XPS – as a versatile tool in the research of the Department of Inorganic and Physical chemistry, UGent

Els Bruneel,
V Narayanan, G. Penneman, I. Muylaaert
B. De Gusseme, A. Swhwarz, L. Van Langenhove
P. VanderVoort, I. Van Driessche
Content

- Thin film superconducting materials by sol gel chemistry
- Fibrous transistors, in cooperation with dep. of Textiles, Ugent
- Biogenic nanoparticles, in cooperation with labMET
- Supported metal oxide catalyst for liquid oxidation reactions
Principle

Sol

- Deposition on substrates by dipcoating, printing
- Gelation, $T \leq 60^\circ$C

Gel

Oxide thin film (5-100 nm)

- Heat treatment under controlled atmosphere

M$_{n+}$M$_{n+}$M$_{n+}$H$_2$O

M$_{n+}$M$_{n+}$M$_{n+}$
Deposition

- dip-/spin-coating from aqueous solutions
- ink-jet printing from water-based inks
Analysis of solutions, gels and thin films:

- optical analysis: UV/Vis/IR/Raman spectroscopy
- rheology: viscosity, surface tension, contact angle, particle size, ...
- thermal analysis: TGA/DTA/DSC/TMA
- microscopy: AFM, optical, SEM/EDX, (HR)TEM with EELS, STEM, EDX
- structural analysis: XRD, pole figures, BET
- electromagnetic: resistivity measurements
- complexometry: potentiometric titrations
- XPS

Materials

- ceramic high T_c superconductor architectures on NiW tapes: YBCO, CeO$_2$, La$_2$Zr$_2$O$_7$
- TiO$_2$ for self-cleaning surfaces: on ceramic tiles and steel
- YSZ for thermal barrier coatings and solid oxide fuel cells
- mesoporous organosilica layers for low-k dielectrics (through ...)
- Diesel soot catalyst
High T_c superconductor architecture:

- Textured, flexible NiW tape
- YBCO by dipcoating or printing from aqueous solutions
- CeO$_2$ (50-100 nm) by dipcoating from aqueous solutions
- LZO (250 nm) by dipcoating from aqueous solutions
- Buffer layers prevent O from diffusing to Ni substrate and Ni-diffusion into YBCO layer

Applications:
- Resistance ~ 0 at -180 °C
- Second generation HTS wires
- Fault current limiter
- Magnets
- Coils for renewable energy
- Induction heaters ...
High T_c superconductor HTS architecture: XPS, TEM, FIB

(HR)-TEM analysis of interface, surface, crystalinity/texture

Ni/W

LZO

Cs-corrected TEM equipped with EELS, STEM, EDX ...

Sputter XPS analysis depth profiling

- Ni - diffusion through buffer layers for \neq processing
- determination of layer thickness
- compositional analysis
- degree of oxidation

Ce⁴⁺ ion : (Xe) = 5p⁶ 4f⁰

Ce⁻⁻⁻ ion: (Xe) 4f¹⁻ = 5p⁶ 4f¹

Ce–O is not 100 % ionic

ionic: Ce: 5p⁶ 4f⁰ O: 1s² 2s² 2p⁶
less ionic: Ce: 5p⁶ 4f¹

Burrough’s notation:

<table>
<thead>
<tr>
<th></th>
<th>v₀</th>
<th>v</th>
<th>v’</th>
<th>v”</th>
<th>v””</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce 3d₅/₂</td>
<td>Origin</td>
<td>Ce³⁺</td>
<td>Ce⁴⁺</td>
<td>Ce³⁺</td>
<td>Ce⁴⁺</td>
</tr>
<tr>
<td></td>
<td>Shift (eV)</td>
<td>-36.1</td>
<td>-34.1</td>
<td>-30</td>
<td>-27.85</td>
</tr>
<tr>
<td></td>
<td>FWHM</td>
<td>4.11</td>
<td>5.77</td>
<td>3.76</td>
<td>2.69</td>
</tr>
<tr>
<td>Ce 3d₃/₂</td>
<td>Origin</td>
<td>Ce³⁺</td>
<td>Ce⁴⁺</td>
<td>Ce³⁺</td>
<td>Ce⁴⁺</td>
</tr>
<tr>
<td></td>
<td>Shift (eV)</td>
<td>-17.8</td>
<td>-15.65</td>
<td>-13.65</td>
<td>-9.25</td>
</tr>
<tr>
<td></td>
<td>FWHM</td>
<td>3.91</td>
<td>5.86</td>
<td>4.00</td>
<td>4.64</td>
</tr>
</tbody>
</table>
Study of oxidation state of Cerium and Ni–diffusion, a single layer

XPS narrow scan of the Ce 3d region showing the typical spectrum for Ce$^{4+}$.

Fitting: constraints: doublet separation, peak position, FWHM, peak shape

Top: Ce (IV)
Core: Ce (III)
Due to sputtering?
The objective is to study the role of buffer layers in transferring the texture of Ni-W substrate to YBCO (XRD) and its effective role in prevention of penetration of Ni into YBCO.
Biogenic metals: XPS analysis of cerium from organic origin
B. De Gusseme, Prof. Verstraete (LabMET)

Goal:
In a biological process cerium–ions are removed from a solution into a solid state. The question was to identify the oxidation number of the cerium in the solid state. The paste like substance was spread onto a Sn–substrate. It is shown that the presence of cerium in the sample could be confirmed. The oxidation state of the cerium is Ce(III).

<table>
<thead>
<tr>
<th>Oxidation state</th>
<th>BE (eV)</th>
</tr>
</thead>
</table>
| Ce(IV) | 898.4 3d⁵/²
 | 916.9 3d⁷/²
| Ce(IV) | 888.9 3d⁵/²
 | 907.5 3d⁷/²
| Ce(IV) | 882.3 3d⁵/²
 | 901.0 3d⁷/²
| Ce(III) | 880 3d⁵/²
 | 899 3d⁷/²
| Ce(III) | 886 3d⁵/²
 | 904 3d⁷/² |

Illustration: TEM of zerovalent paladium particles precipitated at the cell surface of Shewanella oneidesis

Goal:
To identify the oxidation number of the cerium in the solid state.

<table>
<thead>
<tr>
<th>Oxidation state</th>
<th>Binding Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce(III)</td>
<td>880, 899, 904</td>
</tr>
</tbody>
</table>

Table 1: Overview literature Ce3d³/² and 3d⁵/²
Determining the thickness of the Cu-layer. Based on differences in etch-rate between Ta$_2$O$_5$ and Cu.
Ultra-stable and zero leaching supported metal oxide catalyst for liquid oxidation reactions

Study of Vanadium oxide on mesoporous fenol resins
Ilke Muylaert, prof. Van Der Voort

Vanadium grafting

Characterization – XPS
Determination oxidation state of Vanadium

(a) V_2O_5 Crystalline
(b) NH_4VO_3 +5
(c) $VO(acac)_2$ +4
(d) P/F Resin +5 (+4)
Structural information:
C– peak at low energy 281.5 eV: C–OV
Due to low electronegativity and soft center of vanadium atom

XPS and DRIFT spectra before and after grafting with Vanadium
Thanks