it useful for
include “He on graphite[3], superconducting islands or PN

. : ; X bosonic systemésee also Ref[33)).
grains connected bY Josephson J_unCt'M]S In this case, The basic philosophy of this work consists of extending
Cooper paired fermions are considered as bosons, at le

. v. R | h b d ) e-site mean-field theory to larger blocks, following the
approximately. Recently, attempts have been made to InVegqe . of the renormalization group method. A fully variational
tigate at what scales the fermionic nature of paired fermion

| 45 dth It is that for th | Thethod is obtained which incorporates correlations beyond
can play a rolgd], and the result is that for the energy scales oo, field at low computational cost and which is able, un-

considered here, individual atoms can safely be described tm(e NRG, to accurately describe the different phases of the
a oSn_e-bosr?n opekrat';tbfl,:_ai expelctgd. he d L ¢ Mott-SF transition. We judged the computational cost as pri-
H ince tde wor hy |sd_eet al.[ 2 rt] eB etermlr;at\)tlog 0 4jordial, so that extensions to large latices are in reach and
the ground-state phase diagram of the Bose-Hubbard modgy, 4t 4 direct simulation of the experimental parameters

VAV'thI o_n-S|tedr_epuIS|9n only ha]f %ttrﬁded a lot cg‘ attention..on pe accomplished, while the computational uncertainties
nalytic studies using mean-field theofg—8] and renor-  oqin well within the experimental uncertainty range. A

malization group techniqugs] led to a deeper physical un-- gisagyantage of the method is the breaking of number con-
derstand;)ng of the model. Strong coupl;]qlg expans[@r,ﬂsl\()]/l servation during the intermediate steps of the renormaliza-
gave a better quantitative picture, while quantum Mont&;,, hrocedure. In the final step particle number should be

garlo s]mulafllck)]ns[ll—%jg were carlned out in one a?d.two restored in principle, but this restoration is only partial when
Imensions. The one-dimensional case was recently InVesty, i, ticient amount of states are kept during the model
gated using the density-matrix renormalization group,

space truncation. The quantity that directly relates to experi-
ment is the momentum distribution. It was argued in Ref.

[24] that the appearance of satellite peaks in the momentum
*Electronic address: Lode.Pollet@UGent.be distribution signals the appearance of a Mott region in the
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center of the trap. We will especially focus on the momentum 70
distribution and on the issue of the satellite peaks.

The organization of the paper is as follows. In Sec. Il we
explain the method, in Sec. Il we compare it to exact diago- g
nalization methods for small latices, and in Sec. IV we
present results in one, two and three dimensions. We enc 40 |

with the conclusion and the acknowledgments. 5
30
Il. A NUMERICAL RENORMALIZATION GROUP 20
METHOD 10

Bosons in an optical lattice realize a Bose-Hubbard
Hamiltonian[2] and more specifically, we consider here the - : ' ' ' ' N
soft-core Bose-Hubbard Hamiltonian in the grand-canonical 5 10 15 20 25 30
ensemble ird dimensions and subject to a confining field, Uz

1 FIG. 1. The mean-field phase diagram in the units we adopt
throughout the paper. The Mott lobes are indicated and surrounded
H=-t2 blb+ U2 n(n -+ (- (1) b agu erfluidp P
(id) i i Y asup :

The sumi, j) is over the nearest neighbors only. The opera- A first approximation for the Bose-Hubbard model is the
tor b creates a boson on lattice sitavhile b; removes it. ~ Gutzwiller variational ansat 8] leading to a decoupling of
The operaton; counts the local density on siteThe opera-  the individual lattice sites and to a mean-field thedwF).
tor N denotes the total number operatbi==; n,. We take 'I_'hls assumption can be described by the following substitu-
the distance between adjacent sites equalae1. The con-  ton:

fining field acts as a local site dependent chemical potential . i .

& that can be added to the chemical potentiao form u; bib; O by + by = s, 2
=¢—u. In case of a site dependent we speak of the inho-

mogeneous or confined model, in case of a unifqunwe  With ¢ =(by). This leads to a model where particle number
speak of the unconfined or homogeneous model. We alseymmetry can be broken, and that can exhibit a superfluid
define the coordination numbez=2d as the number of and a Mott-insulator behavior.

neighbors of each site and consider a linear, square, or cubic In order to obtain a higher accuracy, we extend the MF

lattice of lengthL along each axis. The energy scale is set byapproximation to a renormalization group procedure by tak-
settingt=1. ing more correlations into account. It works as follows. Just

This Hamiltonian is the easiest bosonic model in whichas in MF, first break down the entire lattice to single sites and
two different effects compete: the kinetic energy is diagonasolve the problem for each site separately. The Hilbert space
in momentum space and tries to delocalize the particles ovés truncated so that only a few basis states are kept on every
the sites, while the potential energy is diagonal in coordinat&ite. In NRG this state selection is based on energy solely,
space and localizes the particles. meaning that we keep th¢, eigenstates corresponding to the

We first discuss the physics of the model in absence olNs lowest-energy eigenvalues. The two sites are combined
disorder in one dimensiof6,34. When the potential energy now to form a small block. At this stage, the MF approxima-
dominates, the system forms a Mott insulating phase at intetion (2) for the hopping term between the two sites can be
ger densities, which remain pinned at these integer valueganceled by adding a terfw; —b/)(14,—b), after which the
and the phase is incompressible. The Mott lobes are suHamiltonian for the two sites becomes
rounded by compressible SF phases, where the densities
fluctuate. This is vizualized in the mean-field phase diagram Hip=Hi+Hy+ X (4 -b)(g—-b)+Hc. (3
Fig. 1, which can easily be calculat¢6,34]. Note that this ielje2
phase diagram is approximate, in the true phase diagram the
n=1 lobe, e.g., extends to smaller valuestbfind the lobe Here,H; andH, denote the Hamiltonians of the left and right
closes in a pointlike fashion. There are two different phasesites, respectively, and the sum runs over adjacent sites that
transitions possible. When keeping the density constant at a@ach belong to a different block. In this first step, just the
integer value, phase fluctuations dominate and the transitiotwo sites 1 and 2 are meant. The Hamiltontdyy is diago-
is of the Berezinskii-Kosterlitz-Thouleg8KT) type. This nalized in the space spanned by the product states, which
transition can only occur at the tip of the insulator lobe,are constructed from the individual basis states of each
which as a consequence closes in the pointlike fashion. Theite. After diagonalization, only a few states are kept
generic phase transition is driven by density fluctuations andgain. Physical observables require now a rotation, since

belongs to a different universality class. For a gendrel-  we have performed a basis rotation. The procedure repeats
mension, the BKT transition generalizes to theitself: the small blocks can be joined to form larger blocks
(d+1)-dimensional XY universality class. which will themselves be the building blocks of still larger
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blocks etc. This procedure is very similar to DMR@5]. - ; Shth. 4 cin(kivein(kivhih.
The main differences are that in DMRG the selection of ' iGEERcos(chos(kJ)bl by + sin(ki)sin(kp)biby
the states is based on the eigenvalues of the density matrix

instead of on the lowest-energy values, and second that in =(2 cos(ki)b?)(E COS(kj)bj)+ (E sin(ki)biT)
NRG one combines block&xploiting symmetry, while tel JeR fel

in DMRG one extends the blocks site by site. In NRG one X(E sin(kj)b-)

performs one calculation till the lattice is entirely built up, <R !

while in DMRG one sweeps again through the lattice till " .

convergence is obtained. DMRG yields results with a =C Gyt S S (5)
higher accuracy, but its computational time and memory . N
cost requirements are beyond current computer power fo?rig(t:i?)rﬁ? z:]:(;/?irtlﬁirl:ﬁ;tri)oi?%k g:;;gfsar_rchoemb;?tast'%n\‘j‘vrﬁirt]he
dimensions higher than one. i i OP : P

A new idea is that we improve on the standard NRG pro—bOth sitesi andj belong to the same blodkeft (L) or right

cedure by adding source terms to the Hamiltonian on th&¢R)] have been omitted, since their updating consists only of
edges of the blocks. These terms compensate for the intera-otation to the newly truncated basis. When the sites belong
tion with the other blocks in a mean-field way. In this way. to different blocks, there is also a contribution of the cross

the Hamiltonian of the local block feels already an averagd®€'™ just as with the operatd¥?, but it still suffices to up-

contribution of the blocks that have not yet accounted fordate theC andS operators. The extension to higher dimen-

and that have a nonlocal influence on the block under con3ions of EqQ(5) is straightforward. We normalize the Fourier

sideration. After the two joining blocks are taken together,f@nsform by adding prefactors Lo that the trace of the

these terms need to be extracted again. If it were possible €SIty matrix in momentum space yields the number of par-

work in an infinite Hilbert space the net effect of theselCleS in the system.

source terms would be zero, but in a truncated space the

calculation will depend on the values of these terms. Foljj. COMPARING THE METHOD WITH EXACT RESULTS

example, suppose we are looking for a Mott phase and these FOR SMALL LATTICES

source terms are set to finite values, then we will not find the _ . _ o .

Mott phase if the source term yields contributions to states [N this section we consider a small lattice in one dimen-

higher than the cutoff. This surely will be the case near theSion and in the absence of any kind of disorder.

boundary of the Mott lobe in a homogeneous system. We We have checked the code by comparing the resulting

have also tried to apply improved periodic boundary condi-energies to direct Lanczos diagonalization values for a lattice

tions by use of such source terms, contrary to DMRG wheré&ontaining eight sites in one dimension. The one-dimensional

one usually adopts open boundary conditiofis. general, Bose-Hubba_rd model with periodic boundaries is a worst-

periodic boundary conditions are easier for finite-size scalcase scenario for our MF+NRG procedure. The results are

ing.) We will come back to the issue of source terms in theSummarized in Table I. The parameters in the table vary from

following section. a SF phase to a Mott phase. As expected, very deep in a Mott
Some operators, such as the total number operatd?hase orina SF phase we obtain a very good accuracy. Note

Squared\lz a|so acquire a Contribution from the Cross termsthat the Lanczos d|agonal|zat|0n was performed Wlth a leed

between the two building blocks. So, more than a simple

rotation is needed in this case, and contributions from the TABLE I. Comparison of the energie®E,s and E3,) per site

total number operatoN must be taken into account. Sche- obtained by the MF+NRG method for a modest number of states

matically, (N§2)2<Ni)+<N§>+2(N1N2>, in which the indices (16 and 32 kept after each diagonalization with the resit{sof a

1, 2 indicate the two joining blocks. !_anczos_diago_nalization prc_)cgdure for a small Iatt_ice_ of eight sites
One can obtain the one-body density matrix in coordinatd" ne dimension. The deviation®,s and D3p) are indicated and

space with the MENRG method, but at a low accuracy can be made smgller by keeplng more states after each diagonaliza-

because correlatiorigb; are inaccurate wheinis not the first - 11 The mean-field values are in the last column.

site of the renormalization procedure, and we need the entire

matrix for a confined system. However, we are able to diY K E Eie  Di(%) B Dal%) Eur

rectly calculate the diagonal of the momentum density opo> 9 -05 -1359 -1337 157 -1.347 091 -1.24

eratorpy = pi (in one dimensiop 40 07 -0932 -0901 338 -0.914 199 -0.78
60 18 -0656 -0.612 6.65 -0.635 3.15 -0.44

=2 e b, 80 25 -0494 -0.467 560 -0483 240 -027
g 100 35 -0397 -0382 353 -0392 109 -0.0

= S cogkii-j)lbb;. (4) 120 40 -0331 -0.324 235 -0330 031 0.0
i<Lj<R 140 50 -0.284 -0283 050 -0284 023 0.0

16.0 6.0 -0.249 -0.247 038 -0.248 0.07 0.00
Here we sum over all sites of the blocks, easing the problemgo 7.0 -0.221 -0221 030 -0.222 0.04 0.00
encountered with the one-body density matrix in coordinate,g 9 152 -0199 -0181 870 -0199 017 0.00
space. This operator can be rewritten as
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FIG. 2. Checking the momentum distribution obtained with ~ FIG- 3. Upper: The system is variational in the average grand-
MF+NRG to a SSE calculation for an unconfined system in onef@nonical potential per site/L=((E)-u(N))/L. As the number of
dimension of 32 sites. Calculations have been done for a system #EPt states\; is increased, the grand-canonical potential decreases.
the Mott phas€U=6,.=2, dashed lingand for a system in the SF The full line is a gwde to the eye. The paramett_ers are chosen su_ch
phaseU=2,.=1, full line). The errors on the SSE data points are that the system is near_a generic phase transition on the SF s_|de
shown but very small. In the inset, the MNRG data points are (U=4,u=1,L=1024. This corresponds to the worst case scenario

indicated explicitly by small circles, while “+” signs with error bars for our method. The mean-fielts=1) and exactcorresponding to
indicate the SSE data points. Ns=o) results are indicated. Lower: The exponential convergence

of the energy is shown. The system is deep in the Mott phase with

boson number, while in the MF+NRG we adjusted theparameterd)=30,.=16, andL=1024.
chemical potential in order to fix the density. The deviations
should be interpreted accordingly. could improve the results here substantially, something we

We have also checked observables like the local density tried to avoid from the onset since this property is computa-
and local compressibilitx; against results obtained with the tionally too costly in higher dimensions. The discrepancy
stochastic series quantum Monte Caf85] (SSB method  with the exact result in Fig. 3 reduces rather slowly at higher
for larger lattices. Because the calculation of the momentunvalues ofNg, primarily because of the effects of block exten-
distribution seems most critical, we have explicitly shown insion (reflected in the curves of the local densities and local
Fig. 2 the good agreement between the calculation of thenergies in Fig. 4 for the same effgand complications due
momentum distribution with the renormalization group andto the periodic boundary conditions. The exact result should
the SSE method for a SF and a Mott phase. The one-bodye recovered in the limit oilg equal to the dimension of the
density matrix with the SSE method has been obtained b¥ock space for each block. In addition, for a system that is
applying the idea of Ref.36] to soft-core bosons. The SSE already deep in one of both phases, the MF+NRG method
method served as a testing ground for the renormalizationonverges very rapidly to the exact result, as the energy
method here. So we have shown that a lot of physics mighturve shows in the lower part of Fig. 3 for a system in the
be examined with our method. Mott phase. Here, the energy and grand potential differ only

The parameteNs that fixes how many states are kept in by a constant.
the truncation determines the accuracy of the results. As we On the other hand, the parametés also largely deter-
have seen in Table | energies can decrease by increbiging mines the required computer time: observables scalNﬁas
while for observables like the local density the fluctuationsper lattice site in memory cost, and the most time consuming
become smaller. We have examined how the grand-canonicaberation is the rotation of variables, which scalesNis
potentiald decreases whel; is increased in the upper part (multiplication of matrices of the order df2). All our cal-
of Fig. 3 for a system ot =1024 sites(so that finite-size culations have been performed on a Pentium IV, 1.6 GHz or
effects can be filtered out of this discussiamthe SF phase a Pentium I, each with 500 MB RAM. Larger lattices and
but very close to the generic Mott phase transition. This corhigher values o, can straightforwardly be implemented on
responds to the worst case scenario for our method. Inclusiomore performant hardware, but requiring that all occupation
of just a few states leads to a rapid decrease in the granghumbers of the truncated states are arbitrarily small on one
canonical potential, but once more than 20 states are keptand and on the other hand wishing to study large lattices in
the potential decreases only very gradually. The exact resulligh dimensions near a quantum phase transition is still not
®/L=-1.9172) in Fig. 3 was again obtained by the SSE achievable.
method, while withNs=40 we reache@/L=-1.90. Without One of the crucial parameters of the method is the source
source terms, we found that the calculated average granderm that is inserted at the boundary of each block. If we set
canonical potential per site waB/L=-1.87 with Ng=40, it to zero, our method reduces to the standard NRG method.
giving further evidence of the usefulness of the source termdt can be seen in Fig. 4 that the fluctuations can be damped
It is the sweeping property of the DMRG algorithm that much better in a SF phase if we set the source term equal to
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FIG. 5. Evolution of the density in the neighborhood of the
1 > P P s & - 8 generic phase transition between the Mott and SF phase for one
i (“+" marks) and thregempty circle$ dimensions. The dashed line

) . i fi rdin Eq(6). In th Iculations th r m
FIG. 4. The figure shows how source terms can improve thes a fit according to Eqe®). In these calculations the source terms

. - - are set to zero and lattices of sike1024 sites were studied. In-

calculations. Local energy per siig, local compressibilityx;, and . . . . .
. . clusion of the source terms in one dimension would lead to a similar
local densityn; from bottom to top are plotted as a function of the )
o 4 . o lot as in the 3D case.
lattice indexi for a homogeneous model of eight sites in a SF phasep
(U=2,u=-0.5, the same values as the upper row in Tapl&he . . . )
dashed line has source terms set to zero, while for the full line they Briefly said, the source terms would in one and two di-
are set to their mean-field values. mensions lead to an improved mean-field theory, in the sense
that the correlators would approximately have the same ex-

the MF expectation value of the operatpr while the total ponents as in f_“ea”'f'e"%' theory and the Mott Iob_e _WOUId
energy deviates now 0.9% from to the exact result instead gxtend a little bit farther into parameter space. This is also

1.4% without the source terms. For a homogeneous model i xplained in Fig. 5. WheN; is large enoug_h, these possible
the thermodynamic limit, the value dt;) should be site- angers become less severe. In the confined case, any long-

independent and the source terms should be chosen equal rahge correlat'lons are effectively cuf[ off and the addltlor_1 of
well. source terms is always expected to improve the calculations,

As argued in the preceding section, the source terms a®® I?f\i\f’age;govgmegﬁ to studv what haopens if the blocks
optional and need to be chosen carefully. It is well known ptng y pp

[34] that a Mott phase can only be foundH,N]=0. Source were extended by a single site only. That leads to the same

terms might violate this condition near a Mott-SF transition.number of diagonalizations but more rotations are needed.

2 ) : For the unconfined case, this yielded quite good results, often
The addition of source terms might lead to an incorrect pre- her than in the block lizati H
diction of a SF phase when the compensation of the sourcSmOOt er t_an n the oc renormalz_atlon case. Howevel,

. A : for the confined case this procedure did not produce regions
terms in the renormalization scheme is not complete. The

source terms could yield contributions to states that arw:;f;tlrgfrgeer density and should hence only be used with
thrown away after truncation of the Hilbert space and_ thes The MF+NRG procedure also offers a substantial im-
contributions can be quite large when the paramélgers

chosen too low. This might lead to an incorrect value of theprovement over MF results. The MF transition between the
o o g ; " . SF phase and the Mott phase is independent of the dimension
transition point. In addition, even if the transition point of a

: " of the system and is located &i,~5.83, while a DMRG
generic Mott-SF phase transition was known exactly, and w 17] study locates it atl,/z~3.36 in one dimension and a
would study the SF side of this transition, the source term . ¢ . : = )
should still be chosen carefully. This can be understood a trgn(%rﬁgl;gg:?s ew:nhs;(\)/fem]elffg?rtses dltaa;?r%/jlat%i&g]
follows: any net contribution of a source term will deal with -50 in one twb and threep dimensions. While ME theor
long-range correlations in the same way as mean-field doe rédicts a S’F h:as@:alculation ields<c>:.O 496 the true y
and we know that the correlators predicted by mean-field ar P Y A .
only valid in d=3 dimensions. For example, the density is aphase should be a Mot phase_m one an_d two _dlmen5|ons and
valid order parameter for the generic Mott-SF transifiad], — 'c Ve found a Mott phase in three dimensions. These re-
with sults can be seen in Fig. 6 where the local density and local

compressibility are shown.

-1.38

n~u*? d=1, IV. RESULTS

Now that we have critically examined the approximations
n~u d=3. made in the MF+NRG, we apply it to parameter regions
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FIG. 8. Profile of the local density (solid line) and local com-
pressibility « (dashed ling along the sites forU/2=7.1,u/2
=6.1,L=128v.=0.008, confirming again the result of R¢23].

FIG. 6. Local densityupper curvesand local compressibility
(lower curves$ for parameterd)/z=5.0 andu/z=2.0 in one(full
line), two (dotted ling, and three(dashed ling dimensions. MF

theory predicts a SF phase, while the true phase in one, two, and o
three dimensions is a Mott phase. dynamic limit. We cannot speak therefore of a true quantum

phase transition, the confining potential effectively cuts off

where the results are unambiguous. In all calculations thélII long-range carrelations. However, in local regions the lo-

size of the lattices corresponds to the maximal achievablgalnCOTptreSkS'bt'li'x car; \?elt ver)r/ :C?Wti?]nd tlhe l?fﬂalt:jrensi'tﬁ
size, while a sufficient amount of states has been kept. can get stuck at integer values, refiecting a focal Vot region.
This can be seen in Fig. 8. All these results are completely in

_ _ _ line with those of Ref[23]. Also, for a canonical calculation
A. Results in one dimension with an incommensurate filling a Mott phase with integer
We have, in complete analogy with R¢23], confined a  density can still be found, because the confining potential

Bose gas in a lattice of 128 sites in a trapping potential of th&hanges the local chemical potential.
form Looking along the sites can be interpreted as diffegent

slices of the phase diagram in tk, ) plane for the un-
&=vli —LI2)?, (1) confined mode[6]. This allows to calculate the site at which
with v,=0.008. Goosing the parameter this way allows & Moftt_domain is entered or left. Itis al_so clear that the BKT
for nice fillings in the center and for densities going transition has no anal_og in the unconfined case. We refer to
smoothly to zero near the edges of the trap. Ref. [23] for a state diagram. The authors of R3] al_so
In Fig. 7 we see how plateaus with local filings of an claim thatx;~(nj—1) as the Mott lobe is approached, inde-
integer number of bosons can arise as more and more papendent of the on-site repulsid or the chemical potential
ticles enter the system. The global compressibility is never- In our calculations the same behavior was seen for param-

zero, as it is the case in the unconfined model in the thermd®ters that are of the same order of magnitude, but for small
and large values ofJ the local compressibilities did not

reach to the same values in the Mott region.

25
2 B. Results in two dimensions
1.5
1 1. Homogeneous case
0'8 In principle it is possible to determine the phase diagram,
o5 but a complication that makes a comparison more difficult is
that in the literaturg10] calculations are usually based on a
0 35 5 Wz fixed density while we are wor!<ing in .the granq-cqnonicql
site inde€0 100 567450 ensemble. The physically most interesting case is with a dis-

ordered chemical potenti§2]. A phase diagram requires a

FIG. 7. Profile of the local density along the sites and as a Study of phase transitions and very close to a transition point
function of the chemical potentiak. The on-site repulsion i)/2 it IS important to include more and more states into the trun-
=7.1. Above a certain value gf we see the emergence of a plateau Cated Hilbert space and at the same time going to larger
(n=1), and when the total number of particles is even more in-lattices. The method described here can only give a qualita-
creased, we see the reemergence of a compressible region. THige answer and is not fit to quantitatively yield the exact
happens first around the center and continues to exist till a plated@cation of the transition point and does not allow to calcu-
with n=2 is reached. These results confirm the result of R late the critical exponents in an unambiguous way.
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FIG. 9. Local density for a lattice consisting bf 64X 64 sites FIG. 10. Local compressibility as a function of the site indices

and with parameterdl =23.2,.=28.0 p,=0.05. Note again the re- and with the same parameters as in Fig. 9.
gion with fixed integer density and the smooth transitions.

C. Results in three dimensions
The problem encountered here is a “memory effect” when
N is not high enough. When the source terms are set to zerg
and a large lattice of. =256X 256 is taken, a calculation
with a too low Ng predicts a Mott phase while an increased
N, leads to a SF phase. So, starting from a Mott pt{aseo

The original experiments by Greinet al. [1] were per-
med in three dimensions, with laser beams cutting the
atomic cloud in abouk =65X 65X 65 sites, and a local den-
sity varying arounch=2.5 atoms per site. Mott and SF be-
source termgresults in a Mott phase and starting from a SI:havior were demonstratepl after examination of the' interfer-
ence pattern of the laser images of the free expanding cloud.

phase(finite source termsreveals a SF phase. The issue of ., . . : ; .
the phase diagram is very similar to the difficulties encoun-ThIS means that_the_quantlty of cqrr_]putanona_l interest is the
omentum distribution. In the original experimental setup,

tered with the strong-coupling expansion by Freericks an I . . e
Monien[9], although their starting point is entirely different. he absorption images of the three-d|men3|qnal dlstrlbutl_on
re taken along two orthogonal axes, revealing only the in-

As they point out, their method cannot describe the physic : e :
close to the tricritical point, the density fluctuations dominate egral over the third direction. The observed fading of the

even close to the tricritical point, and they can notice that th ragg_peaks had nothing to do with the appearance of Mot
shape of the Mott lobes has changed from one to highe ehavior, and happened actyally v_vhen the system was al-
dimensions. Due to the limitations in our method we see théeagg \\//v?\rgt %%i?d'rg;hg g/llg;trlgisur::}'g? t%r(]aatsrghsition'? It was

same qualitative aspects, but we ran into the same quantita- 9 :

tive difficulties, with the same order of uncertainties. We will girgtlsi?aitilgn21?;[rzedlflatteho?ttosﬁ;[glgtspgz?;nscéno:‘h; Mrg?tn:sgitgrznin
not report on calculations of the phase diagram here. the center of the trap. Once the Mott region spanned almost

the entire lattice, the peaks disappeared into the typical
2. Confined case broad, low-peaked Mott distribution. However, their worm
Monte Carlo calculation was only on a lattice bf=16
X 16X 16 and it can be expected that for a larger lattice the
central SF peak might be so dominant that the satellite peaks
can hardly be resolved. We present a calculation on a lattice
of L=32X 32X 32. We show the momentum distribution in
Fig. 13 along thg1,0,0 axis, for a system with an emerg-

wherer; measures the distance from the presentisitethe N9 Mott region ofn=1 in the center of the trap. As in Ref.
center of the trap. The same holds in three dimensions. In
Fig. 9 we plot the local density for a system lo£64X 64
sites, withU=23.2,4=28.0p.=0.05 and thespace is con-
stantly truncated to 32 states, principally in line with our
philosophy of a limited but fast and reliable calculation. In
Fig. 10 we show the local compressibility for the same
system, but only one quarter of the figure is shown. The
other parts are symmetric. Note again that there exists a
Mott insulating region with integer density. The transition
from the SF region to this Mott region is not sharp, and
the local compressibility in the Mott region is small but
remains finite.

Another example can be found in Figs. 11 and 12 for a FiG. 11. Local density as a function of the site indices for a
lattice of 128< 128 sites, showing Mott behavior and where jattice of L=128x 128 sites and with parameters=22.0 u
for a slightly weaketJ a new SF region would emerge in the =35.6 p.=0.008. The system is very close to developing a new SF
center of the trap. peak in the center.

The trapping potential takes on each sithe value

€= vcriz, (8)
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128

FIG. 12. Same as in Fig. 11 but for the local compressibility
now. The parts of the plot that are not shown are symmetric.

[24] we see satellite peaks along tfte, 0,0 direction, but

PHYSICAL REVIEW A 69, 043601(2004)
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the central peak dominates. The satellite peaks are only 4.5% FIG. 14. Momentum distribution along th®,0,1) axis for a

in magnitude of the central peak and will be difficult to re-

solve in practice. For the experimental setup with its lattice

of about L=65X65X65 sites, the situation will even be

worse. We also note that the satellite peaks depend on tHe

system with particle densities varying betweer2 and n
=3.2(U/z=11,u/2=30,v.=0.1,L=32X 32X 32). The appearance
of satellite peaks cannot be related to #mergenceof a Mott
egion in the center of the trap.

direction of investigation, no satellite peaks were seen, e.g., )
along the(1,1,1) direction in Fig. 13. This direction depen- Detweenn=3 andn=4. These peaks cannot possibly be re-

dency is a consequence of the breaking of rotational symmédated to the emergence of a Mott region in the center of the

try in a finite lattice, and its effects should diminish when
larger lattices are taken.

trap. Local densities afi=2 at the border of the trap cannot
occur experimentally, but this situation can be thought of as

Furthermore, the average density in the experiments walbe central region of a larger lattice, from which the outer

aboutn=2.5 in the center of the trafl]. There are no sat-
ellite peaks when the central density is noninteger, despite
broad Mottn=1 region for an on-site repulsiod that is

regions are not trapped any more.
a When going to higher values & and g, it is, in prin-
ciple, possible to have Mott phasesrat2 andn=3. In the

strong enough. This Mott region is reflected in the tail of themean-field phase diagram of the homogeneous ni@iehe

momentum distributiorj24]. For a system with local densi-
ties varying betweem=2 andn=3.2 (all noninteger densi-

different Mott lobes corresponding to densities 1, n=2,
etc. get closer to each other along the direction of the chemi-

ties), we nevertheless found satellite peaks in Fig. 14, an@@l potentialu (see Fig. 1 With the confining potentiak;
calculations showed the same behavior for densities ranging'®Sent, the local densities along the different sites can be

700

600

500

400

Pk

300

200

100

Bnin

-n/2

0

-

FIG. 13. Momentum distribution for a system with a Mott pla-
teau (n=1) in the center. The parameters aké/z=6.5u/z
=2.6,v.=0.04 andL=32% 32X 32. The dashed line represents the
distribution along th&1,0,0 direction, while the full line is taken
along the(1,1,]) direction. According to Ref.24] the satellite peaks

interpreted as a scan of the homogeneous mf@eHence

in a small finite lattice it is not priori clear if there are
noninteger densities between the different broad Mott re-
gions. For a system with parametdddz=30,u/z=75 v,
=9.1, andL=16Xx16Xx 16, we found very few noninteger
densities. The density profile consisted of four plateaus with
n=0,1,2, 3 respectively. We have almost a superposition of
four Mott phases leading to the momentum distribution in
Fig. 15, which is very low peaked and broad. When the local
particle density in the center of the trap is gradually in-
creased frorn< 3 till the Mott region withn=3, and while
there already exist broad Mott regions witlr1 andn=2,

we did not witness any satellite peaks, because the Mott
behavior of then=1 andn=2 plateaus already dominated the
momentum distribution.

We are led to the observation that it will be difficult to
indicate the transition experimentally by satellite peaks, and
that only examination of the intensity and the width of the
central peak along one direction might be at hand to directly
reveal Mott behavior.

V. CONCLUSION

in the dashed curve point at an emerging Mott region in the center In summary, we studied the Bose-Hubbard model subject

of the trap.

to a confining field in the grand-canonical ensemble. We

043601-8
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0.68

the momentum distribution, etc. The goal was to achieve

variational results with energies much lower than in mean-

field theory and at a low computational cost in order to make

studies of large lattices in higher dimensions feasible. We

have extensively discussed the advantages and limitations of
this method. The inclusion of source terms on the edges of
the blocks improved results in the SF phase.

We have examined the smooth transition between SF and
Mott regions in the presence of a confining field. Although
there is no real “order parameter” to be found in the momen-
tum distribution, the momentum distribution can neverthe-
less reveal important qualitative differences between pure SF
systems and systems with dominant Mott behavior. These
differences can experimentally best be seen in the central

k peak. Possible satellite peaks might be difficult to resolve
when the total number of confined particles is large and

FIG. 15. Momentum distribution along th@®,0,1) axis for a  When the filling factors are not of the order of unity.
system with particle densities varying betwaen0 at the edge of
the trap ton=3 at the centefU/z=30,u/z=75,v,=9.1,L=16
X 16X 16), leading to 2280 particles in the system. The distribution
is broad and not peaked, signaling virtually overall Mott behavior. ~ The authors wish to thank I. Bloch, M. Greiner, T. Pap-

enbrock, J. Ryckebusch, and D. Van Neck for valuable dis-
combined the Gutzwiller mean-field/F) ansatz with a nu- cussions. This work was supported by the Research Board of
merical (block) renormalization group methotdNRG) and the University of Ghent and the Fund for Scientific Research,
we could calculate observables like local densities, energieglanders.
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