City networks in the United States: A comparison of four models
Xingjian Liu, Zachary Neal, Ben Derudder

The study of intercity networks could help generate a better understanding of our increasingly inter-connected global community. We studied connections between sixty-one major cities in the United States for the year 2010 and employed four major measures of intercity flows: (1) extra-urban connections (Figure 1a) estimated by a classic gravity model based on the product of pairwise cities’ populations and squared geographic proximity (i.e., with a distance friction factor of two); (2) Internet connectivity (Figure 1b) between cities measured by the DIMES internet mapper project (Shavitt and Shir 2005); (3) recorded business air-travel flows (Neal 2010) among selected cities (Figure 1c); and (4) intercity connectivity (Taylor 2001) inferred based on locational strategies of leading advance producer service firms (Figure 1d). Two of these networks are observed flows: airline and Internet, whereas the other two are estimated propensity to interact (Derudder and Witlox 2008). The color density and width of lines are proportional to the standardized connection strength (standardized connections more than 10% of the maximum connection were plotted), and we also mapped the ten most central cities in terms of network degree in individual networks. Chicago, Los Angeles, New York, San Francisco, and Washington ranked consistently high in four networks. Network patterns in business air-travel and producer service firms are highly correlated (Pearson correlation coefficient = 0.82) as they both reflect the economic dimension of the intercity network. Internet connectivity, airline network, and firm network have more long-range connections than those being inferred by a gravity model, the only model where San Francisco and Los Angeles enjoy stronger connections with each other than each with New York. Other networks that can be incorporated into this framework include population migration network, leisure air-travel network, modified gravity models (Neal 2010), and cargo transport network.

References:
Authors:
Xingjian Liu
Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK x1306@cam.ac.uk

Zachary Neal
Department of Sociology & Global Urban Studies Program, Michigan State University, 316 Berkey Hall, East Lansing, MI 48824, USA zpneal@msu.edu

Ben Derudder
Department of Geography, Ghent University, Krijgslaan 281, S8 9000 Gent, Belgium ben.derudder@ugent.be