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A Calderon Multiplicative Preconditioner for the
PMCHWT Equation for Scattering by Chiral

Objects
Yves Beghein, Kristof Cools, Francesco P. Andriulli, Daniël De Zutter, Eric Michielssen

Abstract—Scattering of time-harmonic electromagnetic waves
by chiral structures can be modeled via an extension of the
PMCHWT boundary integral equation for analyzing scattering
by dielectric objects. The classical PMCHWT equation however
suffers from dense discretization breakdown: the matrices re-
sulting from its discretization become increasingly ill-conditioned
when the mesh density increases. This contribution revisits the
PMCHWT equation for chiral media. It is demonstrated that
it also suffers from dense discretization breakdown. This dense
discretization breakdown is mitigated by the construction of a
Calderón multiplicative preconditioner. A stable discretization
scheme is introduced, and the resulting algorithm’s accuracy and
efficiency are corroborated by numerical examples.

Index Terms—chiral media, boundary integral equations,
boundary element method, PMCHWT equation, dense discretiza-
tion breakdown, Calderón multiplicative preconditioner

I. INTRODUCTION

SCATTERING of time-harmonic electromagnetic fields by
homogeneous objects often is modeled using boundary

integral equations (BIEs). The best-known BIEs that apply to
scattering by perfect electric conductors are the electric and
magnetic field integral equations (EFIE and MFIE). Proto-
typical BIEs that apply to penetrable objects are the Poggio-
Miller-Chan-Harrington-Wu-Tsai (PMCHWT) [1] and Müller
equations [2]. These equations can be regarded as analogues
of the EFIE and MFIE, in that they exhibit similar spectral
properties. More precisely, the spectra of the EFIE’s and the
PMCHWT equation’s operators comprise two branches, one
accumulating at zero, and the other at infinity. The spectra of
the MFIE’s and the Müller equation’s operators, on the other
hand, accumulate at a finite non-zero value.

All of the above BIEs can be solved numerically using
the boundary element method: the surface of the scatterer is
approximated by a mesh, and the unknown field quantities
are expanded in a finite number of basis functions defined
on this mesh. This approach reduces the BIE to a finite set
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of linear equations in the field expansion coefficients, which
often is solved using iterative methods. Because the EFIE’s
and PMCHWT equation’s operators have unbounded spectra,
the corresponding system matrices have very large condition
numbers when the mesh parameter (i.e. the length of the
shortest edge) decreases. This phenomenon is called dense
discretization breakdown and can be resolved by applying
Calderón multiplicative preconditioners (CMPs) [3]–[5].

In [6], the authors have presented the successful application
of the CMP to the chiral extension of the PMCHWT equation.
It is the aim of this paper to elaborate on the theoretical fun-
damentals of the chiral CMP, and to present further numerical
experiments corroborating the accuracy and the efficiency of
the technique.

Section II offers a quick overview of electromagnetic fields
in chiral media. Following this, the PMCHWT equation for
chiral media is presented in section III. While this is not new
material, it is included for self-containedness and to introduce
the notations used throughout the following sections.

In section IV, the self-regularizing property of the chiral
PMCHWT operator is studied. While this is analogous to the
nonchiral case, two difficulties arise: the spectral properties of
a composite operator involving three different wavenumbers
must be studied, and the chiral PMCHWT operator requires
a diagonalization. Once it is established that the operator is
indeed self-regularizing, the CMP is formed by applying a
suitable discretization scheme.

In the last section, numerical experiments testify to the
success of the CMP. The accuracy is tested by comparing
the results to the Mie series and to ab initio simulations of
chiral metamaterials. The efficiency is shown by comparing
the condition number of the system matrix with and without
CMP, and the required number of iterations.

II. ELECTROMAGNETIC FIELDS IN CHIRAL MEDIA

For time-harmonic electromagnetic fields, the electric and
magnetic field (resp. e and h) are linked to the electric and
magnetic displacement field (resp. d and b) by the Maxwell
equations

∇× e = −jωb− jm, (1)
∇× h = jωd + j, (2)

where ω = 2πf is the angular frequency, j is the electric
current density, and jm is the magnetic current density.
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The interaction of the electromagnetic fields with the
medium in which they propagate is modeled by constitutive
equations. The lack of reflection symmetry, which is the
defining characteristic for chiral media, must therefore be
incorporated into the constitutive equations. This can be done
using the Drude-Born-Fedorov (DBF) model [7]. However,
for notational simplicity, the following equivalent constitutive
equations are assumed [8]:(

d
b

)
=

(
ε −jκ√εµ

jκ
√
εµ µ

)(
e
h

)
, (3)

where ε is the permittivity, µ is the permeability and κ is the
dimensionless chirality parameter. The constitutive equations
(3) introduce extra coupling between electric and magnetic
field quantities. This coupling can be removed, however, by
application of the so-called Bohren transform:(

E±
H±

)
= P±

(
e
h

)
, P± =

1

2

(
1 ∓jη
± j
η 1

)
. (4)

Here η =
√
µ/ε is the characteristic impedance of the

medium. The matrices P± are projection matrices, satisfying
P+ + P− = 1. The inverse Bohren transform is

e = E+ + E−, h = H+ +H−. (5)

A similar transformation applies to the electric and magnetic
sources: (

J±
Jm,±

)
=

1

2

(
1 ∓ j

η

±jη 1

)(
j
jm

)
. (6)

The fields resulting from the Bohren transforms (4) and (6) are
governed by equations formally identical to Maxwell equations
in the absence of chirality:

∇× E± = −jωµ(1± κ)H± − Jm,±, (7)
∇×H± = jωε(1± κ)E± + J±. (8)

Equation (4) decomposes the electromagnetic fields (e,h)
into two contributions: (E+,H+) and (E−,H−). In the absence
of external sources,

∇× E± = ±γ±E±, (9)
γ± = ω

√
εµ(1± κ). (10)

Therefore, E+ and E− are Beltrami fields. For −1 < κ < 1
(which is the case for realistic materials), the two “modes”
E+ and E− have opposite helicity, and the operators P+ and
P− project the electromagnetic fields upon their components
with positive and negative helicity, respectively. When ap-
plied to plane wave solutions, the component with positive
helicity (E+,H+) is right-handed circularly polarized, while
the component with negative helicity (E−,H−) is left-handed
circularly polarized. If the chirality parameter κ is nonzero,
these components propagate with different wavenumbers γ±.
This is the cause of the well-known phenomenon of optical
activity.

III. THE CHIRAL PMCHWT EQUATION

The Bohren transform allows for the expansion of the
electromagnetic field in a chiral medium into two components,
each fulfilling the Maxwell equations in a nonchiral medium.
These components thus obey all the usual equations and
identities of electromagnetics. This property can be exploited
to construct BIEs describing scattering by chiral objects. In
this section, the extension of the PMCHWT equation for
the modeling of scattering by nonchiral objects to the chiral
PMCHWT equation for the modeling of scattering by chiral
structures is revisited.

A. The Stratton-Chu Representation Theorem
Consider a homogeneous, isotropic, penetrable object Ω

characterized by permittivity ε, permeability µ, impedance
η =

√
µ/ε and wavenumber k = ω

√
µε. It is embedded in

a background medium with permittivity ε0, permeability µ0,
impedance η0 =

√
µ0/ε0 and wavenumber k0 = ω

√
µ0ε0.

The boundary of Ω is denoted Γ, and its exterior normal
vector is denoted n̂. An external electromagnetic field (ei,hi)
is applied. The tangential traces of the electromagnetic field
just inside Ω, denoted (e−,h−), satisfy the Stratton-Chu
representation formula [9]:(

−n̂× e−

n̂× h−

)
= S int(η, k)

(
−n̂× e−

n̂× h−

)
, (11)

where

S int(η, k) =

(
1
2 −Kk ηTk
−Tk/η 1

2 −Kk

)
(12)

is the internal Stratton-Chu operator. A similar result holds for
the traces of the electromagnetic field just outside Ω, denoted
(e+,h+):(
−n̂× e+

n̂× h+

)
= Sext(η0, k0)

(
−n̂× e+

n̂× h+

)
+

(
−n̂× ei

n̂× hi

)
,

(13)
where

Sext(η0, k0) =

(
1
2 +Kk0 −η0Tk0
Tk0/η0

1
2 +Kk0

)
(14)

is the external Stratton-Chu operator. The EFIE operator
Tk (which is the sum of a weakly singular part Ts and a
hypersingular part Th) and the MFIE operator Kk are

Tkf (r) = TS,kf (r) + TH,kf (r) , (15)

TS,kf (r) = −jkn̂×
∫

Γ

e−jkR

4πR
f(r′)ds’ (16)

TH,kf (r) =
1

jk
n̂× p.v.

∫
Γ

∇e
−jkR

4πR
∇′ · f(r′)ds’,(17)

Kkf (r) = n̂× p.v.
∫

Γ

∇× e−jkR

4πR
f(r′)ds′, (18)

where p.v. indicates that the integral should be interpreted as
a Cauchy principal value, and R = |r − r′|.

By imposing continuity of the tangential traces of (e−,h−)
and (e+,h+), and subtracting (11) from (13), the PMCHWT
equation [1] is obtained:

Q(η0, k0; η, k)

(
−n̂× e
n̂× h

)
= −

(
−n̂× ei

n̂× hi

)
(19)
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where the PMCHWT operator is

Q(η0, k0; η, k) = Sext(η0, k0)− S int(η, k) (20)

=

(
Kk0 +Kk −η0Tk0 − ηTk
Tk0/η0 + Tk/η Kk0 +Kk

)
.

B. The PMCHWT Equation for Chiral Media

If the medium filling Ω is chiral, equation (11) does not
hold. However, the Bohren transform has shown that in chiral
media, the field comprises two components (E±,H±) that
do not couple (except at boundaries). They act as though
they propagate through a nonchiral medium with characteristic
impedance η and wavenumbers γ±. Therefore, they obey the
Stratton-Chu representation formula (11):(

−n̂× E±
n̂×H±

)
= S int(η, γ±)

(
−n̂× E±
n̂×H±

)
, (21)

Transforming this back to e and h using (4) and (5) results in(
−n̂× e−

n̂× h−

)
= S int

c (η, γ−, γ+)

(
−n̂× e−

n̂× h−

)
, (22)

S int
c (η, γ−, γ+) = S int(η, γ+)P− + S int(η, γ−)P+.

The pairing of γ+ with P− and γ− with P+ stems from(
E±
H±
)

= P±
(
e
h

)
⇒
(
−n̂× E±
n̂×H±

)
= P∓

(
−n̂× e
n̂× h

)
.

(23)
The chiral PMCHWT equation is obtained by again im-

posing continuity of the tangential traces of (e−,h−) and
(e+,h+), and subtracting (13) from (22):

Qc(η0, k0; η, γ−, γ+)

(
−n̂× e
n̂× h

)
= −

(
−n̂× ei

n̂× hi

)
(24)

where the chiral PMCHWT operator is

Qc(η0, k0; η, γ−, γ+)

= Sext(η0, k0)− S int(η, γ+)P− − S int(η, γ−)P+

= Q(η0, k0; η, γ+)P− +Q(η0, k0; η, γ−)P+ (25)

=

(
Q11 Q12

Q21 Q22

)
. (26)

Expressions for the operators Q11, Q12, Q21 and Q22 are
obtained by combining (4), (12) and (14):

Q11 = Q22 = Kk0 +K+ − jT −,
Q12 = −η0Tk0 − η

(
T + + jK−

)
,

Q21 = Tk0/η0 +
(
T + + jK−

)
/η.

Here the notation

K± =
1

2

(
Kγ− ±Kγ+

)
, T ± =

1

2

(
Tγ− ± Tγ+

)
was used.

The chiral PMCHWT equation is obtained by performing
the following substitution in the nonchiral PMCHWT equa-
tion:

Kk → K+ − jT − , Tk → T + + jK−.

Note that the compact contributions Kk from the nonchiral
PMCHWT equation are perturbed by discontinuous contri-
butions jT −. This implies that no matter how small the
chirality parameter κ, there always is a mesh parameter h0

such that when the actual mesh parameter h is smaller than
h0, the spectra of the matrices resulting upon discretization
of the nonchiral and chiral PMCHWT equation will differ
qualitatively. This is symptomatic to the introduction of “new
physics” in the system.

The chiral PMCHWT equation (24) is equivalent to that
presented in [10], and is a special case of the integral equa-
tions constructed for inhomogeneous chiral structures in [11].
A similar boundary integral equation has been derived for
scattering by chiral objects above a lossy half space [12], [13].
The chiral PMCHWT equation can also be applied to chiral
scatterers in chiral background media [14].

C. Numerical Solution of the Chiral PMCHWT equation

To solve (24) via the boundary element method, the un-
known quantities −n̂× e and n̂×h are expanded in a set of
basis functions f i:

−n̂× e =

N∑
i=1

cif i , n̂× h =

N∑
i=1

dif i. (27)

These expansions are inserted into (24), and the resulting
equations are tested with a set of testing functions f̃ i (i.e.
multiplied by f̃ i and integrated over Γ). This results in the
following set of linear equations (in matrix form):(

Q11 Q12

Q21 Q22

)(
c
d

)
=

(
ei

−hi
)

(28)

with

(Qij)mn =
(
f̃m,Qijfn

)
,

eim =
(
f̃m, n̂× ei

)
,

him =
(
f̃m, n̂× hi

)
,

(x,y) =

∫
Γ

x(r) · y(r)ds.

This set of 2N linear equations can be solved using a Krylov
iterative solver.

The accuracy of the solution obtained by the boundary
element method depends upon the spectral properties of the
PMCHWT operator, as well as the choice of expansion
and testing functions [15]. In our implementation, following
standard practice [3], [4], the surface Γ is approximated by
a triangle mesh. The expansion functions f i are chosen to
be div-conforming RWG functions [16], while the testing
functions f̃ i are chosen to be curl-conforming rotated RWG
functions n̂ × f i. The accuracy of the solution (27) then
depends upon the density of the triangle mesh, which is
measured by the mesh parameter (i.e. the minimum edge
length).
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IV. THE CALDERÓN MULTIPLICATIVE PRECONDITIONER

A. Dense Discretization Breakdown

The numerical solution of the EFIE suffers from dense
discretization breakdown: when the mesh is made denser, the
condition number of the system matrix in (28) grows quadrat-
ically as a function of the inverse of the mesh parameter.
This renders the iterative solution of the discretized EFIE
increasingly hard and time consuming.

The cause of this phenomenon is rooted in the mathematical
properties of the EFIE operator. Its spectrum comprises two
branches: one accumulating at zero, the other at infinity. As the
discretization is made denser, eigenfunctions corresponding
to eigenvalues accumulating at zero and infinity both can be
resolved. This renders the system matrix ill-conditioned, and
the iterative solution inefficient.

As the nonchiral PMCHWT operator (20) contains the EFIE
operator as one of its constituents, it is not surprising that it
too is susceptible to dense discretization breakdown [4].

Equation (25) indicates that the chiral PMCHWT operator is
intimately connected with the nonchiral PMCHWT operator.
Its spectrum can therefore also be expected to be unbounded,
resulting in dense discretization breakdown.

To mitigate this problem, the EFIE and the PMCHWT
equation have been regularized by Calderón multiplicative
preconditioners (CMPs) [4], [5], [17]. In the next sections,
this regularization procedure is elucidated and extended to the
chiral PMCHWT equation.

B. Regularizing the EFIE

Dense discretization breakdown of the EFIE is caused by
the unbounded spectrum of the EFIE operator Tk. However,
it is known that for smooth surfaces Γ, the eigenvalues of
the MFIE operator Kk accumulate at zero (i.e. the operator is
compact) [18]. The Calderón identities

K2
k − T 2

k =
1

4
, (29)

TkKk +KkTk = 0 (30)

imply that the EFIE operator is self-regularizing: the eigen-
values of its square accumulate at − 1

4 , and its spectrum
therefore is bounded. Moreover, if the scatterer does not
support an internal resonance at the wave number k, the
spectrum is bounded away from zero. Upon discretization,
such an operator results in a well-conditioned set of equations,
even when the discretization is made denser. This fact inspired
the introduction of the CMP EFIE in [17]:

ηT 2
k (j) = −Tk

(
n̂× ei

)
. (31)

In [3], it has been shown that this equation, which involves a
product of two operators, can be discretized in a conforming
and stable manner by leveraging both RWG and BC functions
and the introduction of the corresponding inverse Gram matrix.

C. Regularizing the Nonchiral PMCHWT Equation

In [4], it has been shown that the PMCHWT equation’s
operator too exhibits a self-regularizing property. In particular,

it has been show that the CMP PMCHWT equation

Q(η0, k0; η, k)2

(
−n̂× e
n̂× h

)
= −Q(η0, k0; η, k)

(
−n̂× ei

n̂× hi

)
(32)

involves an operator whose spectrum accumulates at finite
non-zero values. In addition to the Calderón identities, the
proof requires the determination of the accumulation points
of the spectra of the following two-wavenumber operators:

Tk1Tk2 → − k1

4k2
and − k2

4k1
,

Tk2Kk1 +Kk1Tk2 → 0.

For k1 = k2, this simply follows from the Calderón identities
(29), (30). Ignoring all compact operators, it is then found that

Q(η0, k0; η, k)2 →
(

1

2
− η

η0
Tk0Tk −

η0

η
TkTk0

)(
1 0
0 1

)
(33)

where the arrow “→” must be understood as an equality
modulo compact contribution. This shows that the eigenvalues
of the squared nonchiral PMCHWT operator will accumulate
at finite nonzero values. Thus, upon discretization, the system
matrix will be well-conditioned, uniformly with regard to the
mesh parameter.

D. Regularizing the Chiral PMCHWT Equation

The results in [3], [4] suggest the introduction of the
following CMP for the chiral PMCHWT equation (24):

Qc(η0, k0; η, γ−, γ+)2

(
−n̂× e
n̂× h

)
= −Qc(η0, k0; η, γ−, γ+)

(
−n̂× ei

n̂× hi

)
. (34)

The occurrence of a nonzero chirality parameter however
complicates the spectral analysis. Two difficulties arise:

• Explicit computation of the operators in the operator
block matrix Q2

c reveals the presence of a new type of op-
erator: the three-wavenumber operator Tk0K− −K−Tk0 .
To characterize the spectrum of Q2

c , the spectrum of
this three-wavenumber operator needs to be understood.
In section IV-D1, it will be shown that the three-
wavenumber operator is compact. This operator therefore
does not qualitatively affect the spectrum of Q2

c .
• The explicit expression of Q2

c contains noncompact con-
tributions in both the on- and off-diagonal blocks, com-
plicating the study of the spectrum of the operator as a
whole. To alleviate this difficulty, a suitable diagonalizing
transformation (up to compact contributions) will be
introduced in section IV-D2.

1) Spectrum of the three-wavenumber operator: Compact-
ness of the three-wavenumber operator Tk0K− − K−Tk0 can
be demonstrated for spherical scatterers of unit radius. It is
known that the operators Tk and Kk are (skew-)diagonal in
the basis of vector spherical harmonics X lm = curlSYlm and
Y lm = gradSYlm, with curlS and gradS the surface curl and



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 5

surface gradient, respectively, and Ylm the spherical harmonics
[17]:

TkX lm = −Jl(k)Hl(k)Y lm, (35a)
TkY lm = J′l(k)H′l(k)X lm, (35b)

KkX lm =

(
jJ′l(k)Hl(k)− 1

2

)
X lm, (35c)

KkY lm = −
(
jJl(k)H′l(k) +

1

2

)
Y lm (35d)

where Jl(k) and Hl(k) are the Riccati Bessel and Hankel
functions, respectively. They are related to the spherical Bessel
function jl(k) and the spherical Hankel function of the first
kind h(1)

l (k) as

Jl(k) = kjl(k),

Hl(k) = kh
(1)
l (k).

Using (35), it is found that(
Tk0K− −K−Tk0

)(X lm

Y lm

)
=

(
0 alm
blm 0

)(
X lm

Y lm

)
(36)

with(
alm
blm

)
= − j

2
(Jl(γ1)Hl(γ1)− Jl(γ2)Hl(γ2))

′
(
Jl(k0)Hl(k0)
J′l(k0)H′l(k0)

)
.

From (36), it follows that the eigenvalues of Tk0K−−K−Tk0
are ±

√
almblm. For large l, these eigenvalues tend to [19]

±
√
almblm → ±

k2κ

4l3
+O(l−4) (37)

and hence accumulate at zero. The operator Tk0K− −K−Tk0
therefore is compact. This conclusion is not limited to spher-
ical objects: the numerical examples at the end of this paper
will show that it also holds for non-spherical ones.

2) Diagonalization of the squared PMCHWT operator:
Non-compact operators appear in the off-diagonal elements
of Qc(η0, k0; η, γ−, γ+)2, which makes it difficult to make
conclusive statements regarding the behavior of its spectrum.
This complication can be resolved by expressing the chiral
CMP PMCHWT equation (34) in terms of the circularly
polarized components of the electromagnetic fields outside the
scatterer, e1 and e2, as(

e
h

)
=

(
1 1

− j
η0

j
η0

)(
e1

e2

)
. (38)

(Note the difference between (38) and the Bohren transform
(4): in (38) the vacuum impedance η0 is used instead of the
impedance of the chiral medium η.) Transformation (38) on
the fields induces the following transformation on the traces:(

−n̂× e
n̂× h

)
= −

(
1 1
j
η0
− j
η0

)(
n̂× e1

n̂× e2

)
.

The chiral CMP PMCHWT equation (34) can therefore be
expressed as(

1 1
j
η0
− j
η0

)−1

Q2
c

(
1 1
j
η0
− j
η0

)(
n̂× e1

n̂× e2

)
= −

(
1 1
j
η0
− j
η0

)−1

Qc
(

1 1
j
η0
− j
η0

)(
n̂× ei1
n̂× ei2

)

TABLE I
OVERVIEW OF SPECTRAL ACCUMULATION POINTS

Operator Spectral accumulation points

T 2
k − 1

4

Tk1
Tk2

− k1
4k2

, − k2
4k1

Kk1
Kk2

0

Tk1
Kk2

+Kk2
Tk1

0

Tk0
K− −K−Tk0

0

where the dependence of Qc on material parameters has been
left out to simplify the notation.

From a physical point of view, it is clear that this reformu-
lation cannot change the essential properties of the PMCHWT
operator. From an algebraic point of view, the matrix

R =

(
R11 R12

R21 R22

)
=

(
1 1
j
η0
− j
η0

)−1

Q2
c

(
1 1
j
η0
− j
η0

)
is connected to Q2

c by a similarity transformation, and there-
fore has an identical spectrum. Up to compact contributions
(such as the three-wavenumber operator discussed in the
previous subsection), it is found that

R11 → 1

2
−
(
η0

η
Tk0T + +

η

η0
T +Tk0

)
+
(
T −Tk0 + Tk0T −

)
,

R12 → 0,

R21 → 0,

R22 → 1

2
−
(
η0

η
Tk0T + +

η

η0
T +Tk0

)
−
(
T −Tk0 + Tk0T −

)
.

The eigenvalues of the diagonal elements accumulate at a
finite number of finite nonzero values, while the off-diagonal
elements are compact (for an overview of the accumulation
points, see table I). Therefore, it can be concluded that the
spectrum of R, and thus the spectrum of the squared chiral
PMCHWT operator, is bounded from above and below and
thus allows an unconditionally stable discretization, which will
be discussed in the next subsection.

E. Stable Discretization

The chiral CMP PMCHWT equation is formed by action of
the block operator Qc on the left and right hand sides of the
chiral PMCHWT equation (24):(
Q11 Q12
Q21 Q22

)2(−n̂× e
n̂× h

)
= −

(
Q11 Q12
Q21 Q22

)(
−n̂× ei

n̂× hi

)
.

(39)
The squared PMCHWT operator can be discretized ele-

gantly by introducing a second set of expansion functions gi
and testing functions g̃i. The following system is obtained (in
block matrix form):(

Q′11 Q′12

Q′21 Q′22

)(
G−1 0

0 G−1

)(
Q11 Q12

Q21 Q22

)(
c
d

)
=

(
Q′11 Q′12

Q′21 Q′22

)(
G−1 0

0 G−1

)(
ei

−hi
)

(40)
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with

(Qij)mn =
(
f̃m,Qijfn

)
,(

Q′ij
)
mn

= (g̃m,Qijgn) ,

Gmn =
(
f̃m, gn

)
.

Qij results from discretizing the operator with the first set
of basis and testing functions, and Q′ij is obtained using the
second set. The Gram matrix G relates the first set of testing
functions to the second set of expansion functions. The matrix
Q′G−1 acts as a multiplicative preconditioner.

In order to obtain accurate results, both sets of expansion
functions must be div-conforming, and both sets of testing
functions must be curl-conforming. Secondly, the Gram matrix
G must be well-conditioned. Finally, the operators Qij must
be well-tested in Qij as well as Q′ij .

For a triangular mesh, a suitable choice was presented in [3]
and [4]. There, Q is computed using divergence-conforming
RWG functions f i and curl-conforming rotated RWG func-
tions n̂×f i [16]. Q′ is computed using div-conforming Buffa-
Christiansen (BC) functions gi and curl-conforming rotated
BC functions n̂×gi [20]. This discretization scheme will also
be used in the numerical examples in the following section.

This discretization scheme can be extended to curvilinear
[21] as well as higher-order triangular elements [22]. A general
procedure not restricted to triangular meshes is described in
[23].

In the next section, the beneficial properties of the CMP
will be corroborated by numerical examples.

V. NUMERICAL EXAMPLES

A. Scattering by a Chiral Sphere

As presented in [6], the accuracy of the chiral CMP
PMCHWT equation and the proposed discretization scheme
can be tested by comparing numerical results to analytical
solutions for scattering by a chiral sphere [24]. For example,
consider a sphere with radius 1 meter and material parameters
ε = 2ε0, µ = µ0, and κ = 0.5. It is embedded in vacuum, and
illuminated by a circularly polarized plane wave propagating
along the z axis with frequency 90 MHz:

e±(x, y, z) = p exp (−jk0z) ,

h±(x, y, z) = ± j

η0
e±(x, y, z),

p = 1̂x ∓ j1̂y.

(e+,h+) corresponds to a right-hand circularly polarized
wave, while (e−,h−) corresponds to a left-hand circularly
polarized wave. The radar cross section (RCS) obtained using
the chiral CMP PMCHWT method (with N = 1398 RWG
expansion functions) is compared to the results from the Mie
series in Fig. 1, and seen to be in excellent agreement.

While the sphere is geometrically fully symmetrical, left-
right symmetry in the scattered field is broken by the micro-
scopic chiral structure of the material. This causes the sphere
to react differently upon illumination by left- and right-handed
circularly polarized waves. This asymmetry is only exhibited
when κ 6= 0.
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Mie Series

PMCHWT

left−handed
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Fig. 1. Comparison of the chiral CMP PMCHWT method to the Mie series:
the Radar Cross Section (RCS) in the xz plane, with θ being the angle between
the observed direction and the z axis.
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Fig. 2. The condition number of the system matrix and the number of
iterations required to reach convergence without the CMP, as a function of
the mesh parameter (in meters).

When solving the chiral PMCHWT method without the
CMP, dense discretization breakdown occurs. To illustrate this,
the condition number of the system matrix in (28) is plotted
in Fig. 2 for increasingly dense discretizations alongside the
number of iterations needed to reach convergence (arbitrarily
defined as a relative residual smaller than 10−6 using the
TFQMR method) when the sphere is illuminated by a linearly
polarized plane wave.

However, when employing the CMP, the system matrix
remains well-conditioned, no matter how small the mesh
parameter. The condition number of the system matrix of (40)
and the number of iterations needed to reach convergence
for this scattering problem are shown in Fig. 3. It is clear
that dense discretization breakdown is effectively cured by the
CMP.

B. Compactness of the three-wavenumber operator

In section IV-D, we claimed that the three-wavenumber
operator Tk0K−−K−Tk0 is compact, and proved this assertion
for spherical scatterers. Now, the spectrum of this operator
applied to a cube will be calculated by solving the eigenvalue
equation (

Tk0K− −K−Tk0
)
f (λ) = λf (λ). (41)



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 7

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

10

20

30

Mesh Parameter (meter)

C
o
n
d
it
io

n
 N

u
m

b
e
r

 

 

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

10

20

30

It
e
ra

ti
o
n

s

Condition Number

Iterations

Fig. 3. The condition number of the system matrix and the number of
iterations required to reach convergence with the CMP, as a function of the
mesh parameter (in meters).

The eigenfunctions f (λ) are approximated using RWG expan-
sion functions:

f (λ) =

N∑
i=1

a
(λ)
i f i. (42)

By applying the discretization scheme used for the construc-
tion of the CMP, the eigenvalue equation (41) becomes(

T′k0G
−1K− −K′

−
G−1Tk0

)
a(λ) = −λGT a(λ) (43)

with

(Tk0)mn = (n̂× fm, Tk0fn) ,(
T′k0

)
mn

= (n̂× gm, Tk0gn) ,(
K−
)
mn

=
(
n̂× fm,K−fn

)
,(

K′
−
)
mn

=
(
n̂× gm,K−gn

)
,

Gmn = (n̂× fn, gm) .

Thus, the spectrum of the operator Tk0K−−K−Tk0 is approx-
imated by the spectrum of the matrix

−
(
GT
)−1 (

T′k0G
−1K− −K′

−
G−1Tk0

)
, (44)

which can easily be calculated numerically.
For example, consider a cube with side 1 meter, ε = 2ε0,

µ = µ0, and κ = 0.5. The surface of the cube is discretized
using 1800 expansion functions. The matrix (44) and its eigen-
values are computed for a frequency of 150 MHz (Fig. 4). The
eigenvalues accumulate at zero, thus supporting the assertion
that Tk0K− −K−Tk0 is compact.

C. Application of the PMCHWT Equation to a Chiral Meta-
material

As a last example, the chiral CMP PMCHWT simulation
technique is applied to the chiral metamaterial presented in
[25]. Chiral particles (Fig. 5) with diameter 2.202 mm are
mixed randomly to create an isotropic chiral metamaterial. The
inclusion density is 34.5 cm−3.

When the T-matrix of a spherical ensemble of chiral parti-
cles is known, it is possible to derive a closed form expression
of the material parameters of an equivalent homogeneous
sphere. Using this technique, the authors found that at a
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Fig. 4. Location of the eigenvalues of the three-wavenumber operator
Tk0
K− − K−Tk0

in the complex plane, applied to a cube. The left panel
contains all eigenvalues. The middle and right panel are zoomed in around 0,
where the eigenvalues are seen to accumulate.

Fig. 5. A chiral particle [25].

frequency of 5.98 GHz (corresponding to a wavelength λ = 5
cm), this metamaterial can be described by the following
parameters: ε = 1.6347ε0, µ = 1.1072µ0, and κ = 0.1511.

The bistatic radar cross section of a cuboid of this material
with dimensions 10 cm×10 cm×5 cm is computed in the xy-
plane (Fig. 7). The incoming electric field is linearly polarized
along the z axis and propagates along the directions φinc = 0
and φinc = π/4. The comparison of the condition number and
the required number of iterations (averaged over the dipole
and the plane wave excitations) with and without CMP again
testifies to the success of the CMP (Fig. 8). Without CMP,
dense discretization breakdown occurs for mesh parameters
h ≤ λ/8. With CMP, the condition number as well as the
required number of iterations remain constant.

Next, the cuboid is excited by two different sources: a dipole
located in the symmetry plane of the block, and one residing
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Fig. 6. Definition of the angle φ.
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Fig. 7. Bistatic radar cross section in the xy-plane, computed for incoming
plane waves propagating along the directions φinc = 0 and φinc = π/4.
The angle φ is defined in Fig. 6.
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Fig. 8. Condition number of the system matrix (top) and average number
of iterations (bottom) for the cuboid, with and without CMP.

in its top plane (Fig. 9). In [25], the field scattered by this
configuration was computed “ab initio”, that is by accounting
for each and every spiral by using the NSPW-MLFMA T-
matrix method. This approach required the solution of a set
of linear equations with 347,400 unknowns.

The calculation is now repeated using both the classic
chiral PMCHWT and the chiral CMP PMCHWT method by
modeling the block as a homogeneous chiral medium, and
covering its surface with 2048 expansion functions (the mesh
parameter being λ/8). As is to be expected, the use of the
CMP does not alter the results (up to numerical precision).
The efficiency of the CMP is once again proven: for the
symmetrical excitation, the required number of iterations to
reach a relative residual of 10−6 is reduced from 247 to 16,
and for the asymmetric one from 254 to 17.

In order to compare the results to the ab initio simulation
data provided by the authors of [25], the electromagnetic fields
are calculated at a distance of 40 cm from the center of the
block (Fig. 6). The hx-component is shown in the top and
middle panels of Figs. 10 and 11 for the symmetric and the
asymmetric excitations, respectively.

A remark concerning the approximate agreement between

Fig. 9. Position of the dipole source for symmetric (left) and asymmetric
(right) excitation [25].
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Fig. 10. The scattered field log10(|hx|) due to the symmetric excitation.
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the results of the ab initio simulation and the chiral PMCHWT
method is in order. The constitutive equations (3) describe a
homogeneous, continuous medium. However, in this particular
example, the microscopic building blocks are relatively large
(with dimensions of about λ/20). Therefore, constitutive equa-
tions can only provide an approximate model of the medium.
When characterization of the chiral medium by a macroscopic
parameter κ is warranted, however, the modeling of scattering
by such chiral objects obviously can be performed much more
efficiently by the chiral CMP PMCHWT than by an ab initio
simulation which takes into account the microscopic structure
of the material.

The inclusion of a nonzero chirality parameter however does
provide a good prediction of the order of magnitude of the
different field components. The scattered field computed using
the nonchiral PMCHWT method (with the same permittivity
and permeability) is shown in the bottom panel of Figs. 10 and
11. For the symmetric excitation, the hx-component vanishes
(up to the iterative solver’s tolerance) for all φ. For the
asymmetric excitation, it vanishes at φ = 0 and φ = π. This
is due to incorrect assumptions about the symmetry of the
medium. This error is corrected by the inclusion of a nonzero
chirality parameter.

VI. CONCLUSIONS

In this paper, numerical methods for analyzing scattering
of electromagnetic fields by chiral media were studied. The
main theoretical tool is the Bohren transform, which allows
for a far-reaching analogy between chiral media and nonchi-
ral dielectrics. By exploiting this analogy, boundary integral
equations for dielectric structures can be extended to chiral
objects. The extension of the PMCHWT equation was revisited
in detail.

An accurate numerical solution of the chiral PMCHWT
equation can be obtained with straightforward discretization
schemes using RWG expansion functions. However, as is the
case for the nonchiral PMCHWT equation and the EFIE, the
condition number of the resulting set of equations quickly
grows as the discretization becomes denser; that is, dense
discretization breakdown occurs.

By studying two- and three-wavenumber extensions to the
Calderón identities used in the Calderón preconditioning of
the EFIE for analyzing PEC scattering, it is shown that
the square of the chiral PMCHWT operator possesses a
bounded spectrum and is therefore not susceptible to dense
discretization breakdown. By applying a stable discretization
scheme involving both RWG and BC functions to the squared
chiral PMCHWT operator, a Calderón multiplicative precon-
ditioner for the chiral PMCHWT equation, which effectively
resolves the problem of dense discretization breakdown, was
constructed.

Finally, three numerical experiments were performed. First,
the accuracy of the chiral PMCHWT method and the efficacy
of the CMP were corroborated by comparison of the result they
yield, to the analytical solution for scattering by a spherical
object. Second, the spectrum of the chiral PMCHWT operator
was studied for nonsmooth surfaces. Third, the chiral CMP

PMCHWT method was applied to the analysis of scattering
by a metamaterial. These experiments show that the CMP
PMCHWT method is able to efficiently and accurately solve
scattering problems involving chiral media, provided that these
media can be described using constitutive equations, i.e. if they
can be considered as homogeneous and isotropic.
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