Pension reform in an OLG model with heterogeneous abilities

Tim Buyse, Freddy Heylen and Renaat Van de Kerckhove

SHERPPA, Ghent University

August 2012

2012/810
Pension reform in an OLG model with heterogeneous abilities

Tim Buyse, Freddy Heylen and Renaat Van de Kerckhove
SHERPPA, Ghent University

First version: 12 April 2012
This version: 29 August 2012

Abstract
We study the effects of pension reform in a four-period OLG model for an open economy where hours worked by three active generations, education of the young, the retirement decision of older workers, and aggregate growth, are all endogenous. Within each generation we distinguish individuals with high, medium or low ability to build human capital. This extension allows to investigate also the effects of pension reform on the income and welfare levels of different ability groups. Particular attention goes to the income at old-age and the welfare level of low-ability individuals.

Our simulation results prefer an intelligent pay-as-you-go pension system above a fully-funded private system. When it comes to promoting employment, human capital, growth, and aggregate welfare, positive effects in a pay-as-you-go system are the strongest when it includes a tight link between individual labor income (and contributions) and the pension, and when it attaches a high weight to labor income earned as an older worker to compute the pension assessment base. Such a regime does, however, imply welfare losses for the current low-ability generations, and rising inequality in welfare. Complementing or replacing this ‘intelligent’ pay-as-you-go system by basic and/or minimum pension components is negative for aggregate welfare, employment and growth. Better is to maintain the tight link between individual labor income and the pension also for low-ability individuals, but to strongly raise their replacement rate.

Keywords: employment by age; endogenous growth; retirement; pension reform; heterogeneous abilities; overlapping generations
JEL Classification: E62; H55; J22; J24

Correspondence to Tim.Buyse@UGent.be or Renaat.VandeKerckhove@UGent.be, Sherppa, Ghent University, Tweekerkenstraat 2, B-9000 Ghent, Belgium, Phone +32 9 264 34 87.
We thank David de la Croix, Alexander Ludwig, Dirk Van de gaer, Glenn Rayp and Grégory Ponthière for valuable suggestions and comments. We also benefited from discussions during seminars at the Université catholique de Louvain (IRES, March 2011) and the University of Cologne (May 2012), and from comments at the Netspar International Pension Workshop (Paris, June 2012), the 11th Journées Louis-André Gérard-Varet - Conference in Public Economics (Marseille, June 2012), and the 2012 Annual Conference of the European Society for Population Economics (Bern, June 2012). We acknowledge support from the Flemish government (Steunpunt Fiscaliteit en Begroting - Vlaanderen) and the Belgian Program on Interuniversity Poles of Attraction, initiated by the Belgian State, Federal Office for scientific, technical and cultural affairs, contract UAP No. P 6/07. Tim Buyse acknowledges financial support from the Research Foundation – Flanders (FWO), Brussels, Belgium. Any remaining errors are ours.
1. Introduction

Concern for the long-run financial viability of public pension systems has put pension reform high on the agenda of policy makers and researchers. The past two decades have seen a wave of reforms in many countries (Whitehouse et al., 2009). At the same time the literature on pension economics has grown rapidly (see e.g. Lindbeck and Persson, 2003; Barr, 2006; and many recent papers that we refer to below). To face the pension challenge, there seems to be general agreement on the need for higher employment, especially among older individuals, and higher productivity growth. Many studies have documented how the pension system may affect the incentives of individuals of different ages to work (e.g. Sheshinski, 1978; Auerbach et al., 1989; Gruber and Wise, 2002; Börsch-Supan and Ludwig, 2010; Sommacal, 2006; Fisher and Keuschnigg, 2010; Jaag et al., 2010; de la Croix et al., 2010). Others have investigated the relationship between the pension system and investment in human capital formation, as a major determinant of productivity growth (e.g. Zhang, 1995; Kemnitz and Wigger, 2000; Zhang and Zhang, 2003; Kaganovich and Meier, 2008; Le Garrec, 2012). Still others have demonstrated the crucial role of human capital formation to counteract the negative effects of population ageing on per capita output (e.g. Docquier and Michel, 1999; Ludwig et al., 2012). Consensus on what pension reform would serve the goals of higher employment, productivity growth, and welfare best, has however not been reached. The results in some papers support parametric adjustments in the pay-as-you-go (PAYG) system that most countries rely on. Other papers prefer a gradual move to an actuarially neutral fully-funded private system. Often, differences in the particular specification of the model economy that is used for the analysis may explain the differences in results (Buyse et al., 2011).

The above mentioned literature has strongly improved our understanding of the effects of pension systems on employment, education and growth. Still, it is limited in some respects. First of all, about all existing studies either investigate incentives to work in a model with exogenous human capital and growth, or investigate human capital and growth while ignoring the labor-leisure choice and the endogeneity of labor supply. Buyse et al. (2011) and Ludwig et al. (2012) are exceptions. These two studies also clearly demonstrate the importance of modelling the many mutual relationships between key variables. For example, if policy can make people postpone retirement and work longer, the return to investment in education will rise, and so may human capital and growth. Conversely, policies that promote education will also encourage people to work longer since they will then get a higher return from their investment. Also, if pension reform discourages employment of the young, it may still be positive if this contributes to education and growth. For a proper assessment of the effects of pension reform it is important to take such interactions into account.

Second, with the exception of Sommacal (2006) who distinguishes exogenous fractions of skilled and unskilled workers, the above mentioned literature disregards differences in abilities and capacity of people to learn. Models with education and growth typically assume that everyone is able to study and succeed in education. Reality is different, however. Data reveal that in 2008 about 30% of the 25-64 year old population on average in the OECD had no upper secondary degree. About 44% had an upper secondary degree but no tertiary degree. The fraction of people with a tertiary degree therefore

1 Ludwig et al. (2012) develop a model with endogenous employment by age and human capital, but they have exogenous growth. Buyse et al. (2011) also have endogenous growth.
remained below 30%. Among young cohorts, educational attainment is higher. Yet, the fraction that
does not complete upper secondary education is still about 20% on average. About 40% obtains an
upper secondary degree, but no tertiary degree. More or less another 40% completes both secondary
and tertiary education (OECD, Education at a Glance, Tables A1, A2.2, A3.2). The simple fact that innate
ability as for example reflected by IQ varies across people, implies that one can never expect everyone to
succeed at the secondary, let alone the tertiary level.

In this paper we study pension reform in a general equilibrium four-period OLG model where hours of
work of young, middle aged and older individuals, education and human capital formation of the young,
the retirement decision of the older generation, and aggregate per capita growth are all endogenous.
We build on our earlier work in Buyse et al. (2011). The model includes a public PAYG old-age pension
system which pays out pensions to a fourth generation of retired. The statutory retirement age in the
model is 65 and exogenous. Old-age pensions are paid from this age onwards. Individuals, however, may
optimally choose a lower effective (early) retirement age. They then receive early retirement benefits.
Our main innovation in this paper is to introduce heterogeneous abilities. We make the assumption that
within each generation three ability groups exist. These groups differ both in the degree to which they
(when young) assimilate existing knowledge, i.e. inherit human capital from the middle aged generation,
and in their productivity of schooling when they spend time studying. One group has low ability. They
inherit relatively little human capital from the middle aged generation, and will never engage in tertiary
education. They will only work or have ‘leisure’. A second group has medium ability, a third group high
ability. These groups inherit higher fractions of existing human capital, and do allocate time to tertiary
education. Given the variation between them in the productivity of schooling, this amount of time will
differ, however.

Our aim is then to investigate the effects of various parametric adjustments in the old-age PAYG pension
system on the employment rate of young, middle aged and older workers, education, growth and
welfare. These parametric adjustments include changes in benefit levels, changes in the link between
benefits and individual contributions, and changes in the weights of the three active periods in the
computation of the old-age pension assessment base, i.e. earned labor income used to calculate pension
benefits. We also consider the effects of moving to full private capital funding. An advantage of
realistically introducing heterogeneous abilities, and therefore an important contribution of this paper, is
that we will be able to study differential effects of pension reform on the income and welfare levels of
individuals with different abilities and human capital. Particular attention goes to the income at old-age
and the welfare level of the low-ability individuals. The link to a major issue as old-age poverty (see e.g.
Kidd and Whitehouse, 2009) is obvious.

Our results prefer an ‘intelligent’ PAYG system above a fully-funded private system. When it comes to
promoting employment, human capital, growth, and aggregate welfare, we find positive effects in a
PAYG system to be the strongest when it includes a tight link between individual labor income (and
contributions) and the pension, and when it attaches a high weight to labor income earned as an older
worker to compute the pension assessment base. Pension reform in this direction encourages young
individuals to study and build human capital, which promotes long-run growth. Furthermore, it
encourages older workers to postpone retirement. Strengthening the link between one’s future old-age
pension, on the one hand, and one’s human capital and labor supply when older, on the other, introduces strong financial incentives which may bring about important changes in behavior. In this sense, our results fully confirm those of Buyse et al. (2011). However, our paper also sharply clarifies the limitations of neglecting heterogeneity in people’s ability. We find that the above described ‘intelligent’ PAYG system implies welfare losses for the current low-ability generations who cannot study and who earn low wages. Aggregate welfare inequality rises strongly. Complementing or replacing this system by basic and/or minimum pension components promotes welfare of the current and (maybe some) future low-ability generations, but it is negative for aggregate welfare, employment and growth. Labor supply and employment among low-ability individuals in particular fall sharply. Better is to maintain the tight link between individual labor income and the pension also for low-ability individuals, but to significantly raise their replacement rate.

The structure of this paper is as follows. In Section 2 we document differences in employment by age, education of the young, the effective retirement age, and per capita growth across 13 OECD countries since 1995. Section 3 sets out our model. Next to the pension system, we introduce a role for education quality as well as a rich fiscal policy block. The government in the model sets tax rates on labor, capital and consumption. It allocates its revenue to productive expenditures (mainly for education), consumption, ‘non-employment’ benefits (including early retirement benefits), old-age pensions, and interest payments on outstanding debt. In Section 4 we calibrate the model on actual data and confront its predictions with the facts described in Section 2. Section 5 includes the results of a range of model simulations. We investigate the steady state employment, education and growth effects of various reforms of the pension system. We also study welfare effects per generation and per ability group. Section 6 concludes the paper.

2. Cross-country differences in employment, tertiary education and per capita growth

Table 1 contains key data on employment, education and growth in 13 OECD countries in 1995-2007. One would like a reliable model to match the main cross-country differences reported here. The employment rate in hours (n) indicates the fraction of potential hours that are actually being worked by the average person in one of three age groups (20-34, 35-49, 50-64). Comparable data for hours worked by ability type (skill level) are not available. Potential hours are 2080 per person per year (52 weeks times 40 hours per week). The observed employment rate rises if more people in an age group have a job, and if the employed work more hours. The employment rate in the age group of 50 to 64 is also affected by the average age at which older workers withdraw from the labor force. We include the effective retirement age in the Table. In most countries, this age is well below the official age to receive old-age pensions (65 in most countries, 60 in France and Italy). The education rate (e) is our proxy for the fraction of time spent studying by the average person of age 20-34. It has been calculated as the total number of students in full-time equivalents, divided by total population in this age group. Our data for (average annual) real per capita growth concern real potential GDP per person of working age. We refer to Appendix 1 for details on the calculation of our data, and on the assumptions that we have to make.

As is well-known, middle aged individuals work most hours, followed by the young. The older generation works the lowest number of hours. Average employment rates across countries in these three age groups
Table 1
Employment rate in hours (n) by age, effective retirement age, education rate (e) and per capita growth in OECD countries (1995-2006/7)

<table>
<thead>
<tr>
<th></th>
<th>n_1 (20-34)</th>
<th>n_2 (35-49)</th>
<th>n_3 (50-64)</th>
<th>Effective retirement age</th>
<th>e</th>
<th>Annual real per capita growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>59.9</td>
<td>64.3</td>
<td>34.7</td>
<td>59.5</td>
<td>12.5</td>
<td>2.06</td>
</tr>
<tr>
<td>Belgium</td>
<td>51.1</td>
<td>56.8</td>
<td>29.3</td>
<td>57.9</td>
<td>14.1</td>
<td>1.77</td>
</tr>
<tr>
<td>France</td>
<td>48.7</td>
<td>60.3</td>
<td>38.0</td>
<td>58.8</td>
<td>14.9</td>
<td>1.54</td>
</tr>
<tr>
<td>Germany</td>
<td>49.7</td>
<td>55.2</td>
<td>34.9</td>
<td>61.1</td>
<td>17.2</td>
<td>1.56</td>
</tr>
<tr>
<td>Italy</td>
<td>50.1</td>
<td>61.9</td>
<td>33.8</td>
<td>60.1</td>
<td>12.6</td>
<td>1.30</td>
</tr>
<tr>
<td>Netherlands</td>
<td>50.8</td>
<td>54.6</td>
<td>34.2</td>
<td>60.0</td>
<td>14.7</td>
<td>2.20</td>
</tr>
<tr>
<td>Core euro area average</td>
<td>51.7</td>
<td>58.8</td>
<td>34.2</td>
<td>59.6</td>
<td>14.3</td>
<td>1.74</td>
</tr>
<tr>
<td>Denmark</td>
<td>56.2</td>
<td>66.7</td>
<td>49.6</td>
<td>62.2</td>
<td>21.7</td>
<td>1.81</td>
</tr>
<tr>
<td>Finland</td>
<td>55.6</td>
<td>69.0</td>
<td>47.3</td>
<td>60.2</td>
<td>23.1</td>
<td>2.72</td>
</tr>
<tr>
<td>Norway</td>
<td>51.9</td>
<td>60.9</td>
<td>50.6</td>
<td>63.1</td>
<td>18.1</td>
<td>2.29</td>
</tr>
<tr>
<td>Sweden</td>
<td>53.6</td>
<td>66.1</td>
<td>55.4</td>
<td>63.4</td>
<td>17.7</td>
<td>2.18</td>
</tr>
<tr>
<td>Nordic Average</td>
<td>54.3</td>
<td>65.6</td>
<td>50.7</td>
<td>62.2</td>
<td>20.2</td>
<td>2.25</td>
</tr>
<tr>
<td>US</td>
<td>65.6</td>
<td>74.2</td>
<td>59.6</td>
<td>64.2</td>
<td>12.8</td>
<td>1.54</td>
</tr>
<tr>
<td>UK</td>
<td>60.8</td>
<td>68.4</td>
<td>49.4</td>
<td>62.0</td>
<td>12.3</td>
<td>2.13</td>
</tr>
<tr>
<td>Canada</td>
<td>60.9</td>
<td>69.5</td>
<td>50.4</td>
<td>62.1</td>
<td>13.6</td>
<td>1.68</td>
</tr>
<tr>
<td>All country Average</td>
<td>55.0</td>
<td>63.7</td>
<td>43.6</td>
<td>61.1</td>
<td>15.8</td>
<td>1.91</td>
</tr>
</tbody>
</table>

Data sources: OECD (see Appendix 1); data description: see main text and Appendix 1. The data for employment and growth concern 1995-2007, those for education 1995-2006. The effective retirement age is an average for 1995-2006. All data are in percent, except the retirement age.

We observe the highest employment rates in each age group in the US. Employment rates are much lower in the core countries of the euro area. The Nordic countries take intermediate positions, although they are close to the core euro area for the younger generation. The latter, however, seems to be related to education. Young people’s effective participation in education is also by far the highest in the Nordic countries. These countries also show the highest potential per capita growth rates. On average, growth in the core euro area and the US was more than 0.5 percentage points lower in the period under consideration. The US and the other Anglo-Saxon countries tend to have the lowest participation in education among people of age 20 to 34. Finally, we note that the effective retirement age also varies across countries. The retirement age is quite low in Belgium (57.9) and France (58.8). By contrast, individuals in Nordic or Anglo-Saxon countries participate longer. Unsurprisingly, correlation between the effective retirement age and the employment rate among older workers (n_3) is very high (0.89).
3. The model

Our analytical framework consists of a computable four-period OLG-model for a small open economy. We assume perfect international mobility of physical capital but immobile labor and human capital. Seminal work in the OLG tradition has been done by Samuelson (1958) and Diamond (1965). Auerbach and Kotlikoff (1987) initiated the study of public finance shocks in a computable OLG model. Buiter and Kletzer (1993) developed an open economy version of the model with endogenous growth, putting human capital at the centre. As we have documented in Section 1, a large literature has used OLG models to study the behavioral effects of the pension system either on employment assuming exogenous growth, or on human capital and growth ignoring the labor-leisure choice and assuming exogenous employment. New in this paper is that we explain both employment by age, and human capital and growth as jointly endogenous variables and that we realistically take into account differences in individuals’ innate abilities.

We consider three active adult generations, the young, the middle aged and the older, and one generation of retired agents. Within each generation we assume three types of individuals with different ability a to build human capital: a group H with high ability, a group M with medium ability and a group L with low ability. The last group will never enter into tertiary education. We assume that the three ability groups are of equal size, and so are the different generations. We normalize each ability group to 1, so that the size of a generation is 3, and total population is 12, and constant2. Individuals enter the model at age 20. Each period is modeled to last for 15 years. High and medium ability young people can choose either to work and generate labor income, to study and build human capital, or to devote time to ‘leisure’ (including other non-market activities). Low ability young individuals and all middle aged and older workers do not study anymore, they only work or have ‘leisure’. The statutory old-age retirement age in our model is 65. Individuals may however optimally choose to leave the labor force sooner in a regime of early retirement.

Output is produced by domestic firms which act competitively and employ physical capital together with existing technology and effective labor provided by the three active generations. A final important assumption is that education generates a positive externality in the sense of Azariadis and Drazen (1990). Each young generation inherits a fraction of the average level of human capital of a middle aged generation. The higher an individual’s ability, the larger the fraction he inherits. In what follows, we concentrate on the core elements of the model: the optimizing behavior of individuals, the production and inheritance of effective human capital, the behavior of domestic firms and the determination of aggregate output and growth, capital and wages.

3.1. Individuals

An individual with ability a ($a = H, M, L$) reaching age 20 in period t maximizes an intertemporal utility function of the form:

2 Assuming demography and population to be constant may seem strange given that ageing is a crucial factor behind pension reform in many countries. Note however that this assumption is not uncommon (see also Jaag et al., 2010; Fisher and Keuschnigg, 2010; Buyse et al., 2011). Moreover, and most importantly, it need not be a limitation to disentangle behavioral effects from different routes of pension reform.
\[U_a^t = \sum_{j=1}^{4} \beta^{j-1} \left(\ln c_{ja}^t + \frac{\gamma_j}{1-\theta} \left(\epsilon_{ja}^t \right)^{1-\theta} \right) \quad \forall a = H, M, L \]

(1)

with \(0 < \beta < 1, \gamma_j > 0, \theta > 0 (\theta \neq 1)\) and where we shall impose that

\[
\begin{align*}
\ell_{1a}^t &= 1 - n_{1a}^t - e_{1a}^t \\
\ell_{2a}^t &= 1 - n_{2a}^t \\
\ell_{3a}^t &= \Gamma \left(\mu (R_a^t (1 - \bar{n}_{3a}^t))^{1-1/\bar{\gamma}} + (1 - \mu)(1 - R_a^t)^{1-2/\bar{\gamma}} \right)^{\bar{\gamma}-1} \\
\ell_{4a}^t &= 1 \quad \text{and} \quad e_{4a}^t = 0.
\end{align*}
\]

(2-4)

Superscript \(t\) indicates the period of youth, when the individual comes into the model. Subscript \(j\) refers to the \(j\)th period of life and \(a\) refers to the ‘ability type’. Lifetime utility depends on consumption (\(c_{ja}^t\)) and enjoyed leisure (\(\ell_{ja}^t\)) in each period of life. The intertemporal elasticity of substitution in consumption is 1, the intertemporal elasticity to substitute leisure \(\frac{1}{\bar{\gamma}}\). Finally, \(\beta\) is the discount factor and \(\gamma\) specifies the relative value of leisure versus consumption. The preference parameters \(\theta, \beta\) and \(\gamma\) do not depend on ability type. Note, however, that \(\gamma\) may be different in each period of life. Except for the latter assumption, our specification of the instantaneous utility function is quite common in the macro literature (e.g. Benhabib and Farmer, 1994; Rogerson, 2007).

Equations (2)-(4) describe the individual’s enjoyed leisure in each of the four periods of his life. For a proper understanding we summarize his life-cycle in Figure 1. Time endowment in each period is normalized to 1. Next to leisure, individuals devote time to work (\(n_{ja}^t\)) in their three active periods and to education (\(e_{ja}^t\)) when young. In the first period of active life, leisure therefore falls in labor supply and in education time. Only the low ability individuals do not study (\(e_{1a}^t = 0\)). In the second and third period leisure falls in labor supply only. A key element in the individuals’ optimal choice of leisure time in the third period of life (50-65) is the determination of early retirement. Individuals choose \(R_a^t\) which relates to the optimal effective retirement age and which is defined as the fraction of time between age 50 and 65 that the individual participates in the labor market; \((1 - R_a^t)\) is then time in early retirement. We use \(n_{3a}^t\) to denote the fraction of time devoted to work between 50 and 65, and \(n_{3a}^t\) as the fraction of time devoted to work before early retirement, but after 50. As labor market exit is irreversible and post-retirement employment is not allowed in our model, the relationship between \(n_{3a}^t\) and \(n_{3a}^t\) is as follows: \(n_{3a}^t = R_a^t, n_{3a}^t\). In the third period, leisure time thus consists of two parts: non-employment time before the effective retirement age \(R_a^t (1 - \bar{n}_{3a}^t)\), and time in early retirement after it \((1 - R_a^t)\). Equation (4) then describes composite enjoyed leisure of an older worker as a CES-function of both parts (see also Buyse et al., 2011). We assume imperfect substitutability between the two leisure types. The idea here is that leisure time after and between periods of work is not the same as leisure time in periods when individuals are not economically active anymore\(^3\). Equation (4) expresses that individuals prefer to have a

\(^3\) The former may be particularly valuable from the perspective of relaxation and time to spend on personal activities of short duration. The latter may be valuable to enjoy activities which take more time and ask for longer term commitment (e.g. long journeys, non-market activity as a volunteer).
balanced combination of both rather than an ‘extreme’ amount of one of them (and very little of the other). In this equation ζ is the constant elasticity of substitution, μ is a usual share parameter and Γ is added as a normalization constant such that the magnitude of ℓ_a corresponds to the magnitude of total leisure time $(1 - n_{3a})$. The latter assumption allows to interpret γ_3 as the relative value of leisure versus consumption in the third period, comparable to γ_1 and γ_2. The main results in this paper are not in any way influenced by the magnitude of μ, Γ or ζ.

Figure 1. Life-cycle of an individual of generation t and ability a

<table>
<thead>
<tr>
<th>Period</th>
<th>t</th>
<th>$t+1$</th>
<th>$t+2$</th>
<th>$t+3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td>n_{1a}^t</td>
<td>n_{2a}^t</td>
<td>$n_{3a}^t = R_a^t \bar{n}_{3a}^t$</td>
<td>0</td>
</tr>
<tr>
<td>Study</td>
<td>e_{1a}^t</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leisure time</td>
<td>$1 - n_{1a}^t - e_{1a}^t$</td>
<td>$1 - n_{2a}^t$</td>
<td>$R_a^t (1 - \bar{n}_{3a}^t) + (1 - R_a^t)$</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: $e_{1L}^t = 0$.

Individuals will choose consumption, labor supply and education to maximize Equation (1), subject to Equations (2)-(4) and the constraints described in (5)-(13). Equations (5)-(8) describe the individuals’ dynamic budget constraints. The LHS of these equations shows that individuals allocate their disposable income to consumption (including consumption taxes, τ_c) and the accumulation of non-human wealth. In each equation we denote by $\Omega_{j,a}^t$ the stock of wealth held by a type a individual who enters the model at time t at the end of his jth period of life. Equations (5) and (8) respectively indicate that individuals start and finish adult life with zero assets. During the three periods of active life, disposable income at the RHS includes after-tax labor income, non-employment benefits, interest income and lump sum transfers. In each equation, $w_{a,k}$ stands for the real wage per unit of effective labor supplied at time k by an individual with ability a, r_k is the exogenous (world) real interest rate at time k, and z_k is the lump sum transfer that the government pays out to all individuals at time k. Effective labor of an individual with ability a depends on hours worked ($n_{j,a}^t$) and effective human capital ($h_{j,a}^t$). Given the tax rate on labor income τ_w, young individuals earn an after-tax real wage equal to $w_{a,t} h_{1a}^t n_{1a}^t (1 - \tau_w)$. After-tax labor income when middle aged and older in Equations (6) and (7) are determined similarly.

$$(1 + \tau_c)c_{1a}^t + \Omega_{1a}^t = w_{a,t} h_{1a}^t n_{1a}^t (1 - \tau_w) + bw_{a,t} h_{1a}^t (1 - \tau_w)(1 - n_{1a}^t - e_{1a}^t) + z_t$$ \quad (5)

$$(1 + \tau_c)c_{2a}^t + \Omega_{2a}^t = w_{a,t+1} h_{2a}^t n_{2a}^t (1 - \tau_w) + bw_{a,t+1} h_{2a}^t (1 - \tau_w)(1 - n_{2a}^t) + (1 + \tau_{t+1}) \Omega_{1a}^t + z_{t+1}$$ \quad (6)
\[
(1 + \tau_c)c_{4a} + \Omega_{3a}^a = w_{a,t+2}h_{3a}^f \tilde{n}_{3a} R^f(1 - \tau_w) + bw_{a,t+2}h_{3a}^f (1 - \tau_w) \Omega_{3a}^2 + z_{t+2}
\]
\[
(1 + \tau_c)c_{4a} = (1 + r_{t+3})\Omega_{3a}^a + pp_{i}^a + z_{t+3}
\]

For the fraction of time that young, middle aged and older individuals are inactive, they receive a non-employment benefit from the government. Older workers may be eligible to two kinds of benefits: standard non-employment benefits (analogous to what young and middle aged workers receive) as long as they are on the labor market, and early retirement benefits after having withdrawn from the labor market. All benefits are defined as a proportion of the after-tax wage of a full-time worker. The net replacement rate for standard non-employment benefits is \(b\), for early retirement benefits it is \(b_{er}\). After the statutory retirement age (65) individuals have no labor income and no non-employment benefits anymore. They then receive an old-age pension benefit (\(pp_{i}^a\)) and the lump sum transfer. Equation (9) describes the old-age pension. We assume a public PAYG pension system in which pensions in period \(k\) are financed by contributions (labor taxes) from the active generations in that period \(k\) (see below). Individual net pension benefits consist of two components. A first one is related to the individual’s earlier net labor income. It is a fraction of his so-called pension base, i.e. a weighted average of revalued net labor income in each of the three active periods of life. The net replacement rate is \(G_A\). The parameters \(p_1, p_2\) and \(p_3\) represent the weights attached to each period. This part of the pension rises in the individual’s hours of work \(n_{i}^f\) and his human capital \(h_{i}^f\). It will be lower when the individual retires early (lower \(R_i^f\)). Thanks to revaluation, this part of the net pension is adjusted to increases in the overall standard of living between the time that workers build their pension entitlements and the time that they receive the pension. We assume that past earnings are revalued in line with economy-wide wage growth \(x\) and hence follow practice in many OECD countries (OECD, 2005; Whiteford and Whitehouse, 2006). The second component of the pension is a flat-rate or basic pension. Every retiree receives the same amount related to average net labor income in the economy at the time of retirement. This assumption assures that also basic pensions rise in line with productivity. Here, the net replacement rate is \(G_I\). Fourth generation individuals consume their pension and the lump sum transfer, as well as their accumulated wealth from the third period plus interest (Equation 8). They leave no debts, nor bequests.

\[\text{Our approach to model early retirement benefits as a function of a worker’s last labor income, similar to standard non-employment benefits, reflects regulation and/or common practice in many countries. In some countries (e.g. Belgium, the Netherlands) workers can enter the early retirement regime only from employment, with their benefits being linked to the last wage. In other countries (e.g. Denmark) there is only access from unemployment, with the early retirement benefit being linked to the unemployment benefit. As to common practice, Duval (2003) confirms that in many countries, unemployment-related or disability benefits can be used de facto to bridge the time between the effective retirement age and old-age pension eligibility. Again there is a link between benefits and former wages.}\]

\[\text{We explain economy-wide wage growth in Section 3.3. Individuals take it as exogenous.}\]
\[pp^t_a = \rho_{wa} \sum_{j=1}^{3} (p_j w_{a,t+j-1} h^{t}_{ja} n^{t}_{ja} (1 - \tau_w) \prod_{i=j}^{3} \gamma_{t+i-1}) + \rho_{fa} \left(\frac{1}{\gamma} \right) \sum_{j=1}^{3} \sum_{a=H,M,L} \left(w_{a,t} + \gamma h^{t+4-j}_{ja} h^{t+4-j}_{ja} (1 - \tau_w) \right) \]

Equations (10) and (11) describe the intergenerational transfer of human capital. At the age of 20 a young worker with ability \(H \) inherits a fraction \(\pi \) of the average effective human capital of the middle aged generation. A young worker with ability \(M \) enters our model with only a fraction \(\epsilon_{M}\pi \), a young worker with ability \(L \) enters with an even lower fraction \(\epsilon_{L}\pi \). Lower ability may imply more difficulty to learn and accumulate knowledge at primary and secondary school (Azariadis and de la Croix, 2002). During their second and third period, workers supply more units of effective human capital. It is our assumption in Equation (12) that \(h^{t}_{2a} \), and therefore labour productivity, rise in education time when young \(\epsilon_{1a} \), productive government spending in percent of GDP \(g_{y} \), and an overall quality of schooling parameter \(q \). Individuals take \(g_{y} \) and \(q \) to be exogenous. Note that the human capital accumulation function itself \(\psi_{a} \) also depends on innate ability. We specify and discuss effective human capital production and human capital inheritance in greater detail in Section 3.2. Finally, we assume in Equation (13) that human capital remains unchanged between the second and the third period. We have in mind that learning by doing in work may counteract depreciation.

\[h^{t}_{1a} = \epsilon_{a} \pi \left(\frac{h^{t+1}_{3a} h^{t+1}_{2a} h^{t+1}_{1a}}{3} \right) \quad \forall a = H, M, L \]
\[0 < \pi, \quad 0 < \epsilon_{L} < \epsilon_{M} < \epsilon_{H} = 1 \]
\[h^{t}_{2a} = \left(1 + \psi_{a} (\epsilon_{1a}, g_{y}, q) \right) h^{t}_{1a}, \quad \psi_{a} > 0, \psi_{a}' > 0 \]
\[h^{t}_{3a} = h^{t}_{2a}, \quad \forall a = H, M, L \]

Substituting Equations (2)-(4) for \(\ell^t_{ja} \) and (5)-(8) for \(c^t_{ja} \) into (1), and maximizing with respect to \(\Omega^{t}_{1a}, \Omega^{t}_{2a}, \Omega^{t}_{3a}, n^{t}_{1a}, n^{t}_{2a}, n^{t}_{3a}, R^t_{a} \) and \(\Omega^{t}_{1a}, \Omega^{t}_{2a}, \Omega^{t}_{3a}, n^{t}_{1a}, n^{t}_{2a}, n^{t}_{3a}, R^t_{a} \) yields eight first order conditions for the optimal behavior of an individual with ability \(a \) entering the model at time \(t \). Equation (14) expresses the law of motion of optimal consumption over the lifetime. Equations (15.a), (15.b) and (15.c) describe the optimal labor-leisure choice in each period of active live. Individuals supply labor up to the point where the marginal utility of leisure equals the marginal utility gain from work. The latter consists of two parts. Working more hours in a particular period raises additional resources for consumption both in that period and...
when retired. The marginal utility gain from work rises when the marginal utility of consumption \((1/c_{t+1}^a)\) is higher, and when an extra hour of work yields more extra consumption. Higher human capital (and its underlying determinants), lower taxes on labor, lower taxes on consumption and lower non-employment benefits contribute to the gain from work. Extra consumption during retirement rises in the own-income-related pension replacement rate \(\rho_{wa}\), in the weight attached to the relevant period when computing the pension base \(p_j\), and in the revaluation parameters. Equations (15.a)-(15.c) highlight positive substitution effects from the pension replacement rate \(\rho_{wa}\). To the extent that higher replacement rates raise individuals’ consumption possibilities \((c_{t+1}^a)\), they also cause adverse income effects on labor supply. Basic pensions \((\rho_{fa})\) do not directly occur in Equations (15), but they do affect employment via this income effect.

\[
\frac{c_{t+1}^a}{c_{t}^a} = \beta(1 + \tau_j), \quad \forall \ j = 1,2,3
\]

\[
\frac{r_1}{(\ell_{t}^a)^{\theta}} = \frac{w_{a,t}h_{t}^a(1-\tau_w)(1-b)}{c_{t}^a(1+\tau_c)} + \beta^3 \frac{\rho_{wa}p_{1}w_{a,t}h_{t}^a(1-\tau_w)x_{t+1}x_{t+2}}{c_{t}^a(1+\tau_c)}
\]

\[
\frac{r_2}{(\ell_{t}^a)^{\theta}} = \frac{w_{a,t+1}h_{t}^a(1+\psi_a(e_{t+1}^a g_y q))h_{t}^a(1-\tau_w)(1-b)}{c_{t}^a(1+\tau_c)} + \beta^2 \frac{\rho_{wa}p_{2}w_{a,t+1}(1+\psi_a(e_{t+1}^a g_y q))h_{t}^a(1-\tau_w)x_{t+1}x_{t+2}}{c_{t}^a(1+\tau_c)}
\]

\[
\frac{r_3}{(\ell_{t}^a)^{\theta}} = \frac{w_{a,t+2}h_{t}^a(1+\psi_a(e_{t+1}^a g_y q))h_{t}^aR_0^a(1-\tau_w)(1-b)}{c_{t}^a(1+\tau_c)} + \beta \frac{\rho_{wa}p_{3}w_{a,t+2}(1+\psi_a(e_{t+1}^a g_y q))h_{t}^aR_0^a(1-\tau_w)x_{t+2}}{c_{t}^a(1+\tau_c)}
\]

Equation (16) describes the first order condition for the optimal effective retirement age. The LHS represents the utility loss from postponing retirement. Later retirement reduces enjoyed leisure as early retiree, but raises enjoyed leisure in between periods of work for given work time \(\tilde{n}_{3}^a\). The RHS shows the marginal utility gain from postponing retirement. This marginal gain follows from consuming the extra labor income (vis-à-vis the early retirement benefit) in the third period, and the higher future old-age pension after 65. The latter effect rises in \(\rho_{wa}\) and \(p_3\).

\[
\frac{r_3}{(\ell_{t}^a)^{\theta}} = \frac{w_{a,t+2}h_{t}^a(1+\psi_a(e_{t+1}^a g_y q))h_{t}^aR_0^a(1-\tau_w)(\tilde{n}_{3}^a+b(1-\tilde{n}_{3}^a))}{c_{t}^a(1+\tau_c)} + \beta \frac{\rho_{wa}p_{3}w_{a,t+2}(1+\psi_a(e_{t+1}^a g_y q))h_{t}^aR_0^a(1-\tau_w)x_{t+2}}{c_{t}^a(1+\tau_c)}
\]

11
Finally, Equation (17) imposes for high and medium ability individuals that the marginal utility loss from investing in human capital when young equals the total discounted marginal utility gain in later periods from having more human capital. Individuals will study more the higher future versus current after-tax real wages and the higher the marginal return of education to human capital cm_1. Labor taxes during youth therefore encourage individuals to study, whereas labor taxes in later periods of active life discourage them. Notice also that high benefit replacement rates in later periods, and a high income-related pension replacement rate ρ_{wa}, combined with high weights P_a and P_b, will encourage young individuals to study. The reason is that any future benefits and the future pension rise in future labor income, and therefore human capital. A final interesting result is that young people study more – all other things equal – if they expect to work harder in later periods ρ_{wa}.

$$\frac{y_1}{(c_1^a)^\theta} - \frac{\partial c_1^a}{\partial e_1^a} = \beta \frac{1}{c_2^a} \frac{\partial c_2^a}{\partial e_1^a} + \beta^2 \frac{1}{c_3^a} \frac{\partial c_3^a}{\partial e_1^a} + \beta^3 \frac{1}{c_4^a} \frac{\partial c_4^a}{\partial e_1^a} \quad \forall a = H, M$$

with:

$$\frac{\partial c_1^a}{\partial e_1^a} = - \frac{b w_a \ell h_1^a (1 - \tau_c)}{1 + \tau_c}$$

$$\frac{\partial c_2^a}{\partial e_1^a} = \frac{\partial \psi_a(e_1^a, g, q)}{\partial e_1^a} \frac{w_{a,t+1} h_1^a (1 - \tau_c) [n_2^a + (1 - n_2^a)]}{1 + \tau_c}$$

$$\frac{\partial c_3^a}{\partial e_1^a} = \frac{\partial \psi_a(e_1^a, g, q)}{\partial e_1^a} \frac{w_{a,t+2} h_1^a (1 - \tau_c) [P_a (\bar{n}_3^a (1 - b) + b - b_{er}) + b_{er}]}{1 + \tau_c}$$

$$\frac{\partial c_4^a}{\partial e_1^a} = \psi_a(e_1^a, g, q) \frac{\sum_{j=2}^3 \left[(p m_j^a) w_{a,t+j-1} h_1^a (1 - \tau_c) \prod_{i=j}^3 x_{t+i-1} \right]}{1 + \tau_c}$$

It will be obvious from the above discussion that (for a given way of financing) the specific organization of pension benefits may have strong effects on behavior in earlier periods of life. Both income and substitution effects occur. The latter are particularly rich when pensions are linked to individuals’ own labor income. A higher replacement rate ρ_{wa} raises the return to working (n, for all ability groups) and to building human capital (e, h, for high and medium-ability individuals) in earlier periods. Changes in the particular weight attached to these earlier periods may modify these incentive effects. The return to education will rise in P_a and P_b, but fall in P_c. The return to working in the third period will rise in P_c, etc.

Policy makers may change all these parameters. We investigate the effects of policy interventions in Section 5.

3.2. Inheritance and production of effective human capital

Equations (10) and (11) above assume that when entering the model young workers with high ability inherit a fraction π of the average effective human capital of the middle aged generation. The value of π is to be calibrated. Individuals with medium and lower ability inherit less ($\epsilon_L < \epsilon_M < 1$). OECD PISA scores leave no doubt. On average over the 13 countries that we focus on in this paper, the test scores for science of students at the 17th and the 50th percentiles are 67.3% and 83.7% respectively of the test score of students at the 83rd percentile. We take these numbers as proxies for ϵ_L and ϵ_M (see also
Section 4). After entering the model, young individuals may decide to study and accumulate more human capital. The specification and parameterization of the human capital production function $\psi(.)$ in Equation (12) is often a problem in numerical endogenous growth models. In contrast to goods production functions, there is not much empirical evidence and no consensus about the determinants of human capital growth, nor about the underlying functional form and parameter values. The literature shows a variety of functions, typically including one or two of the following inputs: individual time allocated to education, private expenditures on education by individuals themselves or by their parents, and government expenditures on education (e.g. Lucas, 1988; Glomm and Ravikumar, 1992; Docquier and Michel, 1999, Kaganovich and Zilcha, 1999; Bouzahzah et al., 2002; Ludwig et al., 2012). In case of two inputs, the adopted functional form is very often Cobb-Douglas (e.g. Glomm and Ravikumar, 1992; Kaganovich and Zilcha, 1999; Docquier and Michel, 1999).

Our specification of the human capital production function also includes education time of young individuals and education expenditures by the government as indicators for the quantity of invested private and public resources. Compared to most of the literature, however, we differ in three respects. First, we adopt a more flexible CES functional form, allowing the elasticity of substitution to differ from 1. Second, our definition of relevant government expenditures includes more than education. It also includes active labor market expenditures, public R&D expenditures and public fixed investment. This approach goes back to our use of the broader concept of effective human capital\(^6\). Our third extension is to take into account the quality of education and the schooling system. We recognize that better quality implies higher cognitive skills for the same allocation of resources. Young individuals’ capacity to build human capital will then rise.

All these arguments find their way in Equations (18.a) and (18.b). The former shows the growth rate of effective human capital for high and medium ability individuals as a CES specification in education time when young (e_{1a}) and productive government expenditures in % of output (g_p). In steady state both determinants are constant, which will imply constant steady state growth. We add the quality of the schooling system (q) in a multiplicative way. We will use country-specific PISA science scores as a proxy for q.\(^7\) Next to q we introduce (constant common) technical parameters: ϕ_a is a positive efficiency parameter reflecting natural ability, σ a scale parameter, ν a share parameter and κ the elasticity of substitution. These parameters will be calibrated. Note in Equation (18.b) that low ability individuals supply no education time, but they also enjoy positive effects on their effective human capital from productive government expenditures. The quality of the schooling system q also plays a role here.

\(^6\) As in Dhont and Heylen (2009), effective human capital (and worker productivity) rise not only in accumulated schooling or training, but also in the productive efficiency of accumulated schooling. Education and active labor market expenditures contribute directly to more human capital being accumulated, public R&D and fixed investment expenditures will mainly raise the productive efficiency of accumulated human capital.

\(^7\) Ideally, one would employ a quality indicator relating to tertiary education, but this is not (yet) available. Still, PISA scores may be very useful. They are informative about the quality that young people attain in secondary education, and with which some enter tertiary education. Quality at entrance should have a positive effect on people’s capacity to learn and to raise human capital in tertiary education. Furthermore, PISA scores have been found empirically significant for growth (Hanushek and Woessmann, 2009).
\[
\psi_a(e_{1a}, g_y, q) = \phi_a q \left(v g_y^{1 - \frac{1}{\kappa}} + (1 - v) e_{1a}^{1 - \frac{1}{\kappa}} \right)^{\alpha \kappa / (\kappa - 1)} \quad \forall a = H, M
\] \hspace{1cm} (18.a)
\[
\psi_L(g_y, q) = \phi_L q g_y^\sigma
\] \hspace{1cm} (18.b)

Lack of existing empirical evidence makes an ex-ante assessment of our specification very difficult. In previous work, however, we have been able to verify that a specification like (18.a) performs better than alternative ones without quality, with a narrower definition of government expenditures, or with a different functional form (see Heylen and Van de Kerckhove, 2010; Buyse et al., 2011).

3.3. Domestic firms, output and factor prices

Firms act competitively on output and input markets and maximize profits. All firms are identical. Total domestic output \((Y_t)\) is given by the production function (19). Technology exhibits constant returns to scale in aggregate physical capital \((f)\) and effective labor \((H)\), so that profits are zero in equilibrium. Equation (20) defines total effective labor as a CES aggregate of effective labor supplied by the three ability groups. In this equation \(s\) is the elasticity of substitution between the different ability types of labor and \(\eta_H, \eta_M\) and \(\eta_L\) are the input shares. We will impose that \(\eta_H = 1 - \eta_M - \eta_L\).

\[
Y_t = K_t^{\alpha} H_t^{1-\alpha}
\] \hspace{1cm} (19)
\[
H_t = \left(\eta_H H_{H,t}^{1-s} + \eta_M H_{M,t}^{1-s} + \eta_L H_{L,t}^{1-s} \right)^{\frac{s}{s-1}}
\] \hspace{1cm} (20)

Equation (21) specifies effective labor per ability group. Within each ability group we assume perfect substitutability of labor supplied by the different age groups.

\[
H_{a,t} = n_{1a}^t h_{1a}^t + n_{2a}^t h_{2a}^t + n_{3a}^t h_{3a}^t = \left(n_{1a}^t + n_{2a}^t \frac{x_{t-a}^{1-s}}{x_{t-1-a}^{1-s}} + n_{3a}^t \frac{x_{t-a}^{1-s}}{x_{t-1-a}^{1-s}} \right) h_{1a}^t \quad \forall a = H, M, L
\] \hspace{1cm} (21)

To derive Equation (21) we make use of Equations (12) and (13) where we define:

\[
1 + \psi_a(e_{1a}, g_y, q) = x_{1a}^t
\] \hspace{1cm} (22)

It then follows that: \(h_{3a}^{t-j} = h_{2a}^{t-j} = x_{1a}^{t-j} h_{1a}^{t-j} \forall a = H, M, L\).

Furthermore, we exploit the result that\(^8\):

\(^8\) Starting from Equation (10), and using (11), (12) and (22), it is easy to see that:

\[
h_{1H}^t = \pi \frac{h_{2H}^{t-j} + h_{2H}^{t-j} + h_{2H}^{t-j}}{3} = \pi \frac{x_{H}^{t-j} h_{1H}^{t-j} + x_{M}^{t-j} h_{1H}^{t-j} + x_{L}^{t-j} h_{1L}^{t-j}}{3} = \pi \frac{\varepsilon_a h_{1H}^{t-j} + \varepsilon_M h_{1H}^{t-j} + \varepsilon_L h_{1L}^{t-j}}{3} = x_{t-1} h_{1H}^{t-1}.
\]

Human capital of the lower ability individuals \((a = M, L)\) will grow at the same rate \(\frac{h_{1a}^t}{h_{1a}^{t-1}} = \frac{\varepsilon_a h_{1H}^{t-1}}{\varepsilon_a h_{1H}^{t-1}} = \frac{h_{1H}^{t-1}}{h_{1H}^{t-1}}\) which explains the first part of Equation (23). Lagging this result by one period, generates the second part.
where by definition:
\[x_t \equiv \pi \left(\frac{x_t^{1a} + x_t^{1b} + x_t^{1c}}{3} \right) \]

Substituting Equation (21) for \(a = H, M \) and \(L \) into (20), and recognizing differences in the capacity \(e^{-a}_a \) to inherit human capital as indicated by Equations (10) and (11), yields Equation (24).

\[
H_t = \left[\sum_{a=H,M,L} \eta_a e^{-a}_a \left(\frac{1}{x_t^{1a} + x_t^{1b} + x_t^{1c}} + n_{t-2}^{a-1} \frac{x_t^{1a}}{x_{t-1}} + n_{t-2}^{a-2} \frac{x_t^{1a}}{x_{t-1}x_{t-2}} \right) \right]^{\frac{1-\delta}{1-\alpha}} h_{1H}^t
\]

Competitive behavior implies in Equation (25) that firms carry physical capital to the point where its after-tax marginal product net of depreciation equals the world real interest rate. Physical capital depreciates at rate \(\delta_k \). Capital taxes are source-based: the tax rate \(\tau_a \) applies to the country in which the capital is used, regardless of who owns it. The real interest rate being given, firms will install more capital when the amount of effective labor increases or the capital tax rate falls. In that case the net return to investment in the home country rises above the world interest rate, and capital flows in. Furthermore, perfect competition implies for each ability type equality between the real wage and the marginal product of effective labor (Equation 26). Workers of a particular ability type will earn a higher real wage when their supply is relatively scarce and when physical capital per unit of aggregate effective labor is higher. Taking into account (25), real wages per unit of effective labor will therefore fall in the world real interest rate and in domestic capital tax rates.

\[
\left[\alpha \frac{H_t}{K_t} \right]^{1-\alpha} \delta_k (1 - \tau_k) = r_t
\]

(1 - \(\alpha \)) \(\left(\frac{K_t}{H_t} \right)^{1-\alpha} \eta_a \left(\frac{H_t}{H_{a,t}} \right)^{1-\alpha} = w_{a,t} \quad \forall a = H, M, L
\]

Substituting (24) for \(H_t \) and (25) for \(K_t/H_t \), we can rewrite (19) as

\[
Y_t = \left(\frac{K_t}{H_t} \right)^{1-\alpha} H_t
= \left[\frac{a(1-\tau_k)}{1-a} \right]^{1-a} \left[\sum_{a=H,M,L} \eta_a e^{-a}_a \left(n_{t}^{a-1} + n_{t-2}^{a-2} \frac{x_t^{1a}}{x_{t-1}} + n_{t-2}^{a-2} \frac{x_t^{1a}}{x_{t-1}x_{t-2}} \right) \right]^{\frac{1-\delta}{1-\alpha}} h_{1H}^t
\]

If we finally recognize that in steady state \(r, \tau_k, x_t^{1a}, e^{-a}_a \) and \(n_{ja} \) are constant, we obtain the long-run (per capita) growth rate of the economy as

\[
\ln \left(\frac{Y_t}{Y_{t-1}} \right) = \ln \left(\frac{h_{1H}^t}{h_{1H}} \right) = \ln (x_{t-1})
= \ln \left(\pi \left(1 + \psi_M(e^{-1}_{1M}g_{g,y,q}) + \epsilon_M \left(1 + \psi_M(e^{-1}_{1M}g_{g,y,q}) \right) + \epsilon_L \left(1 + \psi_L \left(g_{g,y,q} \right) \right) \right) \right)
\]

(27)
In line with earlier models (e.g., Lucas, 1988; Azariadis and Drazen, 1990; Buieter and Kletzer, 1993), the long-run (per capita) growth rate is positively related to the quality of schooling (T) and to the fraction of time that young people allocate to education (π). It is also positively related to the share of productive government expenditures (R_S), like in Barro (1990). Growth will rise also if young individuals incorporate a larger fraction of average human capital of the middle aged generation (π, \bar{c}).

3.4. Government

Equation (28) describes the government’s budget constraint. Productive expenditures G_{yt}, consumption G_{ct}, benefits related to non-employment B_t (including early retirement benefits), old-age pension benefits PP_t, lump sum transfers Z_t and interest payments r_tD_t are financed by taxes on labor T_{nt}, taxes on capital T_{kt}, and taxes on consumption T_{ct} and/or by new debt ΔD_{t+1}. We define D_t as outstanding public debt at the beginning of period t.

$$\Delta D_{t+1} = D_{t+1} - D_t = G_{yt} + G_{ct} + B_t + PP_t + Z_t + r_tD_t - T_{nt} - T_{kt} - T_{ct}$$ \hspace{1cm} (28)

with:

$$G_{yt} = g_y Y_t$$

$$G_{ct} = g_c Y_t$$

$$B_t = B_{H,t} + B_{M,t} + B_{L,t}$$

$$PP_t = PP_{H,t} + PP_{M,t} + PP_{L,t}$$

$$Z_t = 12z_t$$

$$T_{nt} = T_{nH,t} + T_{nM,t} + T_{nL,t}$$

$$T_{kt} = \tau_k (aY_t - \delta_kK_t)$$

$$T_{ct} = \tau_c \sum_{j=1}^{4} (c_{jH}^{t+1-j} + c_{jM}^{t+1-j} + c_{jL}^{t+1-j})$$

And $\forall a = H, M, L$:

$$B_{a,t} = (1 - n_{t1a} - e_{t1a}^w)bw_{a,t}h_{t}^{1a}(1 - \tau_w) + (1 - n_{t2a}^w)bw_{a,t}h_{t-1a}^{2a}(1 - \tau_w)$$

$$+h_{t-1a}^{2a}(1 - \bar{a}_{t-2a}^w)bw_{a,t}h_{t-2a}^{3a}(1 - \tau_w) + (1 - R_{t-2a}^w)bw_{a,t}h_{t-2a}^{3a}(1 - \tau_w)$$

$$PP_{a,t} = \rho_p \sum_{j=1}^{3} (p)w_{a,t+j-4}h_{ja}^{t-3}n_{ja}^{t-3}(1 - \tau_w) \prod_{j=1}^{3} (1 - x_{t+i-4})$$

$$+ \rho_{fa} \left(\sum_{a=H,M,L} \sum_{j=1}^{3} (p)w_{a,t+j-4}h_{ja}^{t-3}n_{ja}^{t-3}(1 - \tau_w) \prod_{j=1}^{3} (1 - x_{t+i-4}) \right)$$

$$T_{na,t} = \sum_{j=1}^{3} n_{ja}^{t+1-j}w_{a,t}h_{ja}^{t+1-j}\tau_w$$

Note our assumption that each ability group has size 1 and that each generation has size 3. Following Turnovsky (2000) and Dhont and Heylen (2009), we assume that the government claims given fractions g_y and g_c of output for productive expenditures and consumption. Non-employment benefits (B_t) are an unconditional source of income support related to inactivity (leisure) and non-market household activities. Although it may seem strange to have such transfers in a model without involuntary unemployment, one can of course analyse their employment and growth effects as a theoretical benchmark case (see also Rogerson, 2007; Dhont and Heylen, 2008, 2009). Moreover, there is also clear
practical relevance. Unconditional or quasi unconditional benefits to structurally non-employed people are a fact of life in many European countries. Note also our assumption that the pension system is fully integrated into government accounts. We do not impose a specific financing of the PAYG pension plan, the government can use resources from the general budget to finance pensions. Finally, as we have mentioned before, the government pays the same lump sum transfer z_t to all individuals living at time t.

3.5. Aggregate equilibrium and the current account

Optimal behavior by firms and households, and government spending for productive and consumption purposes, underlie aggregate domestic demand for consumption and investment goods in the economy. Our assumption that the economy is open implies that aggregate domestic demand may differ from supply and income, which generates international capital flows and imbalance on the current account. Equation (29) describes aggregate equilibrium as it can be derived from Equations (5)-(8), defined for all generations living at time t, Equations (19)-(21), (25)-(26) and (28). The LHS of (29) represents national income. It is the sum of domestic output Y_t and net factor income from abroad F_t, with F_t being net foreign assets at the beginning of t. The aggregate stock of wealth A_t accumulates wealth held by individuals who entered the model in $t-1$, $t-2$ and $t-3$. At the RHS of (29) CA_t stands for the current account in period t.

\[Y_t + r_t F_t = C_t + I_t + G_{ct} + G_{yt} + CA_t \]

(29)

with:

\[F_t = A_t - K_t - D_t \]

\[Ca_t = F_{t+1} - F_t = \Delta A_{t+1} - \Delta K_{t+1} - \Delta D_{t+1} \]

\[I_t = \Delta K_{t+1} + \delta_t K_t \]

4. Parameterization and empirical relevance of the model

The economic environment described above allows us to simulate the transitory and steady state growth and employment effects of various changes in fiscal policy and the pension system. This simulation exercise requires us first to parameterize and solve the model. In Section 4.1 we discuss our choice of preference and technology parameters. Starting from actual cross-country policy data in Section 4.2, we compare in Section 4.3 our model’s predictions with the employment and growth differences that we have reported in Table 1. This comparison provides a first and simple test of our model’s empirical relevance. In Section 5 we consider long-run equilibrium effects of policy changes, as well as welfare effects per generation and ability group. To solve the model and to perform the simulations, we choose an algorithm that preserves the non-linear nature of our model. We follow the methodology basically proposed by Boucekkine (1995) and implemented by Juillard (1996) in the program Dynare. We use Dynare 4.2.
Table 2 Basic parameterization and benchmark equilibrium

<table>
<thead>
<tr>
<th>Technology and preference parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods production (output)</td>
<td>(\alpha = 0.285, s = 1.5, \eta_H = 0.47, \eta_M = 0.30, \eta_L = 0.23)</td>
</tr>
<tr>
<td>Effective human capital</td>
<td>(\phi_H = 5.34, \phi_M = 4.66, \phi_L = 2.83, v = 0.125, \kappa = 0.375, \sigma = 0.6)</td>
</tr>
<tr>
<td>Human capital inheritance</td>
<td>(\pi = 0.85, \varepsilon_M = 0.837, \varepsilon_L = 0.673)</td>
</tr>
<tr>
<td>Preference parameters</td>
<td>(\beta = 0.80, \theta = 2, \gamma_1 = 0.070, \gamma_2 = 0.126, \gamma_3 = 0.170)</td>
</tr>
<tr>
<td></td>
<td>(\mu = 0.5, \zeta = 1.54, \Gamma = 2)</td>
</tr>
<tr>
<td>World real interest rate</td>
<td>(r = 0.935)</td>
</tr>
<tr>
<td>Capital depreciation rate</td>
<td>(\delta_k = 0.714)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target values for calibration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment, growth and education</td>
<td>(n_1 = 51.1%, n_2 = 56.8%, n_3 = 29.3%, R = 57.9%, \text{ per capita annual growth} = 1.77%, e = 14.2%)</td>
</tr>
<tr>
<td>Relative wages US</td>
<td>(w_{L}h_{1L}/w_{H}h_{1H} = 0.43, w_{M}h_{1M}/w_{H}h_{1H} = 0.63, w_{L}h_{2L}/w_{H}h_{2H} = 0.38, w_{M}h_{2M}/w_{H}h_{2H} = 0.58)</td>
</tr>
</tbody>
</table>

Notes:
(a) Values for Belgium, see Table 1;
(b) As a proxy for the relative wage of low-ability (medium-ability) young workers, we use available data on earnings of workers of age 25-34 with below upper secondary education (secondary education) in the US relative to earnings of workers with a tertiary degree. For the relative wage of middle aged workers, we use the same kind of data. However, since middle age-specific data are missing, we use average values for the whole age group 25-64 as a proxy. Data for the age group 55-64 are about the same (0.38 and 0.55). Data source: OECD Education at a Glance, 2009, Table A7.1.

4.1. Preference and technology parameters

Table 2 contains an overview of all parameters. We set the rate of time preference equal to 1.5% per year. Considering that periods in our model consist of 15 years, this choice implies a discount factor \(\beta\) equal to 0.8. In the production function we assume a capital share coefficient \(\alpha\) equal to 0.285. The elasticity of substitution \(s\) between the different ability types of effective labor is set equal to 1.5. Our values for the rate of time preference and the capital share are well within the range of values imposed in the literature (e.g. Docquier and Michel, 1999; Altig et al., 2001; Heijdra and Romp, 2009). So is the value for \(s\). The empirical labor literature consistently documents values between 1 and 2 (see Caselli and Coleman, 2006). There is more controversy about the value of the intertemporal elasticity of substitution in leisure (\(\theta\)). Micro studies often reveal very low elasticities. However, given our macro focus, these studies may not be the most relevant ones (Rogerson and Wallenius, 2009; Fiorito and Zanella, 2012). Rogerson (2007) also adopts a macro framework. He puts forward a reasonable range for \(\theta\) from 1 to 3 (Rogerson, 2007, p. 12). In line with this, we impose \(\theta\) to be equal to 2. The world real interest rate is assumed constant and equal to 4.5% per year. Considering a period of 15 years, this implies that \(r = 0.935\). Finally, we set the physical capital depreciation rate to 8% per year, which implies \(\delta_k = 0.714\). These values are also within the range of existing studies (see e.g. Heijdra and Romp, 2009).
A second series of ten parameters have been determined by calibration: three taste for leisure parameters \((\gamma_1, \gamma_2, \gamma_3)\), the human capital inheritance parameter \((\pi)\), three efficiency parameters in the human capital production function \((\phi_H, \phi_M, \phi_L)\), the elasticity of substitution \((\zeta)\) in the composite leisure function in Equation (4) and two share parameters in aggregate effective labor \((\eta_M, \eta_L)\), where \(\eta_H\) follows as \(1 - \eta_L - \eta_M\). The ten target values to which these parameters have been calibrated are reported at the bottom of Table 2. Six of them concern the employment rates, the effective retirement age, education, and growth for Belgium in our study. We choose this country since in Belgium the calculation of pension benefits fits exactly within the way we model it. Public pensions are proportional to average annual labor income earned over a period of 45 years, with equal weights to all years. In our model this comes down to \(\rho_w > 0, \rho_f = 0\) and \(p_1 = p_2 = p_3 = \frac{1}{3}\). The other four target values are the relative wages of young and middle aged workers of low and medium ability in the US. Although in practice a whole system of simultaneous equations is solved in which each target value is important for each parameter to be calibrated, it may be useful for our exposition here to bring some more structure. Certain parameters are clearly more than others linked to certain target values. The leisure parameters, including the elasticity of substitution in the composite leisure function (4), are basically determined such that with observed average levels of the policy variables (tax rates, non-employment benefit replacement rates, pension replacement rates, etc.) and the observed level of schooling quality \((q)\) in Belgium, the model correctly predicts Belgium’s employment rates by age \((n_1, n_2, n_3)\) and effective early retirement age \((R)\). We find that the taste for leisure rises with age \((\gamma_1 = 0.070, \gamma_2 = 0.126, \gamma_3 = 0.170)\) and observe a stronger degree of substitutability than in the Cobb-Douglas case between the two types of leisure for older workers \((\zeta = 1.54)\). The human capital inheritance parameter is basically determined to match average per capita growth. We find an inheritance rate for the highest ability group of 85% \((\pi = 0.85)\). Taking into account the values for \(\varphi_M\) and \(\varphi_L\), we obtain inheritance rates for the medium ability and the low ability groups of about 71% (=0.85x0.837) and 57% (=0.85x0.673). As we have explained in the beginning of Section 3.2., we rely on PISA science scores to obtain \(\varphi_M\) and \(\varphi_L\).

Calibration of the share parameters \(\eta_M\) and \(\eta_L\) is mainly driven by the values for relative wages of young workers in the US. As shown by Equation (26), these share parameters are important determinants of the relative productivity of labour. Actual wages are informative if a close link can be assumed between wages and productivity. This condition is much more likely fulfilled in the US, which explains the introduction here of US relative wages rather than those in Belgium (or in any other European country). We illustrate the key elements in our procedure to obtain values for \(\eta_L\) and \(\eta_M\) from these relative wage data in Appendix 2. The results imply \(\eta_L = 0.23, \eta_M = 0.30\) and \(\eta_H = 0.47\). A similar procedure is applied to derive values for \(\phi_L, \phi_M\) and \(\phi_H\). These are basically determined such that the model correctly predicts relative wages of middle aged workers in the US, as well the target value for the education rate \(e\) (see also Appendix 2). We obtain \(\phi_L = 2.83, \phi_M = 4.66\) and \(\phi_H = 5.34\).

\[9\] Only individuals with labor income below about 75% of the mean receive an additional social assistance benefit. We include this as ‘basic pension’ for the low ability individuals \((\rho_{fL} > 0)\), see Table 5, and our discussion there.

\[10\] And with the values of three parameters in the human capital production function \((\sigma, \nu, \kappa)\) that we discuss below (see also footnote 11).
Finally, we had no strong ex ante indication on three parameters in the human capital production function: the scale parameter σ, the share parameter ν and the elasticity of substitution parameter κ. We could assign sensible values to these parameters thanks to a sensitivity analysis on the results that we report in the next section. There we evaluate the capacity of our model to explain the facts in 13 OECD countries that we reported in Table 1. Our guideline to pin down specific values for σ, ν and κ was to minimize the deviation of our model's predictions from the true data11. This procedure implied $\sigma = 0.60, \nu = 0.125$ and $\kappa = 0.375$. We observe decreasing returns in human capital growth. The result for κ reveals a higher degree of complementarity between private education time and government expenditures than in the Cobb-Douglas case. The result for ν demonstrates relatively high importance for human capital formation of private education time versus productive public expenditures. Neither did we have an ex ante indication on the remaining parameters in the composite leisure function in Equation (4). We impose equal weight for both leisure types ($\mu = 0.5$). The normalisation parameter Γ equals 2. The size of this parameter has no impact at all on our country predictions or simulation results.

4.2. Fiscal policy, pensions and education quality

Tables 3 and 4 describe key characteristics of fiscal policy in 1995-2001/2004. Our proxy for the tax rate on labor income concerns the total tax wedge, for which we report the marginal rate in %. The data cover personal income taxes, employee and employer social security contributions payable on wage earnings and payroll taxes. The OECD publishes these marginal tax data for eight family and income situations. Our data for τ_w in Table 3 are the average of all these situations. Belgium, Germany, Italy, Sweden and Finland have marginal labor tax rates above 55% or even 60%. The US have marginal labor tax rates below 40%. Capital tax rates are effective marginal corporate tax rates reported by the Institute for Fiscal Studies (their EMTR, base case). Germany and Belgium have the highest rates. In contrast to labor (and consumption), capital is taxed relatively little in the Nordic countries. As to consumption taxes, we follow Dhont and Heylen (2009) in computing them as the ratio of government indirect tax receipts (net of subsidies paid) to total domestic demand net of indirect taxes and subsidies. Our simplifying assumption is that consumption tax rates correspond to aggregate indirect tax rates. The Nordic countries stand out with the highest consumption tax rates, the US with the lowest. The utter right column in Table 3 shows the average ratio of gross government debt to GDP in the period that we study. The data range from less than 50% in Norway and the UK to more than 100% in Belgium and Italy.

11 From our model’s predictions and the true data for 13 countries we computed for each variable ($n_1, n_2, n_3, R, e, growth$) the root mean squared error normalized to the mean. We minimized the average normalized RMSE over all six variables. More precisely, we adopted the following iterative procedure. We chose values for σ, ν and κ and then calibrated the other ten parameters (although it should be mentioned that the values for σ, ν and κ hardly affected the calibration results for γ_j). Given the obtained values for the other parameters, we computed the average normalized RMSE over all six endogenous variables. We then checked whether changes in σ, ν and κ and a recalibration of the other parameters, could further reduce this statistic. We did this until no further reduction was possible.
Table 3 Fiscal policy: Tax rates and government debt

<table>
<thead>
<tr>
<th>Proxy for:</th>
<th>(\tau_w)</th>
<th>(\tau_c)</th>
<th>(\tau_k)</th>
<th>(D/Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>54.9</td>
<td>13.2</td>
<td>17.3</td>
<td>69.6</td>
</tr>
<tr>
<td>Belgium</td>
<td>67.2</td>
<td>13.4</td>
<td>27.1</td>
<td>111.7</td>
</tr>
<tr>
<td>France</td>
<td>52.9</td>
<td>17.1</td>
<td>21.7</td>
<td>68.9</td>
</tr>
<tr>
<td>Germany</td>
<td>60.4</td>
<td>11.1</td>
<td>34.4</td>
<td>63.1</td>
</tr>
<tr>
<td>Italy</td>
<td>55.2</td>
<td>14.7</td>
<td>14.9</td>
<td>122.1</td>
</tr>
<tr>
<td>Netherlands</td>
<td>52.0</td>
<td>12.2</td>
<td>24.3</td>
<td>68.2</td>
</tr>
<tr>
<td>Denmark</td>
<td>48.6</td>
<td>18.9</td>
<td>22.5</td>
<td>60.3</td>
</tr>
<tr>
<td>Finland</td>
<td>56.2</td>
<td>15.2</td>
<td>17.2</td>
<td>54.1</td>
</tr>
<tr>
<td>Norway</td>
<td>50.8</td>
<td>16.4</td>
<td>22.1</td>
<td>40.4</td>
</tr>
<tr>
<td>Sweden</td>
<td>56.0</td>
<td>17.9</td>
<td>16.1</td>
<td>67.2</td>
</tr>
<tr>
<td>UK</td>
<td>44.9</td>
<td>14.5</td>
<td>21.2</td>
<td>46.6</td>
</tr>
<tr>
<td>US</td>
<td>37.4</td>
<td>7.2</td>
<td>23.6</td>
<td>61.9</td>
</tr>
<tr>
<td>Canada</td>
<td>46.4</td>
<td>14.5</td>
<td>24.8</td>
<td>83.8</td>
</tr>
<tr>
<td>Overall average</td>
<td>52.5</td>
<td>14.3</td>
<td>22.1</td>
<td>70.6</td>
</tr>
</tbody>
</table>

Notes: Labor tax rates are data for the total tax wedge, marginal rate (OECD, Taxing Wages). Data are for 2000-2004. Earlier data are not available. For details, see Appendix 1. Capital tax rates are effective marginal corporate tax rates (Institute for Fiscal Studies, their EMTR, base case; data are for 1995-2001, see also Devereux et al., 2002). Consumption tax rates are from Dhont and Heylen (2009). Data are for 1995-2001.

Table 4 summarizes our data for the expenditure side of fiscal policy. A first variable is our proxy for the net non-employment benefit replacement rate \(b \). Since in our model non-employment is a structural or equilibrium phenomenon, the data that we use concern net transfers received by structurally or long-term unemployed people. They include social assistance, family benefits and housing benefits in the 60th month of benefit receipt. They also include unemployment insurance or unemployment assistance benefits if these benefits are still paid, i.e. if workers can be structurally unemployed for more than five years without losing benefit eligibility. The data are expressed in percent of after-tax wages. In line with our approach to determine labor tax rates, we again compute the average of data reported by the OECD for a wide range of family and income cases to determine \(b \) (see Appendix 1). Overall, the euro area countries and the Nordic countries pay the highest net benefits on average. Transfers to structurally non-employed people are by far the lowest in the US. A related variable is our proxy for the net early retirement benefit replacement rate \(b_{er} \). The data are again expressed in percent of after-tax final wages. To assess the generosity of early retirement we integrate the information available via \(b \) and data for the implicit tax rate on continued work in the early retirement route as provided by Duval (2003) and Brandt et al. (2005). For details, see Appendix 1. We observe a very generous early retirement regime in Belgium and Finland, whereas net early retirement benefits in Anglo-Saxon countries are much lower.

12 In the period that we study, this is the case in Austria, Belgium, France, Germany, Finland, Ireland, and the UK. Workers cannot be structurally non-employed and still receive unemployment benefits in the Netherlands, Italy, Denmark, Norway, Sweden, Spain, Portugal, Switzerland and the US (OECD, 2004, www.oecd.org/els/social/workincentives, Benefits and Wages, country specific files).
Table 4 Fiscal policy: net benefit replacement rates, consumption, productive expenditures

<table>
<thead>
<tr>
<th>Proxy for:</th>
<th>b</th>
<th>b_{ER}</th>
<th>g_c</th>
<th>g_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>56.3</td>
<td>71.6</td>
<td>14.6</td>
<td>9.1</td>
</tr>
<tr>
<td>Belgium</td>
<td>59.6</td>
<td>79.0</td>
<td>16.9</td>
<td>8.9</td>
</tr>
<tr>
<td>France</td>
<td>46.0</td>
<td>63.8</td>
<td>18.3</td>
<td>11.0</td>
</tr>
<tr>
<td>Germany</td>
<td>64.7</td>
<td>70.8</td>
<td>15.3</td>
<td>8.6</td>
</tr>
<tr>
<td>Italy</td>
<td>17.0</td>
<td>55.7</td>
<td>14.3</td>
<td>8.0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>55.0</td>
<td>68.1</td>
<td>18.4</td>
<td>10.3</td>
</tr>
<tr>
<td>Denmark</td>
<td>61.9</td>
<td>43.2</td>
<td>18.4</td>
<td>12.5</td>
</tr>
<tr>
<td>Finland</td>
<td>61.3</td>
<td>73.8</td>
<td>16.0</td>
<td>11.4</td>
</tr>
<tr>
<td>Norway</td>
<td>56.9</td>
<td>39.9</td>
<td>14.7</td>
<td>12.1</td>
</tr>
<tr>
<td>Sweden</td>
<td>55.4</td>
<td>39.0</td>
<td>20.0</td>
<td>14.0</td>
</tr>
<tr>
<td>UK</td>
<td>51.1</td>
<td>39.4</td>
<td>14.4</td>
<td>7.3</td>
</tr>
<tr>
<td>US</td>
<td>30.5</td>
<td>18.3</td>
<td>10.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Canada</td>
<td>44.4</td>
<td>27.0</td>
<td>14.7</td>
<td>9.3</td>
</tr>
<tr>
<td>Overall average</td>
<td>52.2</td>
<td>53.8</td>
<td>15.9</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Notes: A description of all variables is given in the main text. For more details, see Appendix 1. The data for net benefit replacement rates are an average for 2001-2004 (earlier data are not available). The data for government consumption and productive expenditures concern 1995-2001.

Our data for productive government expenditures (g_y) in Table 4 include education, active labor market expenditures, government financed R&D and public investment, in percent of GDP. On average, education expenditures constitute close to 60% of total g_y. Governments in the Nordic countries allocate by far the highest fractions of output to productive expenditures. Productive expenditures in percent of GDP are the lowest in the UK. The US and most core countries of the euro area take intermediate positions. Government consumption in percent of GDP is the highest also in the Nordic countries, followed at close distance by several countries of the core euro area13. In the US, government consumption is (much) lower.

Table 5 contains our data for the net pension replacement rates ρ_{wa} and ρ_{fa}. The data have been taken or computed from OECD (2005). They include only (quasi-)mandatory pension programs14. In line with our specification in Equation (9), ρ_{wa} is expressed as a percentage of an individual’s average lifetime net labor income, while ρ_{fa} is expressed as a percentage of average economy-wide net labor income at the

13 Like Dhont and Heylen (2009) we calculate our data for government consumption as total government consumption in % of GDP, diminished with the fraction of public education outlays going to wages and working-expenses. We include the latter in productive expenditures.

14 In most countries mandatory programs are public. For Denmark, the Netherlands and Sweden the data also include benefits from mandatory private systems. These benefits are earnings-related and included under ρ_{wa}. Voluntary, occupational pensions are not included in our data.
time of retirement. We consider individuals at 50 percent of mean earnings as representative for the low ability group, individuals with mean earnings as representative for the medium ability group, and individuals at twice the mean earnings as representative for the high ability group. Appendix 1 gives more details on the construction of the data. In the majority of countries individuals with mean or higher earnings only receive earnings-related pensions \((\rho_{wa} > 0, \rho_{fa} = 0 \text{ for } a = M, H) \). Among these countries, Austria and Italy pay the highest net replacement rates \((\rho_{wa} > 85\%) \), Belgium and the US the lowest \((\rho_{wa} < 65\%) \). Five countries also pay basic pensions to individuals with mean or higher earnings: the Netherlands, Denmark, Norway, the UK and Canada. For individuals with low earnings, the situation is somewhat the opposite. Their pension includes a significant basic (or similar) component in most countries. Unsurprisingly, the Netherlands, Denmark and the UK pay the highest ‘basic’ amounts\(^{16}\).

We emphasize that the straightforward way in which the OECD computes the pension replacement rates, in percent of an individual’s average lifetime labor income, comes down to assuming in our model that the weights \(p_1, p_2 \) and \(p_3 \) are all equal to 1/3. For reasons of consistency we will therefore make this assumption for all individual countries when we derive our model’s predictions. We are aware, however, that equal weights do not fully match practice in all countries. Some deviate from this prototype, to varying degrees\(^{17}\). When we compare our model’s predictions for these countries to the facts in the next section, we should take this into account. Assuming equal weights may slightly bias our predictions.

A final variable in Table 5 is our indicator for education quality \((q) \) in the human capital production function \((12, 18)\). For each country we use PISA science scores. We concentrate on test results for science given their expected closer link to growth (Barro, 2001). The mean score is best in Finland, followed by the Netherlands, Canada and the UK. Education quality is relatively low in Italy, Denmark, Norway and the US. Note that there is no correlation between productive government expenditures in Table 4 and the PISA scores in Table 5. The coefficient of correlation is -.04. There is no correlation either if we restrict productive expenditures to education only. Both variables seem to tell different stories (see also Woessmann, 2003).

\(^{15}\) Next to the pension level, differences exist also in the precise organization of the earnings-related system. Some countries have pure defined-benefit systems (e.g. Belgium, Finland, US), others have so-called point systems (Germany) or notional-account systems (Italy, Sweden). Although these three systems can appear very different, OECD (2005) shows that they are all similar variants of earnings-related pension schemes.

\(^{16}\) As we explain in Appendix 1, it should be mentioned that our proxy for \(\rho_{fa} \) also includes targeted and minimum pensions. Basic pensions pay the same amount to every retiree. Targeted plans pay a higher benefit to poorer pensioners and reduced benefits to better-off ones. Minimum pensions are similar to targeted plans. Their main aim is to prevent pensions from falling below a certain level (OECD, 2005, p. 22-23). Our main motivation to merge these three categories in our proxy for \(\rho_{fa} \) is that they are not (or even inversely) linked to earnings.

\(^{17}\) In Austria, Norway and France earnings-related pensions are not calculated from average lifetime income but from average income during the final working years or a number of years with the highest earnings. Ideally, one would impose different weights \(p_1, p_2 \) and \(p_3 \). However, the pension replacement rate reported by the OECD would then no longer be reliable since it is based on the assumption of equal weights.
Table 5 Net pension replacement rates and PISA education score

<table>
<thead>
<tr>
<th>Proxy for:</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>PISA science score (divided by 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>88.7</td>
<td>88.9</td>
<td>75.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.507</td>
</tr>
<tr>
<td>Belgium</td>
<td>55.4</td>
<td>63.1</td>
<td>42.7</td>
<td>17.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.505</td>
</tr>
<tr>
<td>France</td>
<td>62.9</td>
<td>68.8</td>
<td>59.2</td>
<td>23.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.502</td>
</tr>
<tr>
<td>Germany</td>
<td>60.4</td>
<td>71.8</td>
<td>67.0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.502</td>
</tr>
<tr>
<td>Italy</td>
<td>89.3</td>
<td>88.8</td>
<td>89.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.480</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.0</td>
<td>42.1</td>
<td>62.9</td>
<td>46.4</td>
<td>42.1</td>
<td>36.2</td>
<td>0.525</td>
</tr>
<tr>
<td>Denmark</td>
<td>15.3</td>
<td>11.0</td>
<td>10.0</td>
<td>43.6</td>
<td>43.1</td>
<td>42.2</td>
<td>0.484</td>
</tr>
<tr>
<td>Finland</td>
<td>82.3</td>
<td>78.8</td>
<td>78.3</td>
<td>4.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.550</td>
</tr>
<tr>
<td>Norway</td>
<td>36.4</td>
<td>43.0</td>
<td>38.4</td>
<td>26.4</td>
<td>22.1</td>
<td>20.3</td>
<td>0.490</td>
</tr>
<tr>
<td>Sweden</td>
<td>64.6</td>
<td>65.9</td>
<td>74.3</td>
<td>13.6</td>
<td>2.3</td>
<td>0.0</td>
<td>0.507</td>
</tr>
<tr>
<td>UK</td>
<td>0.0</td>
<td>5.0</td>
<td>8.0</td>
<td>43.6</td>
<td>42.6</td>
<td>41.2</td>
<td>0.523</td>
</tr>
<tr>
<td>US</td>
<td>61.4</td>
<td>51.0</td>
<td>39.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.493</td>
</tr>
<tr>
<td>Canada</td>
<td>31.6</td>
<td>33.9</td>
<td>18.1</td>
<td>31.5</td>
<td>23.2</td>
<td>23.3</td>
<td>0.527</td>
</tr>
<tr>
<td>Overall average</td>
<td>49.9</td>
<td>54.8</td>
<td>51.0</td>
<td>19.3</td>
<td>13.0</td>
<td>12.6</td>
<td>0.507</td>
</tr>
</tbody>
</table>

Notes: Pension replacement rates have been taken or computed from OECD (2005, p. 52 and part I). The data concern 2002. For more details, see Appendix 1. The PISA science scores are an average for 2000, 2003 and 2006.

4.3 Predicted versus actual employment by age, education of the young, and growth in the OECD

Can our model match the facts that we have reported in Table 1? In this section we confront our model’s predictions with the true data for 1995-2007. Clearly, one should be aware of the serious limitations of such an exercise. First of all, our model is highly stylized and may (obviously) miss potential determinants of growth or employment. Second, even if we compute the true data in Table 1 as averages over a longer period, these averages need not be equal to the steady state. Countries may still be moving towards their steady state. Third, this exercise only concerns the last 15 years. Due to lack of data – especially with respect to marginal labor tax rates and non-employment benefits before the mid 1990s – it is impossible for us to relate changes in growth and employment to changes in policy within countries over longer time periods. In spite of all this, if one considers the extreme variation in the predictions of existing calibrated models investigating the effects of fiscal policy in the literature (see Stokey and Rebelo, 1995), even a minimal test of the ‘goodness of fit’ of our model is informative. This information is important to assess the value of the simulations that we present in the next section, and their reliability for policy analysis. In most papers in the literature a test of the external validity of the model is missing.

Our calibration implies that our model’s prediction matches the employment rates by age, the effective retirement age of older workers, education, and per capita growth in Belgium. The test of the model’s validity is whether it can also match the data for the other countries, and cross-country differences. Before one uses a model for policy analysis, one would like to see for example that the model does not overestimate, nor underestimate the performance differences related to observed cross-country policy differences. Our test is tough since we impose the same preference and technology parameters,
reported in the upper part of Table 2, on all countries. Only fiscal policy variables, the pension replacement rate, and education quality differ. Moreover, assuming perfect competition, we disregard differences in labor and product market institutions which some authors consider of crucial importance (e.g. Nickell et al., 2005). Still, we find that the model matches the facts remarkably well for a large majority of countries. Basically, we here confirm earlier findings by e.g. Ohanian et al. (2008) and Dhont and Heylen (2008) that once one controls for fiscal policy differences, variation in taste for leisure or different market rigidities are not critical to explain cross-country variation in labor market performance.

As a part of fiscal policy, lump sum transfers also differ across countries. Underlying our model’s predictions for each country, is the assumption of a constant debt to GDP ratio at the level reported for that country in Table 3. Lump sum transfers adjust endogenously in Equation (28) to obtain this equilibrium debt to GDP ratio.

Figures 2 to 4 relate our model’s predictions to actual observations for three employment rates by age (aggregated over the three ability groups). We add the 45°-line to assess the absolute differences between predictions and facts, as well as the coefficient of correlation between predictions and facts. Our model performs quite well. In each age group, it correctly predicts high employment rates in the US and Canada and low employment in Germany. For young workers it also correctly predicts relatively low employment in most other countries of the core euro area, and in the Nordic countries. For older workers it has relatively high employment right in the Nordic countries and the UK. Overall correlation between the model’s predictions and the actual data in Figure 2 is 0.35. If we drop Italy, for which there are good reasons, this rises to 0.69. Correlation in Figure 3 is 0.48, in Figure 4 it is 0.76. Moreover, in each figure - again after dropping Italy from Figure 2 - the regression line (not shown) is close to the 45°-line, which suggests that our model correctly assesses the size of the employment effects of policy differences across countries. Next to Italy, there are a few other countries, where our model somewhat over- or underpredicts. The model’s employment predictions tend to be too high for France and the Netherlands. They are too low in Figures 2 and 3 for Denmark and Finland.

Figure 5 relates our model’s predictions to the facts for the effective retirement age. The model again captures the large differences between countries. It predicts the highest retirement age in the Anglo-Saxon and Nordic countries and a much lower retirement age in core euro area countries. Correlation between actual data and the model’s predictions is 0.91. In Figures 6 and 7 we relate our model’s predictions to the facts for education and growth. For education, the model correctly captures key differences between the Nordic countries on the one hand and countries like the UK and Italy on the other. Predictions for education are quite close to the 45°-line for all individual countries except Germany and (especially) Denmark and Finland. The model does not match the high participation in education in the latter two countries. Finally, our model has important cross-country differences right for growth. The model has some difficulty however to explain observed growth for the UK and Canada. Correlation between the model’s predictions and the true data is 0.76 for education and 0.69 for growth.

18 A major element behind the deviation for this country seems to be underestimation of the fallback income position for structurally non-employed young workers. OECD data show very low replacement rates in Italy. However, as shown by Reyneri (1994), the gap between Italy and other European countries is much smaller than it seems when family support as an alternative to unemployment benefits is taken into account. Fernández Cordón (2001) shows that in Italy young people live much longer with their parents than in other countries.
Figure 2. Employment rate in hours of young individuals in 13 countries, in %, 1995-2007

Note: The dotted line is the 45°-line. Correlation between actual data and the model’s predictions is 0.35. Excluding Italy correlation rises to 0.69.

Figure 3. Employment rate in hours of middle aged individuals in 13 countries, in %, 1995-2007

Note: The dotted line is the 45°-line. Correlation between actual data and the model’s predictions is 0.48.

Figure 4. Employment rate in hours of older individuals in individual countries, in %, 1995-2007

Note: The dotted line is the 45°-line. Correlation between actual data and the model’s predictions is 0.76.
Figure 5. Effective retirement age, 1995-2006

Note: The dotted line is the 45°-line. Correlation between actual data and the model’s predictions is 0.91.

Figure 6. Tertiary education rate in individual countries, in %, 1995-2006

Note: The dotted line is the 45°-line. Correlation between actual data and the model’s predictions is 0.76.

Figure 7. Annual per capita potential GDP growth in 13 countries, in %, 1995-2007

Note: The dotted line is the 45°-line. Correlation between actual data and the model’s predictions is 0.69.
5. Public pension reform

Having established the empirical relevance of our model, we now simulate a series of policy shocks. Our aim is to discover the (relative) effectiveness of various reforms of the pension system for the employment rate of three age and three ability groups, aggregate employment, education of the young, growth, and income at old-age (especially for the low-ability group). We report steady state effects, and welfare effects per generation and per ability group. We also show the pension level of low-ability retirees. Throughout all our policy simulations we assume that the government maintains a constant debt to GDP ratio in each period. To reach this goal, it adjusts the consumption tax rate. Alternative simulations where the government adjusts lump sum transfers yield the same conclusions as the ones we report below. For a proper understanding of timing, it will be our assumption that the economy is in steady state at time t=-1. Reform is announced at time t=0 and implemented with a delay of 1 period, i.e. at time t=1. Hence, reforms apply to everyone except the generation of retirees at t=0, since they are no longer able to adapt their behavior.

Table 6 shows the steady state effects of seven (permanent) reforms in key features of the pension system. The benchmark from which we start, and against which all policy shocks are evaluated, is the average of the six core euro area countries in our sample. The parameters describing the benchmark pension system are indicated in the upper left corner of the table and in a first note below the table. Individual earnings-related replacement rates vary in the benchmark between 59% (ρ_{WL}) and 71% (ρ_{WM}). They are applied to a pension base where each active period has equal weight ($p_{ja}=1/3$). Basic pensions take values between 6% (ρ_{fa}) and 15% (ρ_{fl}) of aggregate average net labor income. No particular minimum level is imposed to the pension (MP=0). The percentage point change in the consumption tax rate to maintain a constant debt to GDP ratio is indicated at the bottom of the table.

Figure 8 shows the welfare effects of these policy changes for high and for low-ability individuals of current and future generations. The results for medium-ability individuals are in general quite close to those for the high-ability group. We report on the vertical axis the welfare effect on individuals of the generation born k periods after the announcement of the policy reform, where k is indicated on the horizontal axis. So, the data at $k=0$ for example concern the young in the period of the policy announcement. The data at $k=-3$ concern the retirees in that period. Our welfare measure is the (constant) percentage change in benchmark consumption in each period of remaining life that individuals should get to attain the same lifetime utility as after the policy shock (see also King and Rebelo, 1990). To compute this percentage change we keep employment rates at the benchmark. For example, policy 1 implies a welfare gain for the current high-ability young ($k=0$) equal to 1% of benchmark consumption. It implies a welfare loss for the current older low-ability individuals ($k=-2$) equal to 2% of their benchmark consumption.

19 Current retirees will therefore not experience a change in their pension replacement rate(s), nor in the rules behind the computation of their pension assessment base. Their disposable income can change, however, when the government adjusts consumption taxes to keep the ratio of public debt to GDP constant, or when the aggregate average net wage (to which the basic pension replacement rate ρ_{fa} applies) changes.

20 Consistent with footnote 19, these retirees are only indirectly affected by the policy change.
In Table 7 we integrate the welfare effects induced by each policy reform into a single aggregate summary measure. For each individual we first compute the present discounted value of the total consumption change over life that is required in the benchmark to make him equally well-off as under the policy reform. The basis of our computation are the data that we report in Figure 8. But now we also take into account differences in the length of remaining life. For young individuals the data in Figure 8 apply to four periods, whereas for retired individuals they only apply to one remaining period. Next, we impose that all those who lose under the new policy are compensated by the winners. Our summary measure is the present discounted value of the net aggregate consumption gain of all winners after having compensated the losers, in percent of initial GDP. The first row in Table 7 includes all current and four future generations of all three ability types into the computation. The second row includes only those generations that live at the moment the reform is announced.

Given its importance for welfare at old-age, and the risk of old-age poverty, we focus in Figure 9 on the evolution of the pension level of low-ability retirees in the periods after a policy reform. Reported data at time \(t=0 \) concern the pension level of those who are retired at the moment of announcement of the new policy and who are only indirectly affected by it. Data at \(t=3 \) concern the pension level of those who are young at the time of announcement. All data are expressed relative to the benchmark.

The starting point of our discussion is policy 1, which introduces for all individuals an increase in \(p_3 \), and a fall in \(p_1 \), along the lines preferred by Buyse et al. (2011). To compute the pension base, the weight of labor income earned as an older worker rises to 2/3, the weight of labor income earned when young falls to 0. Our results confirm the important positive effects of such a reform for aggregate employment and growth. The higher (lower) marginal utility from work when older (young) makes it interesting to shift work from the first period of active life to the third, and to postpone effective retirement (\(n_3 \) and \(R \) rise, \(n_1 \) falls). The positive effect that we observe on \(R \) and \(n_3 \) is fully in line with earlier arguments by Sheshinski (1978) and Gruber and Wise (2002), among others. Jaag et al. (2010) also predict a shift from \(n_1 \) to \(n_3 \) when \(p_1 \) falls and \(p_3 \) rises. Unlike in Jaag et al., however, the role of endogenous education in our model strongly qualifies the fall in young workers’ labor supply. As is clear in Table 6, young individuals are encouraged to study (\(e \) increases) because the lifetime rate of return to building human capital rises. This follows first from the reduction of the opportunity cost of studying when young, second from the perspective of working longer, and third from the greater importance of effective human capital when old in the pension calculation. Extra schooling contributes to steady-state growth and reinforces incentives to work at older age. We observe an increase in the annual growth rate by 0.08 %-points. Note also that the employment rate rises in each ability group \((n_{H}, n_{M}, n_{L}) \), but most so among low-ability individuals \((\Delta n_{L} = 1.43) \). These individuals can only respond to the new policy by working longer, they cannot study and enjoy higher human capital. Interestingly, the government budget does not deteriorate. It becomes possible to cut the consumption tax rate while keeping the ratio of public debt to GDP constant (see bottom of Table 6).

A quick comparison with the other policies in Table 6, to be discussed immediately, reveals that most of them are less effective than policy 1 when it comes to promoting (aggregate) employment and growth. Table 7 also reveals significant net aggregate welfare gains. The main disadvantage of policy 1, however, is the welfare loss that it imposes on the current older and middle aged generations of low-ability
individuals (Figure 8, upper panel, RHS). These individuals work more, but can hardly consume more. Even if policy 1 offers a convincing solution to the overall challenge of employment and growth in today’s economies, and even if it may contribute to safeguard the welfare state in the future, it may also worsen conditions for a significant part of the lower ability individuals. Moreover, it may offer no solution to the problem of old-age poverty faced by many. Figure 9 shows an important fall relative to the benchmark in the pension level of many generations of low-ability individuals to come. These observations make it politically difficult to impose such a policy.

Table 6. Steady state effects of pension reform – Effects for a benchmark of 6 core euro area countries (Austria, Belgium, France, Germany, Italy and the Netherlands).

<table>
<thead>
<tr>
<th>Initial values:</th>
<th>Policy 1</th>
<th>Policy 2</th>
<th>Policy 3</th>
<th>Policy 4</th>
<th>Policy 5</th>
<th>Policy 6</th>
<th>Policy 7 Fully Funded</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{1a}=1/3$</td>
<td>$p_{1a}=0$</td>
<td>$M_P=0.6$</td>
<td>$\rho_{wa}=0$</td>
<td>$p_{3a}=2/3$</td>
<td>$\rho_{wa}=0.75$</td>
<td>$p_{3a}=1/3$</td>
<td>$\rho_{wa}=0$</td>
</tr>
<tr>
<td>$p_{3a}=1/3$</td>
<td>$p_{3a}=2/3$</td>
<td>$p_{3a}=1/3$</td>
<td>$p_{3a}=2/3$</td>
<td>$p_{3a}=1/3$</td>
<td>$\rho_{wa}=0.85$</td>
<td>$\rho_{wa}=0.85$</td>
<td>$\rho_{wa}=0.85$</td>
</tr>
<tr>
<td>$MP=0$</td>
<td>$\rho_{wa}=0$</td>
<td>$\rho_{wa}=1/3$</td>
<td>$\rho_{wa}=2/3$</td>
<td>$\rho_{wa}=1/3$</td>
<td>$\rho_{wa}=0.85$</td>
<td>$\rho_{wa}=0.85$</td>
<td>$\rho_{wa}=0.85$</td>
</tr>
<tr>
<td>Effect (a):</td>
<td>Δn_1</td>
<td>-3.41</td>
<td>-0.51</td>
<td>-1.06</td>
<td>-3.33</td>
<td>-3.56</td>
<td>-2.84</td>
</tr>
<tr>
<td></td>
<td>Δn_3</td>
<td>0.12</td>
<td>-1.00</td>
<td>-3.02</td>
<td>-0.92</td>
<td>0.36</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Δn_5</td>
<td>7.02</td>
<td>-3.48</td>
<td>-10.4</td>
<td>1.15</td>
<td>8.24</td>
<td>5.99</td>
</tr>
<tr>
<td>ΔR (c)</td>
<td>0.85</td>
<td>-0.47</td>
<td>-1.41</td>
<td>0.09</td>
<td>1.00</td>
<td>1.41</td>
<td>0.36</td>
</tr>
<tr>
<td>Δe</td>
<td>1.37</td>
<td>0.00</td>
<td>-0.46</td>
<td>1.37</td>
<td>1.37</td>
<td>1.41</td>
<td>0.36</td>
</tr>
<tr>
<td>$\Delta N/N$ (d)</td>
<td>0.92</td>
<td>-1.55</td>
<td>-4.50</td>
<td>1.14</td>
<td>1.31</td>
<td>0.88</td>
<td>-2.79</td>
</tr>
<tr>
<td>Δn_H</td>
<td>1.66</td>
<td>-2.81</td>
<td>-8.14</td>
<td>-2.06</td>
<td>2.37</td>
<td>1.62</td>
<td>-5.05</td>
</tr>
<tr>
<td>Δn_M</td>
<td>0.60</td>
<td>0.01</td>
<td>-3.88</td>
<td>0.61</td>
<td>0.59</td>
<td>0.60</td>
<td>-2.84</td>
</tr>
<tr>
<td>Δn_C</td>
<td>0.72</td>
<td>0.01</td>
<td>-4.66</td>
<td>0.73</td>
<td>0.72</td>
<td>0.72</td>
<td>-2.98</td>
</tr>
<tr>
<td>Δn_C</td>
<td>1.43</td>
<td>-4.68</td>
<td>-4.96</td>
<td>-4.75</td>
<td>2.61</td>
<td>1.10</td>
<td>-2.55</td>
</tr>
<tr>
<td>Δ annual growth rate (b)</td>
<td>0.08</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>-0.02</td>
</tr>
<tr>
<td>Δc (e)</td>
<td>-1.19</td>
<td>1.66</td>
<td>5.07</td>
<td>1.15</td>
<td>-0.38</td>
<td>0.13</td>
<td>7.50</td>
</tr>
</tbody>
</table>

Notes: Initial values: $\rho_{wl}=59.4, \rho_{wm}=70.6, \rho_{wlh}=66.1, \rho_{fl}=14.6, \rho_{fM}=7.0, \rho_{FH}=6.0$.
(a) difference in percentage points between new steady state and benchmark. except $\Delta N/N$ and R.
(b) change in (weighted) aggregate employment rate in hours, change in percentage points.
(c) change in optimal effective retirement age in years
(d) change in volume of employment in hours, in percent.
(e) change in consumption tax rate in percentage points to keep the ratio of debt to GDP constant.

Policies 2 and 3 focus on the problem of low pensions for low-ability individuals. Policy 2 maintains all benchmark replacement rates, but also introduces a minimum pension. Individuals are sure of a pension equal to at least 60% of average net labor income per worker in the economy. In practice the latter implies a strong increase in the pension level for the low-ability group (see also Figure 9), but no ex-ante change for the other two groups. Their optimal behavior given all policy variables implies a pension that is above 60% of the average net wage from the beginning. We remind that none of the policy reforms
that we discuss apply to the retired at the moment of the announcement of the reform, so they are not eligible to the minimum pension. As shown by Figure 8, all low-ability individuals except the retired (\.k=-3\.k) experience welfare increases up to about 4\% under policy 2. For the welfare of all other individuals, however, these policies have very negative effects. A key element is the drastic drop in the employment rate among low-ability individuals. The perspective of a minimum pension introduces a strong disincentive for them to work (see also Sommacal, 2006). The implied fall in aggregate employment and its negative effects on the government’s budget, force the latter to raise consumption tax rates for all. Furthermore, medium and higher ability individuals can also expect a fall in their wage per unit of effective labor due to the reduction of low-ability labor supply21.

Policy 3 imposes a shift from own-earnings related pensions to ‘basic’ pensions on all individuals. Every retiree gets a basic pension equal to 75\% of average net labor income per worker in the economy. In our model \(\rho_N\) goes to zero for all ability groups, \(\rho_f\) becomes 0.75. This policy basically goes one step further than policy 2. It breaks the relationship between the pension and an individual’s human capital and labor supply also for the high and medium-ability groups. The fall in the return to studying and to working also for these groups is at the basis of an overall and strong fall in employment, education time and growth. Figure 8 reveals negative welfare effects almost across the board, especially for higher ability individuals and all future generations. Only current older low-ability individuals gain. They benefit most from higher pensions. Due to lower growth, this gain will not persist for the future low-ability generations however. As a result, policy 3 shows among the worst net aggregate welfare effects in Table 7.

Policies 4, 5 and 6 search for ways to combine the efficiency of policy 1 with the objective to reduce the risk of old-age poverty for low-ability individuals. Policy 4 extends policy 1 with a minimum pension equal to 60\% of the average net wage, like in policy 2. This policy is most beneficial for the welfare of all low-ability individuals (except the retired). They enjoy both an immediate increase in their pension, for which they have to work less, and the benefits from increased human capital formation by the high and medium-ability groups. The latter immediately contributes to higher wages per person, also for the lower ability individuals, and to increased levels of inherited human capital for all future generations. Like policy 2, however, policy 4 also imposes significant welfare losses on the current generations of high and medium-ability individuals, which drastically reduces its chances politically. Net aggregate effects in Table 7 are still negative.

Policy 5 tackles the problem of low income at old-age for the low-ability group by significantly raising their individual earnings-related pension replacement rate to 85\% (\(\Delta \rho_{WL} = 25.6\%-\text{points}\)). This policy combines the efficiency gains from policy 1 with strong incentives for the low-ability group to work more and longer. In contrast to the disincentives induced by basic or minimum pensions, policy 5 raises the return to work since it yields more future pension. Among all the policies that we discuss in Table 6, not one has more favorable effects on aggregate employment (\(\Delta \pi = 1.31\)) or on the employment rate of low-ability individuals (\(\Delta \pi_L = 2.61\)). Higher pensions can as a result be paid without the need for the government to raise consumption taxes. Given the strong rise in output and employment, \(\tau_c\) can even be

21 As a narrow alternative to policy 2, we also investigated the introduction of a minimum pension combined with an abolishment of all basic pensions. All effects were very similar. Only the required increase in the consumption tax rate was smaller, since the government could save money from \(\rho_f\) going to 0.
reduced. Compared to policy 1, welfare effects for the low-ability group are better, without hurting the medium and high-ability groups. Policy 5 induces the best net aggregate welfare effects in Table 7.

Figure 8. Welfare effects for individuals belonging to current and future generations after pension reform

Table 7. Net welfare effect after compensating welfare transfers (expressed as % of initial GDP)

<table>
<thead>
<tr>
<th>Included generations</th>
<th>Policy 1</th>
<th>Policy 2</th>
<th>Policy 3</th>
<th>Policy 4</th>
<th>Policy 5</th>
<th>Policy 6</th>
<th>Policy 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>All current + 4 future</td>
<td>1.8</td>
<td>-1.6</td>
<td>-6.1</td>
<td>-0.2</td>
<td>1.9</td>
<td>1.8</td>
<td>-2.8</td>
</tr>
<tr>
<td>All current</td>
<td>0.6</td>
<td>-1.3</td>
<td>-4.2</td>
<td>-0.8</td>
<td>1.0</td>
<td>0.9</td>
<td>-4.5</td>
</tr>
</tbody>
</table>

Note: for a description of the computation of these data, see main text.

Policy 6 reconsiders the basic choice made in policy 1 to raise the weight of labor income earned as an older worker in the computation of the pension assessment base, and to reduce the weight of labor income earned as a young worker. One of the main advantages of this choice is that it promotes education and human capital formation. Given that low-ability individuals will never continue education at the tertiary level, however, one may question this change in weights for them. Policy 6 therefore maintains the much higher individual earnings-related replacement rate for the low-ability group.
($\rho_{WL}=85\%)$, but combines this with equal weights $p_j=1/3$ for this group. The shift to $p_1=0$, $p_2=1/3$ and $p_3=2/3$ only applies to medium and high-ability individuals. Employment and growth effects from policy 6 are better than, or at least as good as, those from policy 1. For the low-ability individuals, who work the highest fraction of their time while they are young, maintaining p_1 at 1/3 in policy 6 implies a further increase in their pension benefit compared to policy 5. This further increase in pensions will force the government to slightly raise the consumption tax rate. All in all, however, the welfare effects from policy 6 are among the best for the low-ability individuals, with quasi no cost imposed on the others. Net aggregate welfare effects from policy 6 are in between those from policies 1 and 5.

Figure 9. Pension level (relative to benchmark) of low-ability retirees at time t (where $t=0$ is when the policy reform is announced and $t=1$ is when it is implemented)

![Graph showing pension level relative to benchmark over time for different policies.]

Note: Policy 7 is not included. This policy implies a gradual reduction of public pensions to zero.

Policy 7 is a gradual shift from the PAYG system in the benchmark to a system with full private capital funding. This policy completely abolishes old-age pension benefits (G_A, G_I). For the government it implies a drastic cut in pension expenditures. We assume that this drop in expenditures feeds through into lower social security contributions for all workers such that, ex ante, the decline in total labor tax receipts in % of GDP is exactly the same as the drop in pension expenditures.22 We observe in Table 6 that this transition to a private fully-funded pension scheme is not beneficial for employment. The new steady state shows lower hours worked among all ability groups and all age groups. The fall in employment is the strongest among older workers. The aggregate employment rate n drops by about 2.8%-points. An important element here is that a fully-funded system breaks the direct positive link between individual labor income and the pension, which exists in the PAYG system as we have modeled

22 In particular, the gradual decline in ρ_{wa} and ρ_{fa} is announced at time $t=0$ and implemented as follows. Pension benefits are not reduced for retirees at the moment of policy announcement ($t=0$), since retirees are not able to react to a pension reduction. In $t=1$ and $t=2$ the replacement rates are respectively reduced to $2/3$ and $1/3$ of their initial rates. From $t=3$ onwards, ρ_{wa} and ρ_{fa} are zero. At each moment, overall labor tax rates are reduced to ex ante compensate for the decline in pension expenditures.
Steady state time allocated to education also falls, slightly. So does growth (-0.02%-points). Furthermore, we observe that a shift to a fully-funded system affects the government balance negatively (as the consumption tax rate has to be increased by more than 7 percentage points). The latter is mainly due to the decline in the tax base as hours of work decrease. Another element is that, although we also find that moving to a system with private capital funding encourages national savings (see e.g. Feldstein, 1974, 2005), this need not imply an increase in domestic physical capital formation, and capital taxes. If effective labor supply and employment fall, so will the marginal product of physical capital, which causes savings to be invested abroad. Figure 8 reveals a strong intertemporal trade-off in the welfare effects from moving to a fully-funded system. Future generations gain, but current, transitional generations experience large welfare losses. This result is well-known in the literature. Although the future gains in Figure 8 are relatively strong when compared to those from e.g. policy 6, it should also be recognized that in the more distant future (k>5) a fully-funded system will bring less gains. A key element is that it lacks the incentives to promote human capital formation and growth inherent in policies 1, 5 and 6.

The possibility that a fully-funded pension system has lower growth than a PAYG model has been shown before by Kemnitz and Wigger (2000), Zhang and Zhang (2003), and Kaganovich and Meier (2008). The endogeneity of education and human capital is crucial for that result also in their models. The inferior employment effects from a shift to a fully-funded system may, however, be surprising from the perspective of recent work by e.g. Börsch-Supan and Ludwig (2010), Ludwig et al. (2012) and Fisher and Keuschnigg (2010). For a discussion of this issue we refer to Buyse et al. (2011). A major element is that the existing literature generally compares a fully-funded system with a specific PAYG system which is less ‘intelligent’ than in our policies 5 or 6. Either one assumes for example a ‘flat’ PAYG system where individuals’ pensions do not depend on their own human capital and labor earnings (as in our policy 3), or one models the public old-age pension system as an immediate alternative to work, neglecting the reality of early retirement systems.

6. Conclusions

We study the effects of pension reform in a four-period OLG model for an open economy where hours worked by three active generations, education of the young, the retirement decision of older workers, and aggregate growth, are all endogenous. Within each generation we distinguish individuals with high, medium or low ability to build human capital, which allows to investigate also the effects of pension reform on the income and welfare levels of different ability groups. Our specification of pension benefits allows for both own-earnings related and flat-rate or basic components. The weight of each component may differ for individuals with different abilities. Next to the pension system, we introduce a role for

Footnote: The explanation for the welfare loss of current generations in our model is as follows. The announcement of the transition to a fully-funded system, and the perspective of a gradual fall in labor taxes during periods 1, 2 and 3, as described in footnote 22, makes individuals shift hours worked to the future. During transition the young will study more, but total effective labor falls. Since this reduces the marginal productivity of physical capital, it will also discourage investment. Capital flows out. The economy experiences a strong drop in aggregate output (and tax revenue), which will force the government to raise consumption taxes. In later periods the economy enjoys the benefits from having accumulated more human capital during transition, but increased education efforts are not permanent (on the contrary).
education quality as well as a rich fiscal policy block. The government sets tax rates on labor, capital and consumption. It allocates its revenue to productive expenditures (mainly for education), consumption, non-employment benefits (including early retirement benefits) and pensions.

We check the validity of our model and our calibration by simulating the model for 13 OECD countries and comparing its results with the true data. Imposing common technology and preference parameters but country-specific policy parameters, we find that the predictions of our model match the main facts remarkably well.

Simulating various models of pension reform, we find that an ‘intelligent’ PAYG system may have positive effects on both employment, the effective retirement age, education, aggregate growth and welfare. These positive effects are the strongest when the PAYG system includes a tight link between individual labor income (and contributions) and the pension, and when it attaches a high weight to labor income earned as an older worker to compute the pension assessment base. Such a system stimulates individuals’ labor supply when they are middle aged and older, and education when they are young. Positive effects on human capital formation promote future productivity and earnings capacity, also for future generations. An ‘intelligent’ PAYG system may perform (much) better than a system with a strong basic pension component, or a system with full private funding.

Recognizing realistic differences across people in ability to learn and to build human capital, however, we find that this ‘intelligent’ PAYG system implies significant welfare losses for current generations of low-ability individuals, who cannot study and who work at low wages. We therefore study various alternatives to maintain the aggregate efficiency gains of an ‘intelligent’ PAYG system, while at the same time contributing to higher income at old-age and welfare for all individuals. Most promising is to maintain the tight link between individual labor income and the pension also for low-ability individuals, but to strongly raise their replacement rate. Such a system performs much better economically, and may expect to receive much more support politically, than basic or minimum pension components to promote the income of low-ability individuals. A tight link between individual labor income and the pension, combined with a high replacement rate, is a very effective way to promote labor supply. Basic and minimum pension models by contrast have strong negative effects on labor supply of low-ability individuals. A second welfare increasing adjustment would be to maintain equal weights in the pension assessment base for low-ability individuals. Since these individuals cannot study at the tertiary level, it is not optimal to give a lower weight to the labor income they earn when young.

Our findings tend to support recent pension reforms in countries like Sweden and Finland. Sweden moved from a quite non-actuarial PAYG system to a quasi-actuarial system with individual notional accounts (Lindbeck and Persson, 2003; OECD, 2005). These accounts establish a close relationship between working hours, labor earnings and contributions on the one hand, and future pensions on the other, as in the case of a high replacement rate ρ_w in our model (and a low ρ_f). Finland introduced a system where the pension accrual rate rises with age, which corresponds to the case of a rising p_j as workers get older in our model (OECD, 2005). Our results support this policy, except for individuals with low capacity to study at the tertiary level.
References

Appendix 1: Construction of data and data sources

In this appendix we provide more detail on the construction of some of our performance variables and policy variables.

Employment rate in hours (in one of three age groups, 1995-2007)
Definition: total actual hours worked by individuals in the age group / potential hours worked.
Actual hours worked = total employment in persons x average hours worked per week x average number of weeks worked per year.
Potential hours = total population in the age group x 2080 (where 2080 = 52 weeks per year x 40 hours per week)

Data sources:
* Total employment and total population in the age group: OECD Stat, Labour Force Statistics by Sex and Age. Data are available for many age groups, among which 20-24, 25-34, 35-44, 45-49, 50-54, 55-64. We constructed the data for our three age groups as weighted averages.
* Average hours worked per week: OECD Stat, Labour Force Statistics, Average usual weekly hours worked on the main job. These data are available only for age groups 15-24, 25-54, 55-64. We use the OECD data for the age group 15-24 as a proxy for our age subgroup 20-24, the OECD data for the age group 25-54 as a proxy for our age (sub)groups 25-34, 35-49 and 50-54.
* Average number of weeks worked per year: Due to lack of further detail, we use the same data for each age group. The average number of weeks worked per year has been approximated by dividing average annual hours actually worked per worker (total employment) by average usual weekly hours worked on the main job by all workers (total employment). Data source: OECD Stat, Labour Force Statistics, Hours worked.

Education rate of the young (age group 20-34, 1995-2006)
Definition: total hours studied by individuals of age 20-34 / potential hours studied
As a proxy we have computed the ratio: \(\left(\frac{fts_{20-34}}{20-34} + 0.5 \cdot pts_{20-24} + 0.25 \cdot pts_{25-34} \right) / pop_{20-34} \)
with:
- \(fts \) the number of full-time students in the age group 20-34
- \(pts \) the number of part-time students in the age groups 20-24 and 25-34.
- \(pop \) total population of age 20-34

Full-time students are assumed to spend all their time studying. For part-time students of age 20-24 we make the assumption (for all countries) that they spend 50% of their time studying, part-time students of age 25-34 are assumed to spend 25% of their time studying. Due to the limited number of part-time students, these specific weights matter very little.

Data sources:
* Full-time students in age groups 20-24, 25-29, 30-34: OECD Stat, Education and Training, Students enrolled by age (all levels of education, all educational programmes, full-time)
* Part-time students in age groups 20-24, 25-29, 30-34: OECD Stat, Education and Training, Students enrolled by age (all levels of education, all educational programmes). We subtracted the data for full-time students from those for ‘full-time and part-time students’.

Data are available in 1995-2006. However, for many countries (quite) some years are missing. Period averages are computed on the basis of all available annual data.

Average effective retirement age (1995-2006)
Definition: Average age of all persons (being 40 or older) withdrawing from the labor force in a given period.

Data source: OECD, Ageing and Employment Policies – Statistics on average effective age of retirement.
Annual real potential per capita GDP growth rate (aggregate, 1995-2007)

Definition: Annual growth rate of real potential GDP per person of working age

Data sources:
- Real potential GDP: OECD Statistical Compendium, Economic Outlook, supply block, series GDPVTR.
- Population at working age: OECD Statistical Compendium, Economic Outlook, labour markets, series POPT.

Tax rate on labor income (τ_w)

Definition: Total tax wedge, marginal tax rate in % of gross wage earnings. The data cover personal income taxes, employee and employer social security contributions payable on wage earnings and payroll taxes.

Data source: OECD, Statistical Compendium, Financial and Fiscal Affairs, Taxing Wages, Comparative tax rates and benefits (new definition).

The OECD publishes marginal labor tax rates for several family and income situations: single persons at 67%, 100% and 167% of average earnings (no children), single persons at 67% of average earnings (two children), one-earner married couples at 100% of average earnings (two children), two-earner married couples, one at 100% of average earnings and the other at 33% (no children, 2 children), two-earner married couples, one at 100% of average earnings and the other at 67% (2 children). Our data in Table 3 are the averages of these eight cases. Data for 2000-04.

Government debt (D_t

Definition: General government gross financial liabilities.

Data source: OECD Statistical Compendium, Economic Outlook, N° 89, Government Accounts.

Net benefit replacement rates when young and middle aged (b)

Definition: The data concern net transfers received by long-term unemployed people and include social assistance, family benefits and housing benefits in the 60th month of benefit receipt. They also include unemployment insurance or unemployment assistance benefits if these benefits are still paid, i.e., if workers can be structurally unemployed for more than five years without losing benefit eligibility. The data are expressed in % of after-tax wages. The OECD provides net replacement rates for six family situations and three earnings levels. Our data in Table 4 are the averages of these 18 cases. Data for 2001-04.

Data source: OECD, Tax-Benefit Models, www.oecd.org/els/social/workincentives

Data adjustment: Original OECD data for Norway include the so-called “waiting benefit” (ventestønad), which a person could get after running out of unemployment benefits. Given the conditional nature of these “waiting benefits”, they do not match our definition of benefits paid to structurally non-employed individuals. We have therefore deducted them from the OECD data, which led to a reduction of net replacement rates by about 19 percentage points. For example, recipients should demonstrate high regional mobility and willingness to take a job anywhere in Norway. The “waiting benefit” was terminated in 2008. We thank Tatiana Gordine at the OECD for clarifying this issue with us.

Early retirement replacement rates (b_{er})

To calculate our proxy for b_{er} we have focused on the possibility for older workers in some countries to leave the labor market along fairly generous early retirement routes. Duval (2003) and Brandt et al. (2005) provide data for the so-called implicit tax rate on continued work for five more years in the early retirement route at age 55 and age 60. The idea is as follows. If an individual stops working (instead of continuing for five more years), he receives a benefit (early retirement, disability…) and no longer pays
contributions for his future pension. A potential disadvantage is that he may receive a lower pension later, since he contributed less during active life. Duval (2003) calculated the difference between the present value of the gains and the costs of early retirement, in percent of gross earnings before retirement. We use his data as a proxy for the gross benefit replacement rate for older workers in the early retirement route. To compute the net benefit replacement rate, we assume the same tax rate on early retirement benefits as on unemployment benefits. We call this net benefit replacement rate r_{er}. However, these implicit tax rates are only very rough estimates of the real incentive to retire embedded in early retirement schemes and are subject to important caveats (Duval, 2003, p. 15). The available implicit tax rates take into account neither the strictness of eligibility criteria nor the presence of alternative social transfer programs that may de facto be used as early retirement devices. Our assumption will be that a realistic replacement rate for the early retirement route (b_{er}) will be a weighted average of r_{er} and b, where we take the latter as a proxy for the replacement rate in alternative social transfer programs. If $r_{er} > b$, older workers will aim for the official early retirement route, but they may not all meet eligibility criteria and have to fall back on alternative programs. If $r_{er} < b$, workers will aim for the alternative, but again they may not be eligible. We propose that $b_{er} = \xi b + (1-\xi)r_{er}$. Underlying the data in Table 4 is the assumption that $\xi=0.5$. Correlation between b_{er} and r_{er} lies around 0.92. Cross-country differences roughly remain intact. Our results in the main text do not depend in any serious way on this assumption for ξ.

Net pension replacement rates (ρ_{wa} and ρ_{fa} for $a=L,M,H$)

OECD (2005, p. 52) presents net pension replacement rates for individuals at various multiples of average individual earnings in the economy. We consider the data for individuals at 50% of average earnings as representative for the low ability group, individuals with average earnings as representative for the medium ability group, and individuals with twice average earnings as representative for the high ability group. Country studies in OECD (2005, part II) show the composition (sources) of this net replacement rate. This composition may be different for individuals with different income levels. Our proxy for ρ_{wa} includes all earnings-related pensions and mandatory occupational pensions when they depend on wages or hours worked. Our proxy for ρ_{fa} includes basic pensions, minimum pensions, targeted pensions, and old-age social assistance benefits, i.e. all categories that are not (or even inversely) related to individual earnings.

Since in our model ρ_{fa} is a percentage of the average net wage in the economy (Equation 9), whereas the above described OECD data are in percent of an individual’s net wage, we multiply the OECD data with the ratio of the replacement in percent of average earnings to the replacement rate in percent of individual earnings to obtain our ρ_{fa}. This ratio can be derived from the ‘pension modelling’ tables in the individual country studies, at various multiples of average earnings.
Appendix 2: Detail on calibration procedure to determine η_a and ϕ_a (with $a = L, M, H$)

Given the data for US relative wages in Table 2, we have for the low-ability group that:

$$\frac{w_L h^t_{1L}}{w_H h^t_{1H}} = \frac{w_L e_t h^t_{1H}}{w_H e_t h^t_{1H}} = \frac{w_L e_t}{w_H e_t} = 0.43.$$

We also know from Equation (26) that $\frac{w_L e_t}{w_H e_t} = \frac{\eta_L}{\eta_H} \left(\frac{H_{H,t}}{H_{L,t}} \right)^{\frac{1}{\mathcal{S}}}$, which implies for the US:

$$\frac{\eta_L}{\eta_H} \left(\frac{H_{H,t}}{H_{L,t}} \right)^{\frac{1}{\mathcal{S}}} = \frac{0.43}{\mathcal{\varepsilon}_L} = \frac{0.43}{0.673} = 0.66.$$

Similarly, it is easy to obtain for the medium ability group:

$$\frac{\eta_M}{\eta_H} \left(\frac{H_{H,t}}{H_{M,t}} \right)^{\frac{1}{\mathcal{S}}} = \frac{0.63}{\mathcal{\varepsilon}_M} = \frac{0.63}{0.837} = 0.76.$$

If we finally take into account that $\eta_H = 1 - \eta_M - \eta_L$, and we introduce values for $H_{H,t}/H_{M,t}$ and $H_{H,t}/H_{L,t}$ which we simultaneously obtain elsewhere in the calibration (as functions of the employment rates and x_L, x_M and x_H, which themselves depend on ϕ_L, ϕ_M and ϕ_H), it is easy to see that we have three remaining equations in three unknowns (η_H, η_M, η_L) that can be solved.

Along the same line of reasoning, we obtain values for ϕ_L, ϕ_M and ϕ_H such that our model matches the relative wages of middle aged low and medium ability workers for the US, as well as the target value for education (e) over all 13 countries. The direct link between ϕ_L, ϕ_M, ϕ_H and education, and these relative wages, is obvious from the following two equations:

$$\frac{w_L h^{t-1}_{1L}}{w_H h^{t-1}_{1H}} = \frac{w_L e^{t-1}_{L} x^{t-1}_{L} h^{t-1}_{1H}}{w_H e^{t-1}_{H} x^{t-1}_{H} h^{t-1}_{1H}} = \frac{w_L e^{t-1}_{L} x^{t-1}_{L}}{w_H e^{t-1}_{H} x^{t-1}_{H}} 0.673 = 0.38.$$

$$\frac{w_M h^{t-1}_{1M}}{w_H h^{t-1}_{1H}} = \frac{w_M e^{t-1}_{M} x^{t-1}_{M} h^{t-1}_{1H}}{w_H e^{t-1}_{H} x^{t-1}_{H} h^{t-1}_{1H}} = \frac{w_M e^{t-1}_{M} x^{t-1}_{M}}{w_H e^{t-1}_{H} x^{t-1}_{H}} 0.837 = 0.58.$$

where we know that x_L, x_M and x_H are functions of ϕ_L, ϕ_M and ϕ_H respectively and e_M and e_H. Furthermore, also w_L/w_H and w_M/w_H depend on these parameters via H_H/H_L and H_H/H_M as we have shown above.

42