M26 Deoxynivalenol predisposes for necrotic enteritis by affecting the intestinal barrier in broilers

Gunther Antonissen1,2, Filip Van Immerseel1, Frank Pasmans1, Richard Ducatelle1, Freddy Haesebrouck1, Leen Timbermont1, Marc Verlinden1, Geert Janssens3, Mia Eeckhout4, Sarah De Saeger5, Pascal Boeckx6, Evelyne Delezée7, Sabine Hessenberger8, An Martel1, Siska Croubels2

1) Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
2) Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
3) Department of Nutrition, Genetics, Breeding and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
4) Department of Food Science and Technology, Faculty of Biosciences and Landscape Architecture, Ghent University, Schoonmeerstraat 52, 9000 Ghent, Belgium
5) Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
6) Department of Applied analytical and physical chemistry, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
7) Institute for Agricultural and Fisheries Research (ILVO), Animal Sciences Unit, Scheldeweg 68, 9090 Melle, Belgium
8) Biomin Research Center, Technopark 1, 3430 Tulln, Austria

E-mail: Gunther.Antonissen@UGent.be

Clostridium perfringens induced subclinical necrotic enteritis (NE) and mycotoxins both cause important economic losses in the broiler industry. The Fusarium mycotoxin deoxynivalenol (DON) is a common feed contaminant that can affect the intestinal epithelial barrier function, and may as such increase the availability of free amino acids in the intestine. This can promote the massive intestinal proliferation of C. perfringens. The goal of this study was to evaluate and explain the predisposing effect of DON on NE.

Therefore, an in vivo infection trial mimicking subclinical NE was conducted, comparing intestinal NE lesions in broilers after feeding DON at a contamination level below the European maximum guidance level of 5000 µg/kg feed, with broilers receiving non-contaminated feed. Subsequently, total and fractional nitrogen analyses were performed on the intestinal content to investigate the total protein concentration, and differentiate in proteins of animal, vegetable and bacterial origin. Furthermore, the nitrogen isotope ratio of intestinal content, intestines and diet was measured. An ex vivo Ussing chamber experiment was also conducted to assess the effect of DON on the barrier function of intestinal mucosa of broilers. Finally, the influence of different concentrations of DON on the growth of 8 different C. perfringens strains was tested in vitro by a well diffusion growth inhibition test and by assessment of the growth curve measuring the optical density of the C. perfringens culture.

Significantly more chickens showed NE lesions in the in vivo study when their diet was contaminated with DON. The fractional nitrogen analyses showed a relative increase in protein amount of animal origin in the intestinal content. In the Ussing chamber experiments, the duodenal tissue resistance (Rt or TEER) was significantly lower in chickens who received DON contaminated feed. This indicates an altered barrier function after exposure to DON. DON did not have an effect on the in vitro growth of C. perfringens strains.

In conclusion it is shown that feeding DON contaminated feed in concentrations below the maximum European guidance contamination level to broilers is a predisposing factor for the development of NE due to its effect on the intestinal barrier function.

Key words:
Broiler – Deoxynivalenol – Necrotic enteritis – Intestinal barrier