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RESEARCH PURPOSE AND SCOPE 1-3

1.1 Overview

When we started our research in 2008, several online resources for genomics existed, each with a different
focus. TAIR (The Arabidopsis Information Resource) has a focus on the plant model species Arabidop-
sis thaliana, with (at that time) little or no support for evolutionary or comparative genomics. Ensemble
provided some basic tools and functions as a data warehouse, but it would only start incorporating plant
genomes in 2010. There was no online resource at that time however, that provided the necessary data
content and tools for plant comparative and evolutionary genomics that we required.

As such, the plant community was missing an essential component to get their research at the same
level as the biomedicine oriented research communities. We started to work on PLAZA in order to pro-
vide such a data resource that could be accessed by the plant community, and which also contained the
necessary data content to help our research group’s focus on evolutionary genomics.

1.2 Creation of a Platform for Comparative and Evolutionary Ge-
nomics

The platform for comparative and evolutionary genomics, which we named PLAZA, was developed from
scratch (i.e. not based on an existing database scheme, such as Ensemble). Gathering the data for all
species, parsing this data into a common format and then uploading it into the database was the next
step. We developed a processing pipeline, based on sequence similarity measurements, to group genes
into gene families and sub families. Functional annotation was gathered through both the original data
providers and through InterPro scans, combined with Interpro2GO. This primary data information was
then ready to be used in every subsequent analysis.

Building such a database was good enough for research within our bioinformatics group, but the tar-
get goal was to provide a comprehensive resource for all plant biologists with an interest in comparative
and evolutionary genomics. Designing and creating a user-friendly, visually appealing web interface,
connected to our database, was the next step. While the most detailed information is commonly pre-
sented in data tables, aesthetically pleasing graphics, images and charts are often used to visualize trends,
general statistics and also used in specific tools. Design and development of these tools and visualizations
is thus one of the core elements within my PhD.

The PLAZA platform was designed as a gene-centric data resource, which is easily navigated when a
biologist wants to study a relative small number of genes. However, using the default PLAZA website to
retrieve information for dozens of genes quickly becomes very tedious. Therefore a ’gene set’-centric ex-
tra layer was developed where user-defined gene sets could be quickly analyzed. This extra layer, called
the PLAZA workbench, functions on top of the normal PLAZA website, implicating that only gene sets
from species present within the PLAZA database can be directly analyzed.

1.3 Creation of a Platform for Transcriptome Analysis

The PLAZA resource for comparative and evolutionary genomics was a major success, but it still had
several issues. We tried to solve at least two of these problems at the same time by creating a new plat-
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form. The first issue was the building procedure of PLAZA: adding a single species, or updating the
structural annotation of an existing one, requires the total re-computation of the database content. The
second issue was the restrictiveness of the PLAZA workbench: through a mapping procedure gene sets
could be entered for species not present in the PLAZA database, but for species without a phylogenetic
close relative this approach did not always yield satisfying results. Furthermore, the research in question
might just focus on the difference between a species present in PLAZA and a close relative not present in
PLAZA (e.g. to study adaptation to a different ecological niche). In such a case, the mapping procedure
is in itself useless. With the advent of NGS transcriptome data sets for a growing number of species, it
was clear that a next challenge had presented itself.

We designed and developed a new platform, named TRAPID, which could automatically process en-
tire transcriptome data sets, using a reference database. The target goal was to have the processing done
quickly with the results containing both gene family oriented data (such as multiple sequence alignments
and phylogenetic trees) and functional characterization of the transcripts. Major efforts went into design-
ing the processing pipeline so it could be reliable, fast and accurate.



“What is it that makes natural selection succeed
as a solution to the problem of improbability,
whereas chance and design both fail at the
starting gate? The answer is that natural selection
is a cumulative process, which breaks the
problem of improbability up into small pieces.
Each of the small pieces is slightly improbable,
but not prohibitively so.”

Richard Dawkins

2
Introduction
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2.1 Abstract: A history of genetics
With the discovery of the structure of DNA in 1953 by Watson and Crick1, the underlying mechanisms
for genetic inheritance became tangible for biologists. Standing on the shoulders of giants in the fields of
genetics and evolution, such as Mendel2, Morgan3 and Darwin4, Watson and Crick took the first steps
in a new and exciting field in natural sciences with their discovery. The logical next step was the deter-
mination of the actual content of a nucleotide sequence, a step which took the better part of two decades
and was achieved first by sequencing RNA from viral strains5, followed shortly by DNA sequencing6.
While the initial procedures for DNA sequencing were error-prone, labor-intensive and quite costly, re-
cent technological improvements7,8 have led to an extreme drop in price, allowing the field of genetics
to move forward at an unprecedented pace. Indeed, the cost of the Human Genome Project9, which took
more than a decade to be finally completed in 2000, is estimated at 3 billion dollar. A decade later, the
sequencing cost for the same feat has dropped to 10,000 dollar10, with a projected goal of 1000 dollar11.

The completion of the Human Genome project was met with great expectations, but it did not, how-
ever, lead to an immediate and total insight into the inner workings of human genetics12. Meanwhile, in
the field of plant genomics, the model species Arabidopsis thaliana was the first plant to have its genome
fully sequenced in 200013 . With Arabidopsis being the model-species for plant research, this was a
solid choice, especially considering its rather small genome size compared to human (130Mb vs 3Gb).
However, the multitude of whole genome duplications which occured during the evolutionary history of
Arabidopsis13,14, highlighted some new difficulties during the sequencing and assembly phase15. The
particular structure and properties of plant genomes would present more problems in the years to come16.

In this chapter we will introduce key concepts from comparative, functional and evolutionary genomics,
as well as a general overview of bioinformatics development and platforms to study genomic features.
As such, the necessary background information will be provided to understand the gist of the following
chapters in this PhD thesis.

For the author contributions, see page 2-14.
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2.2 Comparative and Evolutionary Genomics in Plants
Comparison of living organisms has been performed since ancient times17,18, yet the focus was always on
phenotypic features such as the form and size of leafs and flowers, in the case of plants. These classifica-
tions were only natural as it allowed humans to characterize the world around them and help them survive,
as differentiating between various shapes and colors helped them to distinguish edible from poisonous
berries. The focus shifted from phenotype to genotype long before the arrival of DNA sequencing19,
but the shift intensified as more insights into the evolutionary history of plants could be derived this
way. When the entire genome of multiple plant species became available, Arabidopsis in 200013, rice
in 200220 and poplar in 200621, the resulting interest in comparative and evolutionary genomics grew
accordingly. The studies of comparative and evolutionary genomics show considerable overlap: compar-
ison of genomes can best be performed while considering how the genomes evolved and adapted through
time, and when species diverged.

Comparison of plant genomes is not a strictly academic exercise, with a variety of real-world applications
making extensive use of the knowledge gained through comparative genomics: transferring information
of genetic pathways from one organism to another22,23, understanding the adaptation of organisms to
their environments24, delineating clade specific genes24,25, etc. The first of these applications has a direct
economic impact by trying to infer shared (and divergent) properties and characteristics between model
plants and others, mostly crops of economic value. As such, the broad knowledge obtained for one spe-
cific model organism (in casu Arabidopsis thaliana) can be used to understand how vital crop species,
such as rice and corn, can be made more resistant to several stress factors and conditions: drought26,
bacterial/fungal infections27,28 and herbivorous activity29.

Applying the gained knowledge in the crop organism can be done in several ways, for example through
the creation of Genetically Modified organisms (GMOs) and through marker assisted breeding. Multi-
ple possibilities exist when creating GMOs: from enhancing the expression of interesting genes (such
as resistance genes) to the introduction of new genes into the genome30. The public and governmental
resistance to GMO crop species have made the introduction of these GMOs in Europe (and other parts of
the world) very difficult, as the scientific community has failed in convincing the public of the potential
benefits and reducing the fear of the potential risks31. Marker assisted breeding on the other hand is a
technological improvement of the cultivation process employed throughout the centuries32.

To perform these comparative genomics studies, some key concepts should be defined first. Two dif-
ferent seminal publications introduced some of the necessary terminology and ideas on how to describe
basic genetic evolutionary principles:

• Distinguishing homologous from analogous proteins, written by Walter Fitch in 197033, defines
homologous sequences as sequences derived from a common ancestor. Orthologous sequences are
homologs derived through a speciation event, while paralogous sequences are homologs derived
through a duplication event. To distinguish species-specific duplications from shared duplication
events, the terms in-paralog and out-paralog were coined in the following years.

• Evolution by gene duplication, written by Susumu Ohno in 197034, describes how evolution and
speciation are mainly driven by genomic duplications, with different fates for the resulting dupli-
cated genes. Most duplication events result in one of the genes becoming a pseudogene. However,
duplication events can also result in either neo-functionalization or sub-functionalization, where



2-6 CHAPTER 2

one of the genes is given a new function, or where the original functions (of the non-duplicated
gene) are distributed among its duplicate progeny. Lastly, duplicates can also both retain the same
functions, resulting in the amplification of the transcript expression.

The different types of homologous genes can easily be visualized using a phylogenetic tree35 (see Fig-
ure 2.1), and their corresponding sequences using a multiple sequence alignment (MSA). These phyloge-
netic trees offer researchers a visual way to interpret, annotate and if necessary correct sets of homologous
genes (also refered to as gene families). In case a gene family contains only a single gene for each species,
then every internal node within the phylogenetic tree will correspond with a speciation event. If multiple
genes are present per species, then the internal nodes correspond with either a speciation or a duplication
event.

2.2.1 Duplications in Plant Genomes

Discovering the necessary knowledge in a model species and the transfer of this information to crop or-
ganisms can be seriously hampered by the multitude of duplications present in various plant genomes24.
Gene and genome duplications were described as one of the basic forces in evolution by Ohno34, and
special attention needs to be given to plant genomes in this respect. In contrast to vertebrate species, plant
genomes (and especially flowering plants) have a very rich and continuous history of Whole Genome
Duplications (WGD)14,36,37 . As the name implies, these duplications effectively multiply the number of
chromosomes within a cell, changing the nature of an organism from a diploid tot a polyploid. Tandem
duplications on the other hand, where only a single sequence is duplicated within the genome, are preva-
lent throughout the eukaryota38–40. The patterns in evolution for both types of duplication are different
however, as they differ in which gene types are preserved as duplicate pairs41. However, the multiplicity
of various duplication events in plant genomes tend to complicate the orthologous relationships between
species (see also section 2.2.2).

2.2.1.1 Whole Genome Duplications

The evolutionary history of plants is rife with examples of WGDs14, with up to 70% of the flowering
plants having a polyploid history42. Despite the powerful biomolecular mechanisms in place to en-
force the reduction of gametes43, despite the following problematic fertility bottleneck known as the
triploid block44, and despite the following biomolecular problems such as dosage effects, WGDs are a
widespread phenomenon and several rounds of WGD events can be detected in the genomes of mul-
tiple plant species45. Indeed, research indicates that exactly these WGD events could be responsible
for the massive explosion in the number of flowering species which happened during the last 60 mil-
lion years14,45, an observation which was initially called an abominable mystery by Charles Darwin.
These WGDs are typically followed by diploidization, in the form of severe gene loss, neo- and sub-
functionalization of genes, and chromosomal rearrangments34.

Detecting these WGDs can be done through the study of both synteny and colinearity. Synteny is the
conservation of gene content within homologous regions, and colinearity is the conservation of both
gene content and order within homologous regions46. When large colinear regions are detected within
a single genome (see also Figure 2.3) this is evidence for either large-scale segmental duplications or a
WGD. The detection of these WGDs and colinear regions between multiple species in general, can be a
computational challenge47,48.
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2.2.1.2 Tandem Duplications

Tandem duplications are another way of increasing the protein diversity within a genome, and are also
very prevalent in plant genomes49. Genes which are tandemly duplicated and retained often serve a very
different role than their WGD counterparts41. Several studies have shown that, in plants, these tandem
duplicates are very often involved in response to stress conditions49,50. Due to their sesile nature, plants
need to adapt to both biotic and abiotic (e.g. cold, drought) stress conditions in different ways than
metazoa. Tandem duplication events thus allow for a rapid introduction of gene variation to combat these
stress conditions49.

2.2.1.3 Allopolyploidy and Hybridization

Besides the multitude of duplications within various plant species, the presence of hybridization between
(closely related) different organisms provides yet another source of complexity with regards to genomic
studies. Hybrids typically result in allopolyploid genomes, with the number of haploid chromosomes
equal to the sum of its haploid progenitors. Although hybridization does not occur in every plant lineage,
many of the crop species (e.g. Brassica51,52 and wheat53) that are of prime importance in today’s agri-
culture are allopolyploid. Sequencing and assembly of these allopolyploid genomes can prove to be very
challenging, because the differences between its homeologous chromosomes can be very small54.

2.2.2 Orthology

One of the main interest in comparative plant genomics is the study of orthologous genes, genes which
have a common ancestor and originated through a speciation event. An important tenet within the com-
parative genomics field is the so-called Orthology Conjecture, which states that orthologs more often
retain the same function than paralogs55. While this conjecture has not gone unchallenged56,57, more
recent studies have shown that the Orthology Conjecture does hold true in all probability58,59. As such,
this conjecture validates approaches to transfer functional knowledge between plants. The origin of this
controversy lies within the definition given by Fitch33, which does not distinguish between functional
orthologs and orthologs with no shared function60.

The detection of homologs, and orthologs in particular, is a complicated matter (see also chapter 4). Most
methods start from using protein sequence similarity to measure the evolutionary distance between se-
quences, and based on those measurements genes are categorized as being orthologous or not61,62. Other
methods use phylogenetic trees to infer the different types of homologous relationships63. These methods
imply of course that orthologs with very little conserved sequence similarity can be miscategorized64, as
are genes with no common ancestor but with the same protein domains. Indeed, protein domains tend to
show a high level of rearrangement in plant genomes65, making this a potential issue. The different rates
in evolution between genes66 and between species24,67 further complicate these problems.

Given the polyploid nature of many plant genomes (see section 2.2.1), finding orthologs between sev-
eral species becomes even more difficult, as a multitude of one-to-many or many-to-many relationships
(also 1-N and M-N orthologous relationships) is often introduced (see Figure 2.1). While the idea of
finding perfect one-to-one orthology between species may in itself may be flawed due to possible sub-
functionalizations34, the goal to reduce the number of potential ortholog candidates is still valid. Testing
and confirming the functionality of a reduced gene set is the target goal in many studies involving transfer
of functional knowledge. Comparing only the protein coding sequences between orthologs may not be
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Figure 2.1: Possible orthologous relationships between organisms. By example of in-paralogs in species A en B,
three different orthologous relationships are displayed: an easy 1-1 orthologous relationship between the genes of
species C en D, a 1-N orthologous relationship between the genes of species C en B (also D and B, C and A, D and

A), and the complex M-N orthologous relationship between the genes of species A and B.

sufficient to fully resolve the complex many-to-many orthologous relationships. Both expression data
(see also section 5.2) and transcription factor binding site information can be used to solve these knotty
problems.

2.3 Functional Genomics

Following the centuries-old habit of committing all discoveries to plain text, the resulting body of books
and articles to be read before being well-versed in the functionality of a particular gene quickly became
very large in the wake of the growing interest in genetics68. With different notations used between species
and research areas when documenting the same features and characteristics, and with notations changing
over time, this problem intensified only more over time. The classification of genes became quickly
hampered by this text-only approach, and as such several solutions were devised.

2.3.1 Gene Ontology

The first solution to the stated problem is the Gene Ontology (GO)68. It consists of a well-structured
vocabulary of terms which can be assigned to any gene. Due to the nature of the directed acyclic graph
in which all GO terms are structured, a gene annotated with a particular GO term is also automatically
annotated with the parental terms (see Figure 2.2). Within the GO there are three main domains68, which
are used to annotate genes at a different level. The Biological Process domain describes series of events,
or a collection of molecular events with defined beginning and end. The Molecular Function domain
contains molecular activities, without information on the used entities or context. Finally, the Cellular
Component domain describes locations at the levels of subcellular structures.

The Gene Ontology Consortium (GOC) is constantly updating the Gene Ontology resource69, extend-
ing the GO graph with new GO terms, replacing obsolete GO terms, and establishing new relationships
between these GO terms. Care must be taken, however, to not over-interprete the available GO data be-
cause GO suffers from the Open World Assumption: not all data is known, and as such the absence of a
gene-GO annotation is not equal to evidence that this gene-GO relationship does not exist58.

The power of GO is not only due to its hierarchical graph structure, but also due to the variety of ev-
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Figure 2.2: Gene Ontology graph for GO term ’Response to auxin stimulus’. Parent-child relationship graph for the
GO term ’Response to auxin stimulus’, indicating the cyclic nature of the directed graph. The green GO term is the

top entry for the category (Biological Process).

idence types that can be associated with each gene-GO annotation68,70. We can easily associate some
measure of trustworthiness with each evidence type, with major differences between the automatically
assigned evidence types such as IEA (Inferred from Electronic Annotation) and those that are the result
of painstaking experiments such as EXP (Inferred from Experiment). The gene-GO annotations can as
such easily be sorted or filtered by their evidence types.

2.3.2 Protein Domains

Protein domains, on the other hand, are motifs from a protein sequence capable of evolving independently
from the rest of the protein. These protein domains are commonly conserved through evolution, as their
respective functions are often vital to the survival of the organism. As such, orthologous genes often
contain strictly conserved protein domains71. Prediction of these protein domains, solely based on the
amino acid sequence, can be done, although the actual function of the domains is often dependend on
its 3d-structure. Yet, various programs exist for this very purpose72,73, most of them based on Hidden
Markov Models (HMM) . One of the more promising efforts is the InterPro database74, which merges
together the results of various other protein domain databases such as PFAM72 and PANTHER73. One
of the key differences with the Gene Ontology is that these protein domains are useful only for protein
coding genes. As such, other gene types, such as the variety of RNA genes, cannot be described in terms
protein domains. At the same time, a major effort has been put forward to map InterPro domains to
associated GO terms, merging the efforts of both research fields74.
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2.3.3 Molecular Interactions

Although the Gene Ontology and protein domains annotations can provide valuable information about a
single gene, no interaction information between genes or gene products is captured this way. To remediate
this problem, several solutions have been put forward:

• PlantCyc75 (with AraCyc76 being the Arabidopsis specific version) is an effort to standardize infor-
mation about metabolic pathways, reactions and compounds. The study of biochemical pathways
within plants is augmented by this approach, with the different Cyc-versions (MediCyc for Med-
icago, CornCyc for Maize, GrapeCyc for Vitis, etc. ) being helpful in understanding the evolution
of pathways.

• AraNet77 is a network-based approach to study genes from an omics point of view. By aggregating
multiple data sources from different plants and using a bayesian approach to integrate this data, the
number of genes in an annotated network in increased drastically. By using the AraNet resource
users can make informed decisions on, for example, trait-association of genes.

2.3.4 Text Mining

Despite the stated efforts to categorize the gained scientific knowledge, several issues still remain: the
content from older publications becomes part of the databases at a slow pace (if at all), not all knowledge
can be captured by the given ontologies, changing annotations and unstable gene identifiers are not ac-
knowledged, etc. This all points to a global problem with data integration. To remediate some of these
issues, data mining the scientific publications can result in extra information for researchers78. This au-
tomated approach is commonly based on machine-learning methods (ML) , and thus offers some of its
advantages (such as being able to deal with natural language processing) and its disadvantages (such as
being dependent on high-quality training data sets).

2.4 Bioinformatics Tools and Platforms

The importance of bioinformatics tools and platforms can be studied by considering that a growing num-
ber of scientific journals (in the field of genetics) are dedicated to publishing these tools (e.g. Bioinfor-
matics), or have dedicated sections for publishing these tools (Nucleic Acids Research, Genome Biology).
With ever-growing amounts of data, two needs arise:

1. Tools and algorithms which can handle this data. The focus of the publications here are other bioin-
formaticians who will use these tools to perform custom analyses on their own datasets. Examples
include software for clustering proteins into gene families (e.g. TribeMCL79 and OrthoMCL61),
software for delineating colinearity between genomic regions (e.g. MCScan80 and I-ADHoRe48)
and software for assembling reads from Next Generation Sequencing (NGS) technologies (e.g.
Velvet81 and Abyss82). These tools are most often accessed through the command line interface,
an interface unfamiliar to the majority of life science researchers83. Efficiency and reliability are
often the primary concerns, with user-friendliness a distant afterthought83.

2. Platforms through which pre-processed data can be accessed, with varying degrees of user-supplied
data. The focus here are biologists who will use the platforms as a reference, to guide wetlab exper-
iments. Examples include online platforms for genomics (e.g. PLAZA84 and TAIR85), platforms
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for protein domains (e.g. PFAM72 and PANTHER73), etc. These platforms are accessed through a
Graphical User Interface (GUI) , and are often online and thus accessible through a web browser.
User-friendly and intuitive interfaces are of primary concern here, as a steep learning curve will
often drive inexperienced users away.

The two purposes are not fully mutually exclusive, but when developing software the target user-base must
be clearly defined, otherwise one risks targeting neither. In this thesis, the focus was on the development
of bioinformatics platforms, and as such a lot of thought and care was put into defining the correct
user-computer interactions, and providing ample documentation and background material86. Besides the
aspects visible to the end-user, namely data content and representation, various server-side factors can also
influence the success of a web resource: portability86, software design principles such as modularity87,
maintenance88, etc.

2.4.1 Web Visualizations and Technologies

Scientific visualizations89 are, even in the automated world of today, very important, especially in the
fields of genetics and molecular biology90: browsing through genomes91, visualizing phylogenetic trees35,
making sense of a gene interaction network92, etc. Understanding multi-dimensional data, when one is
not even fully sure what he’s looking at, is the first purpose93. The second one is to communicate ideas
and information93 to other people. Using well-designed visualizations in online platforms is thus a way
to convey key concepts and information to users.

Differences exist between data representations and visualizations on paper versus website93. Not only
is there in the latter an expectancy of interactivity (zooming, data selection data filtering, linking), but the
cost and space limitation in scientific journals implies that printed images should contain as much infor-
mation as possible. Another distinction is the time required for generating the visualization: intra-species
colinear regions are commonly visualized in genome papers using the Circos software94. This software
package can generate very high quality infographics using multiple extra datatypes besides colinearity,
but it can take multiple minutes to render a non-interactive illustration. This can be compared with the
instant-rendered Circle Plot for colinearity in PLAZA, albeit with less features (see Figure 2.3).

When creating online visualizations and charts, several technologies are available, each with its own
advantages and disadvantages:

• Static images, often combined with a clickable map to facilitate linking, are the most basic form
of representation. No animations are possible, but its rather low memory requirements and ease of
implementation result in a strong presence in many websites.

• Flash applications, often combined with snippets of JavaScript, are executed by a browser plugin
and are used in very different kinds of web applications: from simple browser games to intricate
and complex applications for online shopping. Many different charting tools96,97 depend on the use
of Flash, as it is capable of visually attractive and interactive graphics.

• Java Applets are a rather old technology, and also one of the first attempts to offer interactive
applications through the web browser. The rather slow loading time of the initial Java Virtual
Machines (JVM) resulted in its low adaptation, and many applets have been phased out over time
in favor of other technologies. Still, most computers have a Java plugin installed, thus making it a
feasible choice.
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Figure 2.3: Circos and PLAZA colinearity of the maize genome. Circleplots showing intra-species colinearity
within the maize genome, together with inter-species colinearity with rice and sorghum. (A) The Circos plot, also

showing general genome statistics 95. (B) PLAZA plot.
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• Scalable Vector Graphics (SVG) are XML-like representations of graphics. All content within
an SVG are objects, and can thus be accessed as such: animation, linking, and other actions can
be defined per object. However, this flexibility comes with a performance penalty, and most im-
plementations which support the SVG standard have memory troubles when several thousands of
objects are present on a single web page. As the name implies these graphics are vector based, and
can thus be rendered at any resolution.

• JavaScript graphics, more specifically the graphics associated with the HTML5 Canvas object, are
a more modern approach to visualizations. While they can be considered a step back (compared to
the SVG standard) as these graphics do not provide a standard interactivity, their use is becoming
more widespread. The increased availability of flexible JavaScript libraries is further strengthening
its presence in the online (and increasingly offline as well98) world.

Not all web browsers are capable of handling the same content however, which is unfortunately also a
point to consider before implementation. Other technology restrictions are brought forth by the shift in
focus towards mobile computing devices: Apple’s IPad for example, does not support either Flash or
Java.

2.4.2 Online Plant Genomics Platforms

The availability of online sequence databases and genome browsers provides an easy entry point for
researchers to immediately investigate genome information without having to install any software. Fur-
thermore, such services usually provide the possibility to link with an assembly of other web-based re-
sources99.

The development of any software or platform should be preceded by looking at currently available so-
lutions. During the initial planning phase of PLAZAa 100 (in 2008), very few online solutions for plant
genomics existed, and none combined comparative, evolutionary and functional analyses (see Table 2.1).
Now, in 2012, it is important to review whether any other platforms have been created, and whether
platforms which existed in 2008 have been further developed (see Table 2.2). One of the major differ-
ences between the various platforms is how many organisms are included. Some platforms focus only
on a single organism, such as TAIRb 85 for Arabidopsis thaliana and Chlamydomonas Connectionc for
Chlamydomonas, and provide no or very limited tools for comparative studies. While these platforms
certainly do cater to a specific niche, they fall outside the scope of this comparison. Other platforms
focus more on a relative small group of phylogenetically close organisms, such as LegumeIPd 101, target-
ting breeder-specific questions to improve legume crops. More general plant genomics platforms include
plants from various lineages, such as GreenPhylDBe 102, Phytozomef 103 and EnsemblPlantsg 104. Finally,
the CoGe platformh 105 does not focus on any lineage or even kingdom, but rather includes a vast collec-
tion of species that range from bacteria and viruses, to metazao and plants.

ahttp://bioinformatics.psb.ugent.be/plaza
bhttp://www.arabidopsis.org
chttp://www.chlamy.org/
dhttp://plantgrn.noble.org/LegumeIP/
ehttp://greenphyl.cirad.fr/
fhttp://www.phytozome.net
ghttp://plants.ensembl.org/index.html
hhttp://synteny.cnr.berkeley.edu/CoGe/



2-14 CHAPTER 2

Comparison of the features and data included in these platforms is not always straightforward, as the
various target audiences require specific needs. However, some basic questions can still be answered:

• How many species are present?

• What kind of functional annotation is available?

• Are the genes clustered in homologous or orthologous groups?

• What tools and visualizations are available?

• Is all data available for download?

Since we are comparing these platforms with our own PLAZA platform, it is possible though that a cer-
tain bias may present itself, as we may feel that certain tools are more important than others due to our
different research focus. New tools and data types have become available in the period 2008-2012 and
as such a strict comparison between Table 2.1 and Table 2.2 is not completely possible. Finally, some
online platforms that were available in 2008 have not been updated since then (e.g. Genome Cluster
Databasei 106, OrthologIDj 107, PlantTribesk 108 and SynBrowsel 109) and are thus not included in the com-
parison of 2012 (Table 2.2). EnsemblPlants is the succesor of Gramene, and as such Gramene is also not
included anymore in the comparison of 2012.

The most obvious improvement in most updated platforms is the steep rise in number of available
genomes. In 2008 only a limited number of plant genomes were publicly available, while in 2012 more
than 30 plant genomes have been published and are freely available for academic research. An impor-
tant factor to consider is thus how well the platforms and their database schemes scale with a non-linear
increase in available genome data (see also chapter 8).
Other platforms provide data focused on specific gene functions or sequence types but are not extensively
described here. Plant transcription factors can be studied using PlnTFDBm 112, AGRISn 113, and GRAS-
SIUSo 114. The complementary platforms Phytome115 and SPPGp 116 are hybrid systems integrating gene
information from genome sequencing projects with EST data for a comprehensive set of plant species.

2.5 Author Contribution
All content was written by myself, except for the comparison of platforms in section 2.4.2 which was
partially retrieved from the PLAZA v1.0 paper100 and thus written by Sebastian Proost, Klaas Vandepoele
and myself.

ihttp://bioweb.ucr.edu/databaseWeb/index.jsp
jhttp://nypg.bio.nyu.edu/orthologid/
khttp://fgp.bio.psu.edu/tribedb/index.pl
lhttp://www.synbrowse.org/

mhttp://plntfdb.bio.uni-potsdam.de/
nhttp://arabidopsis.med.ohio-state.edu/
ohttp://grassius.org/plantgenome.html
phttp://bioinformatics.psb.ugent.be/cgi-bin/SPPG/index.htpl
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PLAZA 100 9 X X X X X X Multi-species colinearity views,
KS -dating tool, family-wise
similarity heatmap and workbench

Genome Cluster
Database 106

2 X X X Chromosome map and link with
Arabidopsis expression data

GreenPhylDB 102 2 X X X Manual curation of a subset of fam-
ilies

OrthologID 107 3+2 X X Diagnostic characters per ortholo-
gous group

Plant Genome
Duplication
Database 46

7 X X Genome-wide mapping tool for ho-
mologous sequences and syntenic
locus search

Phytozome 103 14 X +/- X
PlantTribes 108 5 X X Link with Arabidopsis expression

data
CoGe 105 14 X X X X DNA-based sequence compar-

isons (Conserved Non-coding
Sequences)

SynBrowse 109 3 X Synteny browser based on
GBrowse (n intra-species colinear-
ity)

Gramene 110 6 X X +/- +/- X X Based on Ensembl pipeline

Table 2.1: Comparison of online tools for plant genomics in 2008.
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PLAZA v2.5 84 25 X X X X X X X
GreenPhylDB
v3 111

22 X X X

Plant Genome
Duplication
Database 46

26 X X

Phytozome v8 103 31 X +/- X X
CoGe 105 433 (?) X X X X
EnsemblPlants 104 19 X X +/- +/- X X X X
LegumeIP 104 5 X X X X X X

Table 2.2: Comparison of online tools for plant genomics in 2012.
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“With insufficient data it is easy to go wrong.”
Carl Sagan

3
PLAZA: a Comparative Genomics Resource to

Study Gene and Genome Evolution in Plants
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Abstract
The number of sequenced genomes of representatives within the green lineage is rapidly increasing. Con-
sequently, comparative sequence analysis has significantly altered our view on the complexity of genome
organization, gene function, and regulatory pathways. To explore all this genome information, a central-
ized infrastructure is required where all data generated by different sequencing initiatives is integrated
and combined with advanced methods for data mining. Here, we describe PLAZA, an online platform for
plant comparative genomicsa. This resource integrates structural and functional annotation of published
plant genomes together with a large set of interactive tools to study gene function and gene and genome
evolution. Precomputed data sets cover homologous gene families, multiple sequence alignments, phylo-
genetic trees, intraspecies whole-genome dot plots, and genomic collinearity between species. Through
the integration of high confidence Gene Ontology annotations (selected based on GO evidence codes)
and tree-based orthology between related species, thousands of genes lacking any functional description
are functionally annotated. Advanced query systems, as well as multiple interactive visualization tools,
are available through a user-friendly and intuitive web interface. In addition, detailed documentation and
tutorials introduce the different tools, while the workbench provides an efficient means to analyze user-
defined gene sets through PLAZA’s interface. In conclusion, PLAZA provides a comprehensible and
up-to-date research environment to aid researchers in the exploration of genome information within the
green plant lineage.

This chapter is based on Proost et al. 100 . For the author contributions, see page 3-19.

ahttp://bioinformatics.psb.ugent.be/plaza/



3-4 CHAPTER 3



PLAZA: A COMPARATIVE GENOMICS RESOURCE TO STUDY GENE AND GENOME EVOLUTION IN PLANTS 3-5

3.1 Introduction

The availability of complete genome sequences has significantly altered our view on the complexity of
genome organization, genome evolution, gene function, and regulation in plants. Whereas large-scale
cDNA sequencing projects have generated detailed information about gene catalogs expressed in dif-
ferent tissues or during specific developmental stages117, the application of genome sequencing com-
bined with high-throughput expression profiling has revealed the existence of thousands of unknown
expressed genes conserved within the green plant lineage116,118. The generation of high-quality complete
genome sequences for the model species Arabidopsis thaliana and rice (Oryza sativa) required large in-
ternational consortia and took several years before completion13,119. Facilitated by whole-genome shot-
gun and next-generation sequencing technologies, genome information for multiple plant species is now
rapidly expanding. The genomes of four eudicots, Arabidopsis thaliana, poplar (Populus trichocarpa),
grapevine (Vitis vinifera), and papaya (Carica papaya), two monocots, rice and Sorghum bicolor, the
moss Physcomitrella patens, and several green algae120 have been published, and new genome initiatives
will at least double the number of plant genome sequences by the end of this decade121,122.

Although the genomes of some of these species provide invaluable resources as economical model sys-
tems, comparative analysis makes it possible to learn more about the different characteristics of each
organism and to link phenotypic with genotypic properties. Hanada and coworkers demonstrated how the
integration of expression data and multiple plant sequences combined with evolutionary conservation can
greatly improve gene discovery99,123. Whereas a detailed gene catalog provides a starting point to study
growth and development in model organisms, sequencing species from different taxonomic clades gener-
ates an evolutionary framework to study how changes in coding and noncoding DNA affect the evolution
of genes, resulting in expression divergence and species-specific adaptations124–126. Based on orthol-
ogous genes (i.e., genes sharing common ancestry evolved through speciation), comparative genomics
provides a powerful approach to exploit mapping data, sequence information, and functional information
across various species127. Similarly, the analysis of genes or pathways in a phylogenetic context allows
scientists to better understand how complex biological processes are regulated and how morphological
innovations evolve at the molecular level. For example, studying gene duplicates in poplar has revealed
specific expansions in gene families related to cell wall formation covering cellulose and lignin biosyn-
thesis genes and genes associated with disease and insect resistance21. Similarly, amplifications of genes
belonging to the metabolic pathways of terpenes and tannins in grapevine directly relate the diversity of
wine flavors with gene content128. Besides the comparative analysis of specific gene families in higher
plants, comparisons with other members of the green lineage provide additional information about the
evolutionary processes that have changed gene content during hundreds of millions of years. Although
the genomes of, for instance, moss and green algae contain a smaller number of genes compared with
flowering plants, they provide an excellent starting point to reconstruct the ancestral set of genes at dif-
ferent time points during plant evolution and to trace back the origin of newly acquired genes129,130.

Gene duplication has been extensive in plant genomes. In addition, detailed comparison of gene organi-
zation and genome structure has identified multiple whole-genome duplication (WGD) events in different
land plants. From a biological point of view, the large number of small- and large-scale duplication events
in flowering plants has had a great influence on the evolution of gene function and regulation. For in-
stance, between 64 and 79% of all protein-coding genes in Arabidopsis thaliana, poplar, and rice are part
of multigene families, compared with 40% for the green alga Chlamydomonas reinhardtii. Paralogs are
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generally considered to evolve through nonfunctionalization (silencing of one copy), neofunctionaliza-
tion (acquisition of a novel function for one copy), or subfunctionalization (partitioning of tissue-specific
patterns of expression of the ancestral gene between the two copies)131,132. The impact of the large num-
ber of duplicates on the complexity, redundancy, and evolution of regulatory networks in multicellular
organisms is currently far from being well understood133,134.

Performing evolutionary and comparative analyses to study gene families and genome organization re-
quires a centralized plant genomics infrastructure where all information generated by different sequencing
initiatives is integrated, in combination with advanced methods for data mining. Even though general for-
mats have been developed to store and exchange gene annotation135, the properties of available plant
genomic data (i.e., structural annotation of protein-coding genes, RNAs, transposable elements, pseudo-
genes, or functional annotations through protein domains or ontologies) vary greatly between different
sequencing centers, impeding comparative analyses for nonexpert users. Additionally, large-scale com-
parisons between multiple eukaryotic species require huge computational resources to process the large
amounts of data. Here, we present PLAZA, a new online resource for plant comparative genomicsb. We
show how PLAZA provides a versatile platform for integrating published plant genomes to study gene
function and genome evolution. Precomputed comparative genomics data sets cover homologous gene
families, multiple sequence alignments, phylogenetic trees, intraspecies whole-genome dot plots, and ge-
nomic collinearity information between species. Multiple visualization tools that are available through
a user-friendly web interface make PLAZA an excellent starting point to translate sequence information
into biological knowledge.

3.2 Results

3.2.1 Data Assembly

The first version of PLAZA contained the nuclear and organelle genomes of nine species within the
Viridiplantae kingdom: the four eudicots Arabidopsis thaliana, papaya, poplar, and grapevine, the two
monocots rice and sorghum, the moss Physcomitrella patens, and the unicellular green algae Chlamy-
domonas reinhardtii and Ostreococcus lucimarinus. The integration of all gene annotations provided
by the different sequencing centers yielded a data set of 295 865 gene models, of which 92.6% represent
protein-coding genes (Table 3.1). The remaining genes are classified as transposable elements, RNA, and
pseudogenes (6.5, 0.6, and 0.3%, respectively). Whereas most of the genes are encoded in the nuclear
genomes, a small set are from chloroplast and mitochondrial origin (0.4 and 0.2%, respectively). For all
genes showing alternative splicing, the longest transcript was selected as a reference for all downstream
comparative genomics analyses. Detailed gene annotation, including information about alternative splic-
ing variants is displayed using the AnnoJc genome browser136. Whereas genomes from model species
like Arabidopsis thaliana and rice are characterized by high sequence coverage and a set of contiguous ge-
nomic sequences resembling the actual number of chromosomes, other genome sequences, such as those
of Physcomitrella patens and papaya, are produced by the whole-genome shotgun sequencing method
and contain more than 1000 genomic scaffolds (Table 3.1). For poplar, grape, and sorghum, a large
fraction of the genome is assembled into chromosomes, but several scaffolds that could not be anchored
physically are still present in the data set. In this case, we allocated the genes that were not assigned to a

bhttp:// bioinformatics.psb.ugent.be/plaza/
chttp://www.annoj.org/
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Species Size Genes (a) Scaffolds (b) Coding GO (c) InterPro
Arabidopsis thaliana 115 Mb 33,284 (88.81%) 5 27,228 63.62% (66.21%) 56.49%
Carica papaya 271 Mb 28,072 (99.84%) 1,898 28,072 0.00% (22.88%) 57.75%
Populus trichocarpa 410 Mb 45,699 (99.90%) 19+1 (5,724) 45,654 44.69% (52.89%) 61.91%
Vitis vinifera 468 Mb 38,127 (99.63%) 19+1 (35) 37,987 40.09% (45.90%) 57.62%
Oryza sativa 371 Mb 57,955 (72.32%) 12 41,912 30.42% (30.91%) 63.69%
Sorghum bicolor 626 Mb 34,686 (99.78%) 10+1 (217) 34,609 44.44% (48.13%) 67.79%
Physcomitrella patens 480 Mb 36,137 (99.80%) 1,446 36,065 33.20% 42.44%
Chlamydomonas
reinhardtii

121 Mb 14,731 (99.64%) 552 14,678 34.99% 49.29%

Ostreococcus lucimarinus 13 Mb 7,805 (100.00%) 21 7,805 47.94% 62.86%
Total 295,865 (92.60%) 273,965 39.36% 44.88%

Table 3.1: Summary of the Gene Content in PLAZA v1. (a) percentage of protein coding genes. (b) Numbers in
parentheses refer to the number of genomic sequences in the original annotation; ”+1” indicates the creation of a

virtual chromosome zero to group scaffolds. (c) Percentages in parentheses include projected GO annotations, while
the first value only reports original primary GO data.

chromosome in the original annotation to a virtual chromosome zero. This procedure reduces the number
of pseudomolecules when applying genome evolution studies while preserving the correct proteome size
(i.e., the total number of proteins per species) and the relative gene positions on the genomic scaffolds
(Table 3.1).

Complementary to the structural annotation, we also retrieved, apart from free-text gene descriptions,
functional information through Gene Ontology (GO) associations68, InterPro domain annotations74, and
Arabidopsis Reactomed pathway data137. Whereas GO provides a controlled vocabulary to describe gene
and gene product attributes (using Cellular Component, Biological Process, and Molecular Function), the
InterPro database provides an annotation system in which identifiable features found in known proteins
(i.e., protein families, domains, and functional sites) can be applied to new protein sequences. GO pro-
vides a set of different evidence codes that indicate the nature of the evidence that supports a particular
annotation. The Arabidopsis Reactome is a curated resource for pathways where enzymatic reactions are
added to genes and a set of reactions is grouped into a pathway.

Apart from the basic information related to gene structure and function (e.g., genome coordinates, mRNA
coding and protein sequences, protein domains, and gene description), different types of comparative ge-
nomics information are provided through a variety of web tools. In general, these data and methods can
be classified as approaches to study gene homology and genome structure within and between species.
Whereas the former focuses on the organization and evolution of families covering homologous genes,
the latter exploits gene collinearity, or the conservation of gene content and order, to study the evolution
of plant genomes (Figure 3.1).

3.2.2 Delineating Gene Families and Subfamilies

As a starting point to study gene function and evolution, all protein-coding genes are stored in gene fam-
ilies based on sequence similarity inferred through BLAST138. A gene family is defined as a group of
two or more homologous genes. A graph-based clustering method (Markov clustering implemented in
Tribe-MCL79) was used to delineate gene families based on BLAST protein similarities in a process that
is sensitive to the density and the strength of the BLAST hits between proteins. Although this method

dhttp://www.arabidopsisreactome.org/
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Figure 3.1: Structure of the PLAZA Platform. Outline of the different data types (white boxes) and tools (gray
rounded boxes) integrated in the PLAZA platform. White rounded boxes indicate the different tools implemented to

explore the different types of data available through the website.

is very well suited for clustering large sets of proteins derived from multiple species, high false-positive
rates caused by the potential inclusion of spurious BLAST hits have been reported133. Therefore, we
applied a postprocessing procedure by tagging genes as outliers if they showed sequence similarity to
only a minority of all family members (see Methods 3.3.1). The OrthoMCL method61 was applied to
build subfamilies based on the same protein similarity graph. Benchmark experiments have shown that
OrthoMCL yields fewer false positives compared with the Tribe-MCL method and that, overall, it gen-
erates tighter clusters containing a smaller number of genes133. Because OrthoMCL models orthology
and in-paralogy (duplication events after dating speciation) based on a reciprocal-best hit strategy, the
final protein clusters will be smaller than Tribe-MCL clusters because out-paralogs (homologs from du-
plication events predating speciation) will not be grouped. Therefore, from a biological point of view,
subfamilies or out-paralogs can be considered as different subtypes within a large protein family. In total,
77.62% of all protein-coding genes (212 653 genes) are grouped in 14 742 multigene families, leaving
61 312 singleton genes. Sixty-two percent of these families cover genes from multiple species, and for
approximately one-fifth, multiple subfamilies were identified. Manual inspection and phylogenetic analy-
sis of multiple families revealed that in many cases, OrthoMCL correctly identified outparalogous groups
that can be linked with distinct biological subtypes or functions (see Section 3.3.2,49). Examples of iden-
tified subfamilies are different clathrin adaptors (Adaptor Protein complex subunits), minichromosome
maintenance subunits, ATP binding GCN transporters, cullin components of SCF ubiquitin ligase com-
plexes, replication factors, and a/b/g tubulins (Figure 3.2). Although fast-evolving genes or homologs
showing only limited sequence similarity can lead to incorrect families, a similarity heat map tool was
developed to explore all pairwise sequence similarities per family (Figure 3.2). This visualization pro-
vides an intuitive approach, complementary to the automatic protein clustering and phylogenetic trees, to
explore gene homology. In addition, a BLAST interface is available that provides a flexible entry point
to search for homologous genes using user-defined sequences and parameter settings.
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Figure 3.2: Gene Family Delineation Using Protein Clustering, Phylogenetic Tree Construction, and Similarity Heat
Maps. (A) Phylogenetic tree of clathrin adaptors (HOM000575) with the AP1–4 subfamilies delineated using

OrthoMCL. Black and gray squares on the tree nodes indicate duplication and speciation events identified using
tree reconciliation, respectively. Only bootstrap values ≥70% are shown. (B) Similarity heat map displaying all
pairwise similarity scores for all gene family members. BLAST bit scores were converted to a color gradient with

white/bright green and dark green indicating high and low scores, respectively. Clustering of the sequence
similarities supports the existence of the four AP subfamilies that were identified using protein clustering and

confirmed using phylogenetic inference. Note that subfamilies AP3 and AP4 are inverted in the heat map compared
with the tree.
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3.2.3 Projection of Functional Annotation Using Orthology

Phylogenetic studies generate valuable information on the evolutionary and functional relationships be-
tween genes of different species, genomic complexity, and lineage-specific adaptations. In addition,
they provide an excellent basis to infer orthology and paralogy60. Based on the gene families gener-
ated using protein clustering, a phylogenetic pipeline was applied to construct 20 781 phylogenetic trees
covering ∼172 000 protein-coding genes. Bootstrapped phylogenetic trees were constructed using the
maximum likelihood method PhyML139 based on protein multiple sequence alignments generated using
MUSCLE140 (see Section 3.3.3). In order to extract biological information from all phylogenies, we
applied the NOTUNG tree reconciliation method to annotate, based on parsimony and a species tree,
tree nodes as duplication/speciation events together with a time estimate141. Detailed inspection of tree
topologies revealed that, even for well-supported nodes with high bootstrap values, a high number of
nodes (53 to 64%) correspond with falsely inferred duplication events. This problem is caused by the
different rates of amino acid evolution in different species, potentially leading to incorrect evolutionary
reconstructions142. Therefore, we calculated a duplication consistency score, originally developed by En-
sembl143, to identify erroneously inferred duplication events (see Section 3.3.3). This score reports, for a
duplication node, the intersection of the number of postduplication species over the union and is typically
high for tree nodes denoting a real duplication event. Consequently, the reconciled phylogenetic trees
provide a reliable means to identify biologically relevant duplication and speciation events (or paralogs
and orthologs, respectively). In addition, the time estimates at each node make it possible to infer the age
of paralogs and correlate duplications with evolutionary adaptations.

Since speciation events inferred through phylogenetic tree construction provide a reliable way to identify
orthologous genes, these orthology relationships can be used to transfer functional annotation between
related organisms137,144,145. We applied a stringent set of rules to identify a set of eudicot and monocot
tree-based orthologous groups and used GO projection to exchange functional annotation between species
(see Section 3.3.4 and Figure 3.3). Whereas in the original annotation, 39% of all proteins were annotated
with at least one GO term, this fraction greatly varies for different species (Table 3.1). Model species like
Arabidopsis thaliana and rice have a large set of functionally annotated genes with GO terms supported
by various experimentally derived evidence codes. In contrast, other organisms only have annotations
inferred through electronic annotation (e.g., grapevine and popular) or completely lack functional anno-
tation (e.g., papaya; see data overview on PLAZA website). Application of GO projection using eudicot
and monocot orthologous groups resulted in new or improved functional information for 36 473 genes.
This projected information covers ∼105 000 new annotations, of which one-fifth is supported by evidence
from multiple genes. Overall, 11.8% of all genes lacking GO information in flowering plants could be an-
notated based on functional data of related genes/species and for ∼22 000 genes (17% of protein-coding
genes in angiosperms already annotated using GO) new or more specific GO terms could be assigned.
For papaya, initially lacking functional GO data, 39% of all genes for which a phylogenetic tree exists
have now one or more associated GO term. To estimate the specificity of the functional annotations, we
used the GO depth (i.e., the number of shortest-path-to-root steps in the GO hierarchy) as a measure for
the information content for the different annotations. Distributions per species reveal that the projected
annotations are as detailed as the original primary GO data and that for species initially lacking GO in-
formation, detailed GO terms can be associated to most genes100. Whereas Blast2GO, a high-throughput
and automatic functional annotation tool146, applies sequence similarity to identify homologous genes
and collect primary GO data, GO projection uses phylogenetic inference to identify orthologous genes
prior to transfer of functional annotation. Both methods incorporate information from different GO evi-
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Figure 3.3: GO projection using eudicot and monocot orthologous groups. The rounded boxes indicate the
orthologous groups extracted from the phylogenetic tree while green and yellow shadings refer to eudicot and

monocot clades, respectively. If for genes in an orthologous group functional annotation was available (excluding
GO annotations with an IEA evidence tag), these terms were transferred to all other genes (with ISS evidence tag) in

that group keeping track of the source gene(s). Consequently, some un-annotated genes received new functional
annotations while other genes were re-annotated with a more specific GO term (black and green arrows,

respectively). In this example the green arrow denotes the re-annotation of the GO term ’biosynthetic process’
(GO:0009058, depth 2) using ’galactolipid biosynthetic process’ (GO:0019375, depth 6).
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dence tags to avoid the inclusion of low-quality annotations while generating functional information for
uncharacterized proteins. It is important to note that all pages and tools presenting functional annotation
through the PLAZA website can be used, including either all GO data or only the primary GO annotations
(i.e., excluding projected GO terms).

3.2.4 Exploring Genome Evolution in Plants

To study plant genome evolution, PLAZA provides various tools to browse genomic homology data, rang-
ing from local synteny to gene-based collinearity views. Whereas collinearity refers to the conservation
of gene content and order, synteny is more loosely defined as the conservation of similar genes over two
or more genomic regions. Moreover, genome organization can be explored at different levels, making it
possible to easily navigate from chromosome-based views to detailed gene-centric information for one
or multiple species. Based on gene family delineation and the conservation of gene order, homologous
genomic regions were detected using i-ADHoRe147. The i-ADHoRe algorithm combines gene content
and gene order information within a statistical framework to find significant microcollinearity taking into
account different types of local rearrangements148. Subsequently, these collinear regions are used to build
genomic profiles that allow the identification of additional homologous segments. As a result, sets of ho-
mologous genomic segments are grouped into what is referred to as a multiplicon. The multiplication
level indicates the number of homologous segments for a given genomic region. The advantage of profile
searches (also known as top-down approaches) is that degenerate collinearity (or ancient duplications)
can still be detected148,149.

The Synteny plot is the most basic tool to study gene-centric genomic homology. This feature shows
all genes from the specified gene family with their surrounding genes, providing a less stringent crite-
rion to study genomic homology compared with collinearity. To ensure the fast exploration of positional
orthologs, gene family members have been clustered based on their flanking gene content. Investigating
collinearity on a genome-wide scale can be done using the WGDotplot (Figure 3.4A). This tool can be
applied to identify large-scale duplications within a genome or to study genomic rearrangements within or
between species (e.g., after genome doubling or speciation, respectively). In a first view, a genome-wide
plot displays inter- or intraspecies collinearity, while various features are available to zoom in to chromo-
somewide plots or the underlying multiplicon gene order alignment. Intraspecies comparisons can also be
visualized using circular plots that depict all duplicated blocks physically mapped on the chromosomes.

All collinear gene pairs (or block duplicates) have been dated using KS , the synonymous substitution
rate (see Section 3.3.6). KS is considered to evolve at a nearly constant neutral rate since synonymous
substitutions do not alter the encoded amino acid sequence. As a consequence, these values can be used
as a molecular clock for dating, although saturation (i.e., when synonymous sites have been substituted
multiple times, resulting in KS-values >1) can lead to underestimation of the actual age150. The average
KS for a collinear (or duplicated) block is calculated and colored accordingly in the WGDotplots (Figure
3.4A). Based on the KS-distributions of block paralogs, the KS-dating tool can be employed to date one
or more large-scale duplication events relative to a speciation event considering multiple species. Ancient
and more recent WGDs can be identified in several plants species, although varying evolutionary rates in
different lineages due to, for instance, different generation times, might interfere with the accurate dating
of these events14,46.

When investigating genomic homology between more than two genomes, the Skyline plot provides a
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Figure 3.4: Overview of Different Collinearity-Based Visualizations of the Genomic Region around Poplar Gene
PT10G16600. (A) The WGDotplot shows that the gene of interest, indicated by the light-green line, is located in a

duplicated block between chromosomes PT08 and PT10. The orange color refers to a KS value of 0.2 to 0.3,
indicating the most recent WGD in poplar. (B) The Skyline plot shows the number of collinear segments in different
organisms detected using i-ADHoRe. (C) The Multiplicon view depicts the gene order alignment of the homologous

segments indicated in (B). Whereas the rounded boxes represent the different genes color-coded according to the
gene family they belong to, the square boxes at the right indicate the species the genomic segment was sampled

from. The reference gene is indicated by the light-green arrow in (B) and (C).
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rapid and flexible way to browse multiple homologous genomic segments (Figure 3.4B). For a region
centered around a reference gene, all collinear segments (from the selected set of organisms) are deter-
mined and visualized using color-coded stacked segments. The Skyline plot offers a comprehensive view
of the number of regions that are collinear in the species selected (see Section 3.3.5). Navigation buttons
allow the user to scroll left and right, whereas a window size parameter setting provides a zooming func-
tion to focus either on a small region around the reference gene or on the full chromosome. Clicking on
one of the regions of interest shows a more detailed view (Multiplicon view; see Figure 3.4C). The gene
alignment algorithm maintains the original gene order but will introduce gaps to place homologous genes
in the same column (if possible).

3.2.5 Database Access, User Interface, and Documentation

An advanced query system has been developed to access the different data types and research tools and to
quickly retrieve relevant information. Starting from a keyword search on gene descriptions, GO terms, In-
terPro domains, Reactome pathways, or a gene identifier, relevant genes and gene families can be fetched.
Apart from the internal PLAZA gene identifiers, the original gene names provided by the data provider
are supported as well. When multiple genes are returned using the search function, the view-associated
gene families option makes it possible to link all matching genes to their corresponding gene families,
reducing the complexity of the number of returned items. When searching for genes related to a specific
biological process using GO, this function makes it possible to directly identify all relevant gene families
and analyze the evolution of these genes in the different species. Although for some species the functional
annotation is limited, even after GO projection, mapping genes related to a specific functional category to
the corresponding families makes it possible to rapidly explore functional annotations in different species
through gene homology.

To analyze multiple genes in batch, we have developed a Workbench where, for user-defined gene sets,
different genome statistics can be calculated (Figure 3.1). Genes can be uploaded through a list of
(internal or external) gene identifiers or based on a sequence similarity search. For example, this last
option enables users to map an EST data set from a nonmodel organism to a reference genome annotation
present in PLAZA. For gene sets saved by the user in the Workbench detailed information about func-
tional annotation (InterPro and GO), associated gene families, block and tandem gene duplicates, and
gene structure are provided. In addition, the GO enrichment tool allows for determination of whether a
user-defined gene set is overrepresented for one or more GO terms (see the Workbench tutorial on the
PLAZA documentation page). This feature makes it possible to rapidly explore functional biases present
in, for example, differentially expressed genes or EST libraries.

The organization of a gene set of interest (e.g., gene family homologs, genes with a specific Inter-
Pro domain, GO term, or from a Reactome pathway, a Workbench gene set) in a genomewide context
can reveal interesting information about genomic clustering. The Whole Genome Mapping tool can be
used to display a selection of genes on the chromosomes (Figure 3.5), and additional information about
the duplication type of these genes (i.e., tandem or block duplicate) is provided. Furthermore, the Whole
Genome Mapping tool allows users to view the distribution of different gene types (protein-coding, RNA,
pseudogene, or transposable element) per species.

An extensive set of documentation pages describes the sources of all primary gene annotations, the differ-
ent methods and parameters used to build all comparative genomics data, and instructions on how to use



PLAZA: A COMPARATIVE GENOMICS RESOURCE TO STUDY GENE AND GENOME EVOLUTION IN PLANTS3-15

Figure 3.5: Whole Genome Mapping tool. Overview of 664 Arabidopsis thaliana genes with a Cyclin-like F-box
domain (IPR001810).

the different tools. We also provide a set of tutorials introducing the different data types and interactive
research tools. An extensive glossary has been compiled that interactively is shown on all pages when
hovering over specific terms. Finally, for each data type (e.g., gene family and GO term) or analysis
tool, all data can be downloaded as simple tab-delimited text files. Bulk downloads covering sequence or
annotation data from one or more species are available through an FTP server.

3.3 Methods

3.3.1 Data Retrieval and Delineation of Gene Families

All gene annotation is retrieved from the different data providers (for details, see section Data content in
PLAZA Documentation) and stored according to their gene type (coding, RNA, pseudo and TE). When
parsing the structural gene annotation we verify if the original gene coordinates do generate the correct
transcript and protein sequence (as reported by the primary data) and flag incorrect gene models. Starting
from all protein-coding genes, only retaining the longest transcript if alternative splicing variants exist,
protein sequences were used to construct homologous gene families by applying sequence based protein
clustering. First, an all against all sequence comparison was performed using BLASTP applying an E-
value threshold of 1e-05 and retaining the best 500 hits138. Note that applying less stringent E-value
thresholds overall result in the inclusion of more outliers genes. Next, the complete sequence similarity
graph was processed using Tribe-MCL (mclblastline, default parameters except I = 2 and scheme = 4)
and OrthoMCL to identify gene families and sub-families, respectively. In post-processing, all genes
assigned to a gene family but showing similarity (through BLASTP) to less than 25% of the median
number of within-family similarity hits were annotated as outliers. The median number of within-family
similarity hits is defined by first counting for each gene within a family the number of family members
it shows similarity to and then determining the median number of hits per family. Manual verification of
multiple sequence alignments in combination with similarity heat maps of all family members revealed
that this threshold of 25% performs best to remove non-homologous false positive genes from the family.
Only sub-families delineated by OrthoMCL are retained if they overlap for 95% or more with a single
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gene family and if two or more sub-families can be found for a given gene family defined by the Markov
clustering. Thus, OrthoMCL clusters that are identical to Tribe-MCL clusters are discarded since they
represent redundant information.

3.3.2 Comparison of OrthoMCL with Phylogenetic Trees

To verify the assumption that out-paralogs can correctly be identified using OrthoMCL, we validated a set
372 sub-families covering 129 large gene families using phylogenetic tree construction and reconciliation
(Supplemental Table 2 accompanying Proost et al. 100 ). Typically, phylogeny-based methods exhibit very
low false positive rates (but also low coverage) because of the stringent criteria used to construct trees and
provide a robust approach to evaluate the quality of the sub-families. Since these selected families contain
multiple sub-families covering genes from all species in the dataset, they provide a good benchmark set
to evaluate the accuracy of the sub-families defined by OrthoMCL. Tree reconciliation reveals that 92%
(251/273) of the OrthoMCL sub-families are dated as originating in the ancestor of green plants, confirm-
ing that they represent ancient sub-types. Comparing the gene content between both methods shows that
70% (134/193) of all sub-families, for which a bootstrap supported (≥70%) tree exists, are fully covered
by the orthologous groups delineated using phylogenetics. This fraction increases to 76% (81/107) when
considering only tree nodes with bootstrap values ≥99%. Similar results were obtained by Hanada and
co-workers who found an overlap of 80% between similarity- and tree-based orthologous groups when
clustering proteins from Arabidopsis thaliana, poplar, rice and moss49.

An additional control experiment was performed to determine whether sub-families were formed by Or-
thoMCL that do not represent ancient sub-types. First, we assigned phylogenetic labels to the different
sub-families (e.g. contains only genes from moss, algae, eudicots, monocots, all land plants or all plants).
When studying the taxonomic range of the labels for the different sub-families within a family, we ob-
served that only rarely false sub-families were defined. For example, when considering a set of 333 gene
families having at least two sub-families, one annotated with ’monocot’ and one with ’eudicot’, respec-
tively, only 16 cases (5%) were found where the family was erroneously split in a eudicot and monocot
sub-family not representing out-paralogs.

3.3.3 Alignments and Phylogenetic Trees

For all gene families multiple sequence alignments were created using MUSCLE140. Alignment columns
containing gaps were removed when a gap was present in >10% of the sequences. To reduce the chance
of including misaligned amino acids, all positions in the alignment left or right from the gap were also
removed until a column in the sequence alignment was found where the residues were conserved in all
genes included in our analyses. This was determined as follows: for every pair of residues in the column,
the BLOSUM62 value was retrieved. Next, the median value for all these values was calculated. If
this median was ≥0, the column was considered as containing homologous amino acids. To prevent
the emergence of low-branch attraction or badly-supported nodes yielding uninformative trees, highly
divergent and partial sequences were removed from the alignment prior to phylogenetic tree construction
if they contained in more than 50% of the alignment columns gaps or two times or more gaps than
the average sequence in the alignment. Phylogenetic trees were constructed using PhyML applying the
JTT substitution model, 100 bootstrap samples, estimated proportion of invariable sites, four substitution
categories, estimated gamma distribution parameter, the BIONJ distance-based tree as starting tree and
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without tree optimization (default parameters for protein sequences). Notung 2.6e was used to root the
trees and to infer speciation and duplication events using the tree reconciliation mode and applying the
Duplication/Loss Score to evaluate alternate hypotheses. In the website JalViewf is used as multiple
sequence editor151 to view and transfer sequence data to the user’s PC. ATV/Archaeopteryxg is used for
tree visualization152.

3.3.4 Functional Annotation

Delineating correct othologous relations is a daunting task in plants due to many ancient and species-
specific WGD creating many paralogous genes. A main issue for orthology projection is that an or-
thologous group covering for example genes from different land plants will include many paralogs that
originated before/after the radiation of these species and that these duplicates might have diverged in
function or regulation. Consequently, sub-or neo-functionalization of ancient duplicates makes transfer
of functional annotation at the ’land plant’ level heavily unreliable. Therefore, we selected eudicot and
monocot orthologous groups to project functional annotation (Figure 3.3). The inherent drawback of this
approach is that functional annotation from Arabidopsis cannot be transferred to rice and sorghum and
vice versa. This limitation however will result in a smaller, but more reliable set of orthologous groups for
projection. For the GO projection all primary gene annotations Inferred from Electronic Annotation (ev-
idence code IEA) were excluded as information source (see Supplemental Table 5 accompanying Proost
et al. 100 ). Finally, all new gene-GO associations inferred through projection were labeled with evidence
tag Inferred from Sequence or Structural Similarity (ISS).

The delineation of eudicot/monocot orthologous groups was done based on the phylogenetic trees. A
recursive algorithm was developed which traverses the tree topology and checks each node based on its
reconciled date and bootstrap value (> 70). The consistency score (in case the node was labeled as a
duplication node) was used to determine if the node was a genuine duplication (consistency score > 0.30
for duplication). Note that the last criterion prevents the inclusion of ancient paralogous sub-types in the
orthologous groups. Nodes that met this set of criteria were extracted as valid orthologous groups (18 513
and 13 216 groups for eudicots and monocots, respectively) and all GO terms from genes within such a
group were collected. Redundancy caused by parent-child relations between related GO terms was re-
moved and this extended set of labels was projected to all genes in the group recording the source gene(s)
for newly inferred gene annotations. Consequently, some un-annotated genes received new functional an-
notations while other genes were re-annotated with a more specific GO term. Note that GO parent-child
redundancy between primary and projected GO annotations was not removed in order to keep both data
sources clearly distinguishable.

GO and family enrichment analysis was performed using the hypergeometric distribution and Bonfer-
roni correction for multiple hypothesis testing.

3.3.5 Detection of Collinearity

To detect collinearity within and between species i-ADHoRe 2.4 was used147. Whereas the algorithm
is identical to the i-ADHoRe 2.0 version, a more efficient way to store gene pairs in memory was im-

ehttp://www.cs.cmu.edu/ durand/Notung/
fhttp://www.jalview.org/
ghttp://www.phylosoft.org/archaeopteryx/
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plemented allowing the program to be executed with up to 11 species on a machine with 2 gigabytes
of RAM. Collinear regions can be used to study the conservation of genome organization between dif-
ferent species or to study duplicated blocks within one organism. Initially, all chromosomes from all
species are compared against each other and significant collinear regions are identified. i-ADHoRe was
run with the settings alignment method gg, gap size 30, cluster gap 35, q value 0.9, prob cutoff 0.0001,
anchor points 4 and level 2 only false. The default run was done including all organisms. For optimal
results however it is recommended to limit the number of species. Hence several other runs, with a subset
of species, were done and stored in the database. Where relevant the website will allow users to pick to
subset of species they’re interested in (i.e. brassicales, eudicots, monocots, moss and algae).

Whereas the Multiplicon View and WGDotplot present raw i-ADHoRe output, the Skyline plot per-
forms an additional processing step where several multiplicons are combined to show as many collinear
regions as possible. For genes in the shown region all segments containing this gene are extracted and
each of these segments belongs to a certain multiplicon which is accessible through the Multiplicon View
by clicking the segment. For each selected organism the highest number of segments from this organism
in one of these multiplicons will be determined and stored. This process is repeated for every gene in the
reference region and the stored values will be used to build the graph depicted in the Skyline plot.

3.3.6 Relative Dating using Synonymous Substitutions

Only collinear gene pairs were dated using KS . Compared to dating all pair-wise combinations of gene
homologs per family, this has several advantages. First, as tandem duplications are filtered out when
detecting collinearity, the L shaped curve caused by tandems isn’t superimposed on KS-plots obscuring
peaks from large-scale duplications. Second, no correction for the number of KS-measurements versus
the number of real duplications has to be applied153 and lastly, a reduction in the number of gene pairs
to date results in a reduction of computational time. The coding sequences for the gene pairs were
aligned with CLUSTALW (version 1.83)154 using the protein sequences as alignment guides. From this
alignment bad positions were stripped as described for the gene family alignments. The actual dating
using synonymous substitutions was done using codeml (part of PAML package)155 with the settings
verbose 0, noisy 0, runmode -2, seqtype 1, model 0, NSsites 0, icode 0, fix alpha 0, fix kappa 0 and
RateAncestor 0.

3.4 Summary and Future Prospects

The PLAZA platform integrates genome information from a wide range of species within the green plant
lineage and allows users to extract biological knowledge about gene functions and genome organization.
Besides the availability of different comparative genomics data types, a set of interactive research tools,
together with detailed documentation pages and tutorials, are accessible through a user-friendly website.
Sequence similarity is used to assign protein-coding genes to homologous gene families, and phylogenetic
trees allow the reliable identification of paralogs and orthologs. Through the integration of high confi-
dence GO annotations and tree-based orthology between related plant species, we could (re-)annotate
thousands of genes in multiple eudicot and monocot plants. Apart from local synteny plots that facilitate
the identification of positional orthologs, gene-based collinearity is calculated between all chromosomes
from all species and can be browsed using the so-called Skyline plots. The WGDotplot visualizes all
duplicated segments within one genome and dating based on synonymous substitutions generates an evo-
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lutionary framework to study large-scale duplication events. In addition, PLAZA’s Workbench provides
an easy access point to study user-defined gene sets or to process genes derived from high-throughput ex-
periments. Based on a sequence similarity search or a list of gene identifiers, custom gene sets can rapidly
be created and detailed information about functional annotations, associated gene families, genome-wide
organization, or duplication events can be extracted. Consequently, this tool opens perspectives for re-
searchers generating EST libraries from nonmodel species as these can easily be mapped onto a model
organism. PLAZA hosts a diverse set of data types as well as an extensive set of tools to explore plant
genome information.

Future efforts will be made to extend the number of available plant species and to include novel types
of data to further explore gene function and regulation. Newly published plant genomes will be added
on a regular basis to enlarge the evolutionary scope of PLAZA. The availability of genome information
from more closely related organisms156 will make it possible to explore the similarities and differences
between species at the DNA level and to identify, for example, conserved cis-regulatory elements on a
genome-wide scale.

In conclusion, PLAZA will be a useful toolkit to aid plant researchers in the exploration of genome
information through a comprehensive web-based research environment.

3.5 Author Contribution
I was the only developer of the PLAZA webplatform, with the entire frontend programmed by me, with
design help from other co-authors. As (shared) first author, I made substantial contributions to the
manuscript, together with Sebastian Proost (first author) and Klaas Vandepoele (last author). Multiple
visualizations used on the website and included in the manuscript were conceived and implemented by
me. The entire workbench and its associated pipeline was also implemented by me. For a more technical
overview of issues encountered during the development, see chapter 7.
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Abstract
With the arrival of low-cost, next-generation sequencing a multitude of new plant genomes is being pub-
licly released, providing unseen opportunities and challenges for comparative genomics studies. Here, we
present PLAZA 2.5, a user-friendly online research environment to explore genomic information from
different plants. Compared to the previous published PLAZA version (PLAZA 1.0, see chapter 3), this
new release features updates to previous genome annotations and a substantial number of newly available
plant genomes, as well as various new interactive tools and visualizations. These additions mimic the
growth in sequencing performance as seen in the period 2009 – 2012. A more detailed analysis of the
differences in data content can be found in section 4.2.1.

Currently, PLAZA hosts 25 organisms covering a broad taxonomic range, including 13 eudicots, five
monocots, one Lycopod, one moss, and five algae. The available data consist of structural and functional
gene annotations, homologous gene families, multiple sequence alignments, phylogenetic trees, and co-
linear regions within and between species. A new Integrative Orthology Viewer, combining information
from different orthology prediction methodologies, was developed to efficiently investigate complex or-
thology relationships. Cross-species expression analysis revealed that the integration of complementary
data types extended the scope of complex orthology relationships, especially between more distantly re-
lated species. Finally, based on phylogenetic profiling, we propose a set of core gene families within the
green plant lineage that will be instrumental to assess the gene space of draft or newly sequenced plant
genomes during the assembly or annotation phase.

This chapter is based on Van Bel et al. 84 . For the author contributions, see page 4-18.
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4.1 Introduction

Thanks to recent advances in sequencing technologies157, the price per base pair has dropped sharply158.
Therefore, genome sequencing is no longer restricted to model organisms and a variety of species of
ecological, agricultural and/or economical importance are sequenced by several laboratories around the
world128,159,160. Recently, re-sequencing additional genomes of a reference species has become feasi-
ble as well161, improving the understanding of genomic variation. Whereas a single genome provides a
basic catalog of all genes it encodes, comparison of genomes gives insights into the evolution and adap-
tation of species to specific environments162. However, comparative genomics studies come at an extra
cost: as the number of available genomes increases, large-scale analyses become increasingly difficult
for non-experts, whereas the computational requirements to extract biological information grow rapidly.
Furthermore, biological variation between species and differences in sequence quality enhance the com-
plexity of evolutionary analyses. Therefore, platforms for comparative genomics100,104,111,163, that take
care of some of these challenges, are valuable resources for experimental biologists.

A key challenge in comparative genomics is the reliable grouping of homologous genes (derived from
a common ancestor) and orthologous genes (homologs separated by a speciation event) into gene fam-
ilies33,64,164,165. Orthology is generally considered a good proxy to identify genes performing a similar
function in different species60. Consequently, orthologs are frequently used as a mean to transfer func-
tional information from well-studied model systems, such as Arabidopsis thaliana or Oryza sativa (rice),
to non-model organisms. In plants, utilization of orthology is not trivial, due to a wealth of paralogs
(homologous genes created through a duplication event) in almost all plant lineages. Ancient duplica-
tion events preceding speciation lead to outparalogs, which are frequently considered as subtypes within
large gene families. In contrast to this are inparalogs, genes that originated through duplication events
occurring after a speciation event33. Besides continuous duplication events (for instance via tandem
duplication), many plant paralogs are remnants of whole genome duplications (WGDs). In flowering
plants, the frequent WGDs in several lineages14 result in the establishment of one-to-many and many-to-
many orthologs (or co-orthologs). Other modes of duplication, such as retro-transposition, also introduce
co-orthologous relationships, but the duplicated copy ends up in a different genomic context and is prob-
ably regulated differently due to the absence of its original promoter. As such, transfer of functional
information between organisms is a non-trivial operation166. Various algorithms for orthology detection
have been developed and benchmarked167, and, overall, can be catalogued as graph-based and tree-based
methods, with the latter closer to the original orthology definition33, because they are based on the rec-
onciliation of a family tree with a species tree.

PLAZA, an online resource for plant genomics, had been developed to integrate and distribute com-
parative genomics data for both computational and experimental plant biologists100. The first release,
based on nine sequenced plant genomes, included various tools to easily retrieve specific data types, such
as gene families, multiple sequence alignments, phylogenetic trees, and genomic homology. To accom-
modate the evolutionary analysis of an increasing number of available plant genomes, more powerful and
streamlined computational pipelines were required as well as new tools to visualize genome information
from multiple species. Here, we present version 2.5 of PLAZA, a major update of the comparative ge-
nomics platform, which currently hosts twenty-five species together with a variety of new tools to browse
gene families, study functional clustering, and explore multispecies colinearity data. In addition to the
development of a new tool to identify complex gene orthology relationships, different prediction methods
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were also evaluated by means of expression context conservation.

4.2 Results and Discussion

4.2.1 Gene Annotation and Gene Families

Parsing the 25 genomes present in PLAZA 2.5 resulted in 909,850 genes, covering 85.8% protein coding
genes, 13.7% transposable elements, 0.3% RNA genes and 0.1% pseudogenes (Table 4.1). Besides nu-
clear gene annotations, chloroplast and/or mitochondrial gene information was included was well, when
available. In total, 13 eudicots, five monocots (Liliopsida), one Lycopod, one moss, and five algae were
integrated, of which 16 are new species compared to the previous release. The functional annotation
pipeline resulted in 462,958 (419,028 without GO projection) genes with at least one associated Gene
Ontology (GO) term, and 519,047 protein coding genes with at least one InterPro domain (Table 4.1).
Overall, projected functional information inferred through sequence orthology100 covered 10% of the
available gene-GO annotations (43,930 genes from 18 different species have only GO annotations based
on projection).

Protein clustering based on all-against-all sequence similarity searches resulted in 32,294 gene families,
covering 87.8% of all the protein coding genes, and 22,350 multispecies gene families, covering 82.6% of
all protein coding genes, with a gene family defined as a cluster of two or more homologous genes. This
coverage represents a considerable increase compared to PLAZA 1.0, in which only 77.6% and 68.1%
of the coding genes where assigned to gene families and multispecies gene families, respectively. Due
to a variety of problems (changed annotations, split/merged gene families, ...) the gene family identifiers
were not kept stable between PLAZA versions. Multispecies gene families are commonly applied for
improving, through homology, the structural annotation of gene models168. The increase in gene number
assigned to both classes of gene families demonstrates the importance of sequencing additional species
to obtain a better gene coverage within specific phylogenetic clades. Only a relatively small fraction of
gene families contains proteins from all species (see Figure F.2).

Reliably transfer of known functional descriptions from the gene level to the gene family level was
achieved by calculating GO enrichment statistics for each family (see Methods). Through the website,
this functional information, together with protein domain information, is displayed per family. Although
this family GO annotation procedure yielded information for only 8,606 gene families and 28,281 sub-
families, they cover more than 70% of the protein-coding genes present in gene families.

4.2.2 Core Plant Gene Families and Detection of Clade-specific or Expanded Gene
Families

Most new genome sequences generated by next-generation sequencing methods do not provide the full
genomic sequence185, but rather aim at providing sequences containing the majority of the proteome,
potentially missing noncoding genes or intergenic regions. The extremely large genome sizes associated
with some organisms prevent full-genome sequencing and enforce the application of transcriptome se-
quencing to build gene catalogs186. A key challenge in comparative gene family analysis is discerning
whether the absence of a species within a gene family is functionally and evolutionarily relevant or rather
an artifact from the assembly and/or annotation procedures. As a consequence, the reliable assessment
of the gene space provides an important measure to determine the quality of genome sequencing and
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Species Genes (a) Scaffolds (b) GO (c) InterPro (d) Version Reference

Arabidopsis lyrata 32,670 (100%) 8+1 (429) 53.8% (65.6%) 72.1% JGI 1.0* Hu et al. 169

Arabidopsis thaliana 33,602 (81.6%) 5C,M 77.3% (80.2%) 78.3% TAIR10 Initiative 13

Brachypodium distachyon 26,678 (99.8%) 5+1 (15)C 56.6% (66.9%) 78.2% MIPS 1.2* Initiative 170

Carica papaya 28,072 (99.8%) 4635C 43.4% (49.6%) 58% Hawaii ARC Ming et al. 171

Chlamydomonas reinhardtii 16,841 (99.7%) 88C,M 50.7% (50.7%) 53.4% JGI 4.0 Merchant et al. 130

Fragaria vesca 34,809 (100%) 7+1 (1080) 43.5% (49%) 61.4% Strawberry Genome 1.0* Shulaev et al. 172

Glycine max 46,509 (99.9%) 20+1 (97)C 61.3% (70.2%) 82.9% JGI 1.0* Schmutz et al. 173

Lotus japonicus 69,647 (61.9%) 6+1 (22048)C 42.2% (45.8%) 57.3% Kazusa 1.0* Sato et al. 159

Malus domestica 95,230 (66.7%) 17+1 (23653) 61.8% (66.4%) 69.3% IASMA* Velasco et al. 160

Manihot esculenta 30,800 (99.8%) 3142C 57.6% (66.5%) 78.8% Cassava4* Not published
Medicago truncatula 57,587 (78.5%) 8+1 (145)C 35.4% (39.5%) 48.7% Mt3.5* Young et al. 174

Micromonas sp. RCC299 10,276 (99.3%) 17C,M 58.3% (58.3%) 69.8% JGI 3.0* Worden et al. 175

Oryza sativa ssp. indica 59,430 (82.8%) 12+1 (2217)C,M 44.1% (53.9%) 59.6% 9311 BGF 2005* Yu et al. 176

Oryza sativa ssp. japonica 57,874 (72.9%) 12C,M 55.2% (58.6%) 58.6% MSU RGAP 6.1 Ouyang et al. 177

Ostreococcus lucimarinus 7,805 (100%) 21 60.7% (60.7%) 74.4% JGI 2.0 Palenik et al. 178

Ostreococcus tauri 8,116 (98.5%) 20C,M 49.6% (49.6%) 63.7% Ghent University* Derelle et al. 179

Physcomitrella patens 36,137 (77.8%) 1121C,M 47.8% (47.8%) 57.9% JGI 1.1,cosmoss.org 1.2 Rensing et al. 129

Populus trichocarpa 41,521 (99.9%) 19+1 (957)C 54.6% (61.8%) 73.7% JGI 2.0 Tuskan et al. 21

Ricinus communis 31,221 (100%) 4962 48.3% (54.1%) 65% JCVI 1.0* Chan et al. 180

Selaginella moellendorffii 22,285 (100%) 361 55.7% (55.7%) 71.8% JGI 1.0* Banks et al. 181

Sorghum bicolor 34,686 (99.8%) 10+1 (207)C,M 54.8% (62.1%) 71.1% JGI 1.4 Paterson et al. 182

Theobroma cacao 46,269 (62.4%) 11C 50.7% (57.7%) 69.4% CocoaGen v1.0* Argout et al. 183

Vitis vinifera 26,644 (99.5%) 19+1 (14)C,M 72.6% (76.4%) 71.8% Genoscope v1 Jaillon et al. 128

Volvox carteri 15,544 (100%) 762 39.1% (39.1%) 54.1% JGI 1.0* Prochnik et al. 184

Zea mays 39,597 (99%) 11C,M 48.1% (55.9%) 65.6% Version 5.60* Schnable et al. 95

Table 4.1: Data content PLAZA v2.5. (a) Numbers in parentheses refer to the fraction of protein coding genes. (b)
Numbers in parentheses refer to the number of genomic sequences in the original annotation (assembly) containing
genes. The +1 tag indicates the creation of a virtual chromosome zero to group scaffolds together whereas C and M
indicate the inclusion of chloroplast and mitochondrial genomes, respectively. (c) Percentage of coding genes with
an associated GO term. The fraction after the GO projection is displayed between the parentheses. (d) Percentage

of coding genes with at an associated InterPro domain. (*) New species compared to PLAZA 1.0

annotation projects.

Based on families conserved in a specific set of species, core gene families were created by means of
PLAZA 2.5. Families were selected on the basis of their gene content in phylogenetic subclades from
the PLAZA species tree, tolerating missing homologs in a small subset of species. Three sets of core
gene families were built based on the subclades rosids, monocots, and green plants. This phylogenetic
approach resulted in 6,316, 7,076 and 2,928 core gene families for the rosids, monocots, and green plants,
respectively. As expected, the core gene families cover, among others, housekeeping genes and genes in-
volved in primary metabolism. For each gene family a representative gene was selected from the rosids
and monocots (with a preference for genes from either Arabidopsis and rice, respectively) that could be
used as a probe to quantify genome completeness. Assessment of the gene space of each species included
in the platform using the weighted core gene family scores revealed the relatively low gene coverage
for some species (Figure 4.1). Especially Lotus japonica and Medicago truncatula within the eudicot
species, and Selaginella moellendorffii within the primitive land plants, showed a high number of poten-
tially missing genes. We propose these lists of core gene families as a reference set to quantify the gene
space in future genome projects.

Whereas core gene families are a useful tool for asserting proteome completeness, the study of species-
(or lineage-) specific (expanded) gene families is equally important to understand how species can adapt
to particular niches. Tandem gene duplications are a known mechanism used by plants to rapidly increase
the expression rate of a gene49, instead of the transcription rate. Two new tools were implemented to fa-
cilitate the detection of gene families based on phylogenetic profiles (presence or absence of a gene family
in a species) or expansion statistics. Whereas the Gene Family Finder tool enables the identification of
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Figure 4.1: Core gene family coverage in all PLAZA organisms. Core gene family coverage in all PLAZA
organisms, using the 6,316 rosid (A), 7,076 monocot (B), and 2,928 green plant core gene families (C). Coverage is

expressed as percentage of the core gene families having the indicated organism.

(expanded) gene families specific to one or more species, the Gene Family Expansion Plot displays gene
family expansions patterns between two (sets of) organisms (Figure 4.2).

4.2.3 Integrative Orthology Viewer: an Ensemble Approach to Detect Orthology
Relationships

Several methods for finding orthologs between two or more species have been described, each with its
own strengths and weaknesses164. Whereas Reciprocal best BLAST-Hit (RBH) detection187 between
closely related species provides a practical solution to identify orthologs, it cannot deal with complex one-
to-many or many-to-many orthologous relationships between more distantly related species. Although
the construction of phylogenetic trees188,189 should offer the highest confidence to identify speciation
events in gene family trees, it has a relatively low gene coverage compared to sequence-based clustering
methods, as trees could not be generated for all gene families. In PLAZA 2.5, 46,651 phylogenetic trees
were constructed covering 81% of all protein-coding genes assigned to gene families. Besides heavy
computational requirements, the method is also hampered by its sensitivity to differences in the topology
of the gene tree compared to the species tree, which are used for reconciliation142.

To detect orthologous gene relationships in plants with an enhanced robustness, an integrative approach
was developed to identify orthologs on a gene-by-gene basis. The developed ensemble approach consists
of four distinct orthology prediction methods: orthologous gene families inferred through sequence-based
clustering with OrthoMCL61 (including modeling of RBH orthology and inparalogy), reconciled phylo-
genetic trees, colinearity information and multispecies Best-Hits-and-Inparalogs (BHI) families. The
latter are based on the best BLAST hit for each species, extended with the inparalogous genes in each
species190. The integration of gene colinearity facilitates the detection of positional orthologs, namely
genes with conserved genome organization between species. The combination of different methods for
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Figure 4.2: Gene family expansion plot. (A) The gene copy number in Vitis vinifera and Glycine max, within each
gene family, is indicated by the position of a dot, and the color indicates the number of gene families with these gene

copy numbers. (B) Density plot between two sets of organisms, Brassicales (Arabidopsis thaliana, Arabidopsis
lyrata, and Carica papaya) versus Malpighiales (Manihot esculenta, Ricinus communis,and Populus trichocarpa).
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Figure 4.3: Integrative Orthology Viewer. Orthology overview for the Arabidopsis thaliana gene AT2G24630, its
paralogs and orthologs in Populus trichorpa. The selected query gene is marked with a black border.

orthology detection, as implemented in the PLAZA platform, allows for the more accurate selection of
orthologs, for example using majority voting191 or through the application of a weighted voting scheme
based on the sensitivity of individual tools. Other plant comparative genomics database like Green-
PhylDB111 and Phytozome103 only group homologous genes into families using clustering, the latter also
including synteny information to identify putative positional orthology. PlantEnsembl104 performs or-
thology and paralogy predictions solely based on reconciled gene family phylogenetic trees.

The Integrative Orthology Viewer displays for a query gene and its predicted inparalogs the associated
orthologs, including the support from the different orthology methods (Figure 4.3). In addition, all links
are provided to explore the supporting evidence and specific details of the individual predictions. For
instance, the phylogenetic trees that served as the primary data source for the tree-based orthologs can be
viewed and the user can evaluate the support of a specific speciation node.

To compare the performance of individual methods, as well as of an integrative approach, we first gen-
erated basic statistics about the number of inferred orthology relationships. With focus on the model
species Arabidopsis as query species and any other species as target, the gene coverage was highest for
the BHI families and OrthoMCL (25,862 and 23,932 genes with at least one ortholog, respectively)(see
also Figure F.4). As expected, reconciled phylogenetic trees only provided orthology information for
18,415 Arabidopsis genes. To evaluate the quality of these predictions, the percentage of orthologous
gene pairs with conserved expression was determined by using the Expression Context Conservation
(ECC)192. The expression context was based on the expression similarity between a query gene and all
other genes in that species (gene-centric coexpression cluster). The ECC was obtained by starting from a
predicted orthologous gene pair, retrieving all coexpressed genes per species, and calculating how many
homologs were coexpressed in both species. Significant ECC values indicate that the orthologous genes
show share coexpression with several other genes in both species. Consequently, conserved ECC gene
pairs can be used as a proxy to measure conserved gene functions between putative orthologs, based on
spatial-temporal expression information.
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Based on a random sample of 9,319 orthologous Arabidopsis - rice gene pairs, ECC scores for the
different orthology prediction methods indicated that gene pairs uniquely predicted by individual meth-
ods overall contain less gene pairs with conserved coexpression compared to predictions supported by
multiple tools: 44%, 41% and 41% for OrthoMCL, BHI families and trees, respectively, versus 60%
(supported by OrthoMCL and BHI families), 41% (supported by BHI families and trees), 57% (sup-
ported by OrthoMCL and trees) and 68% (supported by OrthoMCL, BHI families and trees). Although
these results indicated that multiple evidences increase the reliability of orthology prediction, applica-
tion of a majority voting system (i.e. only selecting orthologs with the highest number of evidences)
could miss true orthologs with less support types (i.e. false negatives). To compare the performance of a
majority-voting protocol with a selection procedure only requiring two support types, we evaluated ECC
scores for orthologous gene pairs supported by only two evidences with those confirmed by three predic-
tion methods. Despite majority voting orthologs having a higher fraction of ECC conserved genes (66%),
51% of the gene pairs with only two evidences also showed conserved expression between Arabidopsis
and rice (based on the same reference query Arabidopsis gene set). Therefore, we retained all orthologous
predictions supported by two or more evidences in the integrative orthology method.

Although OrthoMCL has been shown to have a good tradeoff between false positives and false nega-
tives133, we observed that 3,506 Arabidopsis genes (13% of the proteome) had a predicted orthologous
rice gene based on the Integrative method, whereas no ortholog was found using OrthoMCL. Of the
3,506 Arabidopsis genes having one or more rice ortholog(s) (covering 3,874 rice genes in total), 40%
exhibited conserved expression conservation. This result indicates that a considerable fraction of gene
pairs not reported by OrthoMCL represents conservatively coexpressed orthologs, revealing the comple-
mentary nature of both approaches. Application of the integrative method (requiring at least two support
types) to predict orthologs from Arabidopsis in other species, revealed overall 30% more predictions
compared to OrthoMCL (Figure 4.4). Although the difference in the number of one-to-one orthologs is
minor for most species, the number of complex orthology relationships (one-to-many and many-to-many)
is higher for the integrative method. The frequent occurrence of WGD is an important driver responsible
for the high frequency of complex orthology gene relationships in plant genomes.

4.2.4 Clusters of Functionally Related Genes in Eukaryotic Genomes

Whereas in many prokaryotic genomes genes are organized in operons, this is relatively rare in eukary-
otes193. However, the overall absence of polycistronic mRNAs in eukaryotic genomes does not imply a
random gene organization within chromosomes193–195. In several eukaryotic species clusters, with genes
sharing similar expression patterns, members of the same pathway or genes with related functions, have
been described, indicating that the null-hypothesis of random gene order is incorrect196. Recent studies
have suggested that the chromatin state, either euchromatin or heterochromatin, is one of the contributing
factors to the coexpression of neighboring genes194,196, and bidirectional promoters as well197.

To study the clustering of functionally related genes, the C-Hunter program198 was used for a genome-
wide analysis. This tool detects statistically significant clusters of neighboring genes based on the simi-
larity of GO annotations. The standard C-Hunter run (no tandem gene removal, minimum genes 2, max-
imum genes 30) resulted in 5408 significant clusters covering 34,407 genes from 25 different species.
As the majority of these clusters (68%) are composed uniquely of tandemly duplicated genes, an extra
data set was created to detect clustering of nonhomologous genes194. In this data set every set of tan-



4-12 CHAPTER 4

Figure 4.4: Quantification of Arabidopsis orthologs. Summary of the different orthologous relationships predicted
by the PLAZA integrative method and OrthoMCL, between Arabidopsis thaliana and all other PLAZA 2.5 species,
respectively. The integrative method requires at least two support types to retain orthologous genes. Species are

ordered per phylogenetic clade. The top panel displays results for one-to-one orthologs and the bottom panel shows
many-to-many orthologs.
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Figure 4.5: Functional clusters based on GO annotation. Functional clusters in Arabidopsis thaliana chromosome 1,
detected with the C-Hunter software package. Data in the text fields include GO term and description, cluster size,

and the number of genes within a cluster with a specific GO term.

dem genes was represented by a single gene representative (see Methods). The number of clusters varied
widely among the different species, suggesting that both the quality and quantity of the structural and
GO annotations of genes played a major role, as well as the assembly of scaffolds in the chromosomes.
More compact genomes, such as those of the algal species, had a smaller number of functional clusters,
whereas the number of detected functional clusters in larger genomes correlated with the number of genes
per scaffold and the number of genes with a GO term. The resulting clusters are included in the database
and can be browsed from both gene pages and GO pages on the PLAZA website. Furthermore, a visual-
ization presenting the significant functional clusters per chromosome (Figure 4.5) was created with a GO
domain based coloring. Using these functional clusters in combination with colinearity information can
also give clues to the origin of these clusters, as the most parsimonious explanation for shared functional
clusters would be that the common ancestor already contained these clusters (see Figure F.3).

4.2.5 Colinearity-based Genome Analysis

As a means to study genome organization and evolution, i-ADHoRe48 is used to discover genomic ho-
mology based on gene colinearity within and among species. Colinearity information can be applied to
analyze segmental and WGD events, whereas cross-species genome conservation facilitates the analysis
of chromosomal rearrangements, such as inversions, chromosomal fissions/fusions, and translocations.
As the increase in number of species resulted in more complex genomic homology relationships, two
new tools, the WGDotplot applet (Figure 4.6) and the CirclePlot (Figure 4.7), were developed which
provide more advanced and configurable visualizations. For both tools the dating of colinear regions,
based on the fraction of synonymous substitutions over all synonymous sites (Ks), is visualized by color
coding.

The WGDotplot applet was implemented in Java and designed to be an interactive extension of the static
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Figure 4.6: WGDotplot applet. Visualization of the colinearity between five monocot species: Oryza sativa ssp.
japonica, Oryza sativa ssp. indica, Brachypodium distachyon, Sorghum bicolor and Zea mays. Green lines indicate

different chromosomes, and the colors of the colinear regions reflect the Ks values.

visualizations present in PLAZA 1.0, also allowing the visualization of colinear regions between more
than two species. At the same time, the functionalities were extended to encompass a rich palette of vi-
sualization options, such as hiding chromosomes and rearranging chromosomal positions, adapting color
usage, and using stepless zoom features to browse the genomic colinearity between multiple species.

The Circle Plot tool was developed as a lightweight and interactive circular visualization tool, similar
to the popular Circos software94. Fully written in Javascript, this program runs natively on most modern
browsers. Whereas the primary use of the Circle Plot is the study of intraspecies colinear regions, the
ability to map interspecies colinear regions on the circumference of the plot closes the gap between the
capabilities of the Circle Plot and the WGDotplot applet. Extra features, such as coding gene density
and InterPro and GO terms, can also be displayed on the circumference of the Circle Plot. Another main
difference is the mode of chromosome size determination. Whereas the Circle Plot uses nucleotide-based
coordinates, the WGDotplot uses genes as the smallest units (retaining protein-coding genes only). Con-
sequently, the former can display information in low-coding regions, such as centromeres or telomeres,
and the latter facilitates the comparison of colinear regions from species with differences in gene density.



DISSECTING PLANT GENOMES WITH THE PLAZA COMPARATIVE GENOMICS PLATFORM 4-15

Figure 4.7: Circle Plot. Plot showing colinear regions within Arabidopsis thaliana (inner circle) and between
Arabidopsis thaliana and Arabidopsis lyrata (colored border of circle, indicating different Arabidopsis lyrata

chromosomes). Also displayed are the coding gene density (grey blocks on the border of the circle) and a selected
GO term (GO:0005198) (blue stripes on border of the circle). Coloring of colinear regions within Arabidopsis

thaliana is based on start/end chromosomes, and only those colinear regions (both intra- and inter-species) with a
Ks-value between 0.3 and 2 (corresponding with 3R duplication event) are shown.
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4.2.6 User Interactivity via Workbench and Bulk Downloads

PLAZA offers a versatile resource for easy data mining of homologous genes, sequence alignments and
phylogenetic trees, genome organization, and functional annotation in different plants. However, large-
scale analyses with a web-based user interface quickly become tedious and time consuming. To overcome
this problem, a user-oriented Workbench was implemented in which specific gene sets can be analyzed.
Different collections of user-provided gene lists are stored as separate experiments and genes can be added
to an experiment based on internal/external gene identifiers or sequence similarity searches (see Tutorial
on the PLAZA website), providing a versatile approach to map genes across species or to summarize
sequencing data on a reference genome annotation. Whereas the initial workbench contained tools to
explore the functional annotation of sets of genes, in PLAZA 2.5 multiple improvements were made for
an easier and more comprehensive user experience. The GO enrichment tool is extended, bulk detection
of orthologs on a gene-by-gene basis is possible and multiple workbench experiments can be compared.
In addition, based on the outcome of a first analysis (such as gene filters in an experiment with GO), a
new workbench experiment can easily be created or, reversely, genes can be removed from the initial ex-
periment. The export function allows the user to retrieve general gene information (functional annotation,
gene family data, orthologs, duplication data) as well as various sequence features (e.g. coding sequence,
intron, and upstream and downstream sequences) for large gene sets covering all 25 genomes. Overall,
the workbench offers a user-friendly solution for the efficient analysis of multiple data sets containing
hundreds of genes. In addition, bulk downloads of most data sets in PLAZA are available through the
FTP-site.

In conclusion, the PLAZA platform is a user-friendly platform for small- and large-scale comparative
sequence analyses of plant genomes. This new version includes sixteen new genomes and implements
new methods for colinearity and orthology detection.

4.3 Material and Methods

4.3.1 Gene Models and Gene Families

An overview of all primary sources supplying gene annotation data is presented in Table 4.1. All
genomes, and their associated gene models, where first parsed into a uniform format and stored in a
relational database. The association of a gene model with one of the four different gene types (coding,
RNA, transposable element and pseudo gene) was extracted from the primary data sources. For species
lacking chloroplast and mitochondrial DNA sequences, organellar genomes were, when available, ob-
tained from the European Bioinformatics Institutea (EBI) .

The gene models, DNA sequences and protein sequences were tested for consistency, and irregular re-
sults (such as mismatches between translated DNA sequences and the provided protein sequences) were
flagged in the database. The longest splicing variant was selected as representative for genes with alter-
native transcripts and, in turn, used in subsequent analyses focusing on gene family delineation and co-
linearity detection. Splice variants, if annotated, could be explored with the genome browsers AnnoJ136

or GenomeView199. Gene families were delineated by first computing the protein sequence similarity
through an all-against-all BLAST (e-value cutoff 1e-05, retaining the top 500 hits), and then by applying

ahttp://www.ebi.ac.uk/genomes/organelle.html
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TribeMCL79 and OrthoMCL61 to cluster genes in families and subfamilies, respectively.

The PLAZA species tree was manually constructed using information from NCBI taxonomy200 and lit-
erature201 to resolve trifurcations.

The core gene families were selected by a phylogenetic approach: the clades with at least two non-leaf
subclades were retained from the PLAZA species tree, and to be considered as a core family for these
clades, at least one organism within each of the subclades had to possess a representative gene. This ap-
proach inferred, based on parsimony, that a gene family was present at ancestral nodes with tolerance of
potential annotation errors in a limited number of species. The total set of core gene families for a given
clade consisted of the intersection gene family sets generated by subclades. For each core gene family
representative genes were selected, using BLASTP scores with other gene family members as evaluation
metric. To assess the gene space in available plant genomes, each core family was counted with a weight
equal to 1/average family size. The average gene family size was defined by the total number of genes in a
gene family divided by the number of species within that family. The weighting scheme corrected for the
observation that the probability of finding a homolog is higher for large families compared to single-copy
or small families.

4.3.2 Colinearity

Homologous genomic regions were detected with i-ADHoRe 3.047,48, that identified colinear regions
based on conserved gene order and content. i-ADHoRe was run with the settings: alignment method gg2,
gap size 30, tandem gap 30, cluster gap 35, q value 0.85, prob cutoff 0.01, multiple hypothesis correction
FDR, anchor points 5 and level 2 only false. Tandem gene duplicates were also determined with i-
ADHoRe, whereas the relative dating of duplicated genes in colinear regions was done with PAML (set-
tings: verbose 0, noisy 0, runmode -2, seqtype 1, CodonFreq 2, model 0, NSites 0, icode 0, fix alpha 0,
fix kappa 0 and RateAncestor 0).

4.3.3 Functional Annotation

Gene ontology (GO) annotation, when available, was downloaded along with the gene models. Further-
more InterPro scan74 was run on all protein-coding gene models and additional GO annotations were
inferred with InterPro to GO mapping. Redundant GO annotations were merged according to the GO
evidence code rank202. To avoid the inclusion of obsolete GO terms, a filter was applied using the set of
valid GO terms derived from http://geneontology.org68. The GO annotation was also projected between
orthologs from eudicots and monocots100. GO enrichment was analyzed for each gene family, with only
the organisms with genes in the gene family under investigation being used as background model for the
statistical analysis (hypergeometric distribution with Bonferonni correction for multiple testing). Only
GO terms covering at least half of the annotated genes in a family and with corrected p-values < 0.05

were retained.

4.3.4 Functional Gene Clusters

Clusters of functionally related genes (functional clusters) were detected using C-Hunter198 on two dif-
ferent datasets that differed by whether the tandemly duplicated genes had been collapsed to a single
representative or not. Two different runs were performed on each dataset, with different minimum (2/30)
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and maximum (10/150) cluster sizes. The e-value cutoff (0.001) and maximum cluster overlap (50%)
were the same for the different runs. When multiple clusters spanning the same location were detected,
because of GO terms organization as a directed acyclic graph68, only the most significant cluster was
retained.

4.3.5 Orthology Prediction and Evaluation

The PLAZA integrative approach for orthology detection was based on four methods: orthologous gene
families, phylogenetic trees, colinear regions and multispecies best BLAST hits. For the gene families
OrthoMCL clusters were used, the phylogenetic trees were constructed based on gene families inferred
with TribeMCL, the colinear regions were detected with i-ADHoRe, and the best BLAST hits (with
inparalogs), namely Best-Hits-and-Inparalogs (BHI) families, were detected by an OrthoInspector-like
approach190. Briefly, interspecies best BLAST hits were first retrieved for each gene and in a second
phase inparalogs were included, defined as the intraspecies BLAST hits that were more similar than the
best interspecies BLAST hits.

For all gene families, phylogenetic trees were constructed with PhyML139 based on multiple sequence
alignments generated by MUSCLE140. Duplication and speciation events in the phylogenetic trees were
identified by applying the NOTUNG tree reconciliation method141. Based on a duplication consistency
score, erroneous duplications due to incongruences between the gene family and species tree, were deter-
mined100.

The reliability of the different orthology predictions was scored with the Expression Context Conser-
vation score (ECC)192. ECC compared the expression profile conservation between two species by a sta-
tistical framework evaluating shared homologous relationships between coexpressed genes. The retrieved
expression compendia192, consisted of 76 Arabidopsis thaliana and 63 Oryza sativa ssp. Japonica (rice)
Affymetrix non-redundant microarray experiments. These expression data sets were constructed start-
ing from 322 Arabidopsis and 203 rice experiments using data normalization, collapsing of redundant
conditions and removal of transgenic or mutant experiments. A total of 19,937 Arabidopsis and 32,004
rice genes were present on the microarrays for expression analysis (based on a custom Chip Description
File192). Pearson correlation coefficient thresholds for Arabidopsis and rice were 0.48 and 0.41 respec-
tively. The evaluation of the different orthology predictions using ECC was performed using homologous
gene relationships based on TribeMCL clusters.

4.4 Author Contribution
As the first author, I had the lead role in the both the original development of PLAZA (see chapter 3), the
further development of the platform, as well as the writing the manuscript. All new visualizations (except
for the WGDotplot applet) were designed and implemented by me, although the data retrieval backend
of the WGDotplot applet was reimplemented by me due to performance issues. The evaluation of the
Integrative Orthology method through expression data was also performed by me. For a more technical
overview of issues encountered during the development, see chapter 7.
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Carl Sagan

5
PLAZA Applications



5-2 CHAPTER 5



PLAZA APPLICATIONS 5-3

Abstract
The development of the PLAZA84,100 platform has played an instrumental role in further research, as can
be observed by the multitude of research papers (65 for PLAZA 1.0, 9 for PLAZA 2.5 at the time of
writing) citing and using PLAZA. With the usage of PLAZA ranging from a data warehouse to actively
browse the website and its tools to infer information. Instrumental in understanding how to browse and
use the PLAZA platform are the various use cases published by our group.

Examples include the study of duplicated genes and regions, using the Integrative Orthology method
to help quantify conserved co-expression and using the GO enrichment tool to infer functional biases in
expression data. Such examples clearly indicate how the PLAZA platform can be used to study a wide
range of problems. With the power provided by having direct database access, more advanced use cases
become possible.

The content of this chapter is based on various published research papers, to which I made significant
contributions100,203,204. For the author contributions, see page 5-15.
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5.1 The Study of Gene Duplicates Using the PLAZA Platform

To illustrate the applicability of PLAZA for comparative genomics studies, a combination of tools was
used to characterize in detail the mode and tempo of gene duplications in plants. In the first case study,
tree-based dating and GO enrichment analysis were used to analyze the gene functions of species-specific
paralogs. Initially, gene duplicates were extracted from the reconciled phylogenetic trees for all organ-
isms. To ensure the reliability of the selected duplication nodes, we only retained nodes with good
bootstrap support (≥70%) and consistency scores (>0.30) (calculated as described in Vilella et al. 143 ).
By cross-referencing all returned genes with the colinearity information included in PLAZA, all species-
specific duplicates were further divided into tandem and block duplicates. Subsequently, enriched GO
terms were calculated for each of those gene sets using PLAZA’s workbench. Whereas in the green alga
Ostreococcus lucimarinus, 45% of all species-specific duplicates are derived from a recent segmental
duplication between chromosomes 13 and 21, nearly half of all grapevine-specific duplicates correspond
with tandem duplications (see Supplemental Table 5 accompanying Proost et al. 100 ). For many species,
tandem duplications account for the largest fraction (34 to 50%) of species-specific paralogs. The GO en-
richment analysis provides an efficient approach to directly relate duplication modes in different species
with specific biological processes or evolutionary adaptations. Browsing the associated gene families
makes it possible to explore the functions of the different genes (Figure 5.1).

5.1.1 Duplicated Resistence Genes in Arabidopsis and Poplar

The GO term response to biotic stimulus (GO:0009607) was enriched for the tandem duplicates of Ara-
bidopsis thaliana, poplar, and grapevine. When focusing on the duplicated genes causing this enrichment,
we observed that different gene families involved in biotic response are expanded in different species
(Figure 5.1B). Whereas in Arabidopsis thaliana, the Avirulence-Induced Gene and anthranilate synthase
family are associated with bacterial response, genes from expanded families in poplar, covering a/b hy-
drolases, a set of proteins with a currently unknown function (DUF567), and proteinase inhibitors, have
been reported to be involved in response to fungal infection. Quantification of fungus-host distributions
based on the fungal databases from the USDA Agricultural Research Service and literature205 reveals,
for different regions worldwide, 1.5 to 106 times more fungal interactions for poplar compared with Ara-
bidopsis thaliana. These findings indicate a strong correlation between the wide distribution of poplar -
fungal interactions and the adaptive expansion of specific responsive gene families.

5.1.2 Tandem and Block Duplicates in Chlamydomonas reinhardtii

In Chlamydomonas reinhardtii, both tandem and block duplicates exhibit a strong GO enrichment for
the term chromatin assembly or disassembly. Inspection of the gene families responsible for this GO
enrichment revealed that the four major types of histones (H2A, H2B, H3, and H4) are included. When
analyzing other plant genomes, we observed that the histone family expansions were specific for Chlamy-
domonas reinhardtii. Detailed analysis of these genes reveals that there are 28 clusters that are composed
of at least three different core histones (Figure 5.2). During the S-phase of the cell cycle, large amounts
of histones need to be produced to pack the newly synthesized DNA. In order to increase histone protein
abundance, gene duplication, as also observed in mammalian genomes, provides a biological alternative
compared with increased rates of transcription206–208. Apart from sufficient histone proteins in rapidly
dividing cells, exact quantities also are required for correct nucleosome formation. The assembly of hi-
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Figure 5.1: GO Enrichment Analysis of Species-Specific Gene Duplicates. (A) The GO enrichment for
species-specific block and tandem duplicates in different species is visualized using heat maps. Colors indicate the

significance of the functional enrichment, while nonenriched cells are left blank. The number of genes per set is
indicated in parentheses. (B) Family enrichments indicate expanded gene families for different species. The gene

sets are identical as in (A). The gray bands link the enriched GO terms with the corresponding gene family
expansions.
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Figure 5.2: Duplicated histon genes in Chlamydomonas reinhardtii. The genomic organization of the core histone
genes in Chlamydomonas reveals a pattern of dense clustering (indicated by gray boxes). Genes are shown as

arrows; the direction indicates the transcriptional orientation and colors refer to the gene family a gene belongs to
(families occurring only once are not colored for simplicity).

stones occurs in a highly coordinated fashion: two H3/H4 heterodimers will first form a tetramer that
binds the newly synthesized DNA and subsequently the addition of two H2A/ H2B dimers completes the
histone bead209,210. As shown in Figure 5.2, the histone pairs that form dimers, which therefore should be
present in equimolar amounts, occur very frequently in a divergent configuration (>95% of the histone
genes occur in head-to-head pairs with their dimerization partner). This specific gene clustering suggests
that bidirectional promoters guarantee equal transcription levels for the flanking genes197.
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5.2 Comparative Co-expression Analysis in Plants

Comparative sequence analysis is a successful tool to study homologous gene families, define conserved
gene functions between orthologs, and identify lineage- and species-specific genes. Apart from conserved
sequences, inter-species differences, quantified through gene expression data, provide important clues
about evolutionary history and species-specific adaptations211. Consequently, the integration of func-
tional genomics information provides, apart from gene sequence data, an additional layer of information
to study gene function and regulation across species212. Depending on the availability of expression pro-
filing technologies and the evolutionary distances between the species under investigation, a number of
different approaches can be applied to study expression profiles between organisms213.

Although comparative expression analysis is most straightforward when compatible expression data sets
are used that cover equivalent conditions for all species, only a small fraction of all available data in dif-
ferent species can be utilized in this approach212. To overcome these limitations, pioneering comparative
transcriptomics studies have shown that comparing co-expression, instead of the raw expression values,
provides a valid alternative to identify gene modules (set of co-expressed genes potentially sharing similar
function and regulation) and study their evolution214,215. An advanced case-study to systematically com-
pare microarray expression data across species is presented here. Apart from the retrieval, normalization
and annotation of microarray expression information, challenges related to the detection of co-expressed
genes, the accurate delineation of gene orthology and the integration of expression networks and homol-
ogy data are highlighted.

5.2.1 Construction of Co-expression Networks and Comparison Across Species
of Co-expression

In order to compare genome-wide expression profiles between different species, most studies apply a
clustering algorithm to search, based on a large-scale expression compendium, for groups of highly co-
expressed genes per species. The idea of clustering is to study groups of genes, sharing similar expression
patterns, instead of individual ones. There are many different gene expression clustering tools available,
with each its own advantages and disadvantages and with most applying a similarity or a distance mea-
sure to construct gene co-expression clusters 216. Here we use the Pearson correlation coefficient (PCC) ,
one of the most commonly used similarity measures. Clusters of genes showing expression similarity are
derived using either rank-based (gene-centric) or graph-based methods.

A major objective in comparative expression studies is the systematic comparison of gene clusters across
species using homologous or orthologous genes. Defining sequence-based orthologs is a powerful ap-
proach to link expression datasets across species and to identify genes with conserved gene functions or
conserved modules that participate in similar biological processes213–215. Different approaches are avail-
able to identify homologous and orthologous genes60, with most of them starting from the output of a
global all-against-all sequence similarity search. Examples include reciprocal best hits (RBH), clustering
methods such as OrthoMCL and phylogenetic trees construction, with the last one theoretically providing
the highest confidence. Each one of these methods has its own strengths and weaknesses, but by using
an ensemble method (e.g. PLAZA Integrative Orthology84), a consensus can be reached from multiple
orthology predictions.

Gene expression is typically compared between species in a pairwise manner and, optionally, informa-
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tion about conserved genes in multiple species is combined217. Although this approach provides a first
glimpse on the co-expressed genes that are conserved between different species218, recently developed
methods also apply statistical tests to verify if the number of shared orthologs between two expression
clusters is significant192,217,219. Indeed, a potential bias exists with regards to the size of the co-expression
clusters, the nature of the orthology relationships and the size of the orthologous groups. One can correct
for this bias through random permutation sampling to test whether the number of shared orthologs is
significantly higher than expected by chance.

5.2.2 Functional Annotation

Gene annotation enrichment analysis is a high-throughput strategy that increases the likelihood for inves-
tigators to identify biological processes most pertinent to their study, based on an underlying enrichment
algorithm220. The integration of known protein-protein interactions, tissue specific expression or pheno-
typic information from mutant lines provides an additional level of experimental information that can be
used to characterize conserved modules192,217,221.

5.2.3 Studying Conserved Gene Functions Using Comparative Co-expression Anal-
ysis

To demonstrate the power of comparative co-expression methods to study gene functions across species,
Figure 5.3 displays the result of a comparative transcriptomics analysis for the Arabidopsis gene ETG1
(AT2G40550). Whereas this gene was previously described as a conserved E2F target gene with unknown
function116, recent experimental work revealed it has an essential role in sister chromatin cohesion during
DNA replication222. To identify the biological role of ETG1 and verify whether it is part of a conserved
co-expression module in plants, we first characterized the gene’s co-expression context based on a gen-
eral Arabidopsis expression compendium from CORNET223. Retrieval of the 50 most co-expressed genes
based on the PCC yielded a set of genes showing a strong GO enrichment towards ’cellular DNA repli-
cation’ (90-fold enrichment, p-value 19 1.33e-36). Enrichment analysis for known plant cis-regulatory
elements using ATCOECIS224 yielded enrichment for the E2F binding site TTTCCCGC (18-fold enrich-
ment, p-value 21 1.41e-18), confirming that ETG1 is a putative E2F target gene. To explore whether this
functional enrichment is evolutionary conserved, we first searched for ETG1 orthologs using the PLAZA
2.0 Integrative Orthology Viewer in species for which microarray data is publicly available. Whereas
poplar, maize and rice have one ETG1 ortholog (PT19G07260, ZM03G04050 and OS01G07260, respec-
tively), two copies were found in soybean (GM04G39990 and GM06G14860). Next, for each species a
general expression compendium was compiled using Affymetrix experiments from GEO and the top-50
co-expressed genes were isolated in these organisms as well. Finally, the number of shared orthologs
between the different co-expression clusters was determined and the resulting conserved modules were
delineated (Figure 5.3). Based on the ETG1 Arabidopsis co-expression cluster, 9 and 13 orthologous
genes were conserved with the co-expression clusters for poplar and rice, respectively. Whereas for both
species the fraction of conserved orthologs is much higher than expected by chance (p-value ¡1e-5, see
inset Figure 5.3), the functions of these orthologs (MCM2-5, MCM7, RPA70B, RPA70D and POLA3) as
well as the expression context conservation in both monocots and dicots lend support for the conserved
role of ETG1 in DNA replication.

Based on the frequent nature of many-to-many gene orthology relationships in plants, mediated by
large-scale duplication events14, comparative transcriptomics also offers a practical solution to identify
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functional homologs in multi-gene families219. Apart from detecting conserved gene modules, the ECC
method can also be applied to identify orthologs and inparalogs with conserved co-expression between
different species for which large-scale expression data is available. For a set of 21 ubiquitin-activating en-
zyme homologs from seven species (Figure 3B), the systematic examination of conserved co-expression
between all family members makes it possible to explore whether duplicates show different conservation
patterns. Application of the ECC method using the 50 most co-expressed genes revealed that, for those
orthologs which have expression data, in poplar, Medicago, soybean, Arabidopsis and maize ECC pat-
terns with orthologs from other species were different between inparalogs. This result reveals that for
at least five species both co-orthologs with conserved and non-conserved co-expression contexts exist,
making the transfer of biological information between different species challenging.

5.3 Studying Algal Genomics Using the pico-PLAZA Platform

The PLAZA 2.5 platform contains a sample of the available algal genomes, which can be used as out-
groups in various studies. The study of the core genes84 present in all plant species (see Figure F.1)
gives a clear indication on which genes were present in the ancestral genome shared by all green plants.
However, with more and more microbial eukaryotes being sequenced, and with a clear industrial and
ecological interest in these species204,225,226, a more dedicated resource was needed.

The development of the pico-PLAZA platform went through multiple stages, with the latest version con-
taining not only 10 algal genomes from within the green lineage, but also a number of red and brown
algae, as well as diatoms (see Table 5.1). While superficially similar, the phylogenetic distance between
unicellular algae from the green and brown lineage is extremely large, more than 500 Mya (according
to NCBI Taxonomy). However, by including these species several goals can be obtained: comparing the
adaptations of unicellular organisms to aquatic environments, and studying the core eukaryotic machinery.

Here we present some case studies to clarify how the pico-PLAZA platform can be used to study the
evolutionary history of algal genomes.

Figure 5.3 (preceding page): Plant orthologs with conserved co-expression. (A) Co-expression context 1 analysis for
the Arabidopsis ETG1 gene and its orthologs in poplar and rice (based on PLAZA 2.0 annotations). Grey edges

represent co-expression links between ETG1 (query gene) and its top 50 coexpressed genes, weighted by the PCC
value. Red dashed edges denote protein-protein interactions, black add-ons are used to indicate genes with known

GO annotations for cell cycle and/or DNA replication, and blue edges depict orthology. The inset displays a
histogram of the Expression Context Conservation (ECC) background model (expected number of shared orthologs
for random clusters with equal sizes as real co-expression clusters) while the arrows indicate the ECC scores for the

different ETG1 co-expression context comparisons. (B) Systematic evaluation of orthology and conserved
co-expression using the ECC method for a set of 21 homologs (encoding ubiquitin-activating enzyme E1) from

Arabidopsis, grape, Medicago, maize, poplar, rice and soybean (AT, VV, MT, ZM, PT, OS and GM prefixes,
respectively). Groups of inparalogous genes are indicated using dashed vertical lines. Upper-left triangles denote
the sequence-based orthologous relationship between the genes, with a darker shade of blue indicating a higher

number of evidence types reported by the PLAZA 2.0 Integrative Orthology approach. The lower-right yellow
triangles denote gene pairs with significant ECC scores (p-value ¡ 0.05), white triangles represent gene pairs
lacking a significant number of hared orthologs (p-value .0.05) and darker shades of yellow indicate a higher
fraction of shared orthologs. Arced sections denote missing expression data for at least one of the genes. ECC

scores are only computed between genes from different species.
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Species Taxonomy Version Scaffolds (2) Genes GO InterPro
Chlamydomonas reinhardtii Chlorophyceae JGI 4.0 88 16,706 6,426 8,896
Volvox carteri Chlorophyceae JGI 1.0 762 15,544 6,082 8,410
Chlorella sp NC64A Trebouxiophyceae JGI 1.0 254 9,791 5,388 7,428
Coccomyxa sp. C-169 Trebouxiophyceae JGI 1.0 51 9,994 5,071 6,731
Bathycoccus prasinos Mamiellophyceae UGent ORCAE 24 7,951 4,120 5,686
Micromonas pusilla strain CCMP1545 Mamiellophyceae JGI 2.0 22 10,587 4,985 6,869
Micromonas sp RCC299 Mamiellophyceae JGI 3.0 18 10,197 5,124 7,081
Ostreococcus lucimarinus Mamiellophyceae JGI 2.0 21 7,805 4,302 5,807
Ostreococcus sp RCC809 Mamiellophyceae JGI 2.0 20 7,492 3,893 5,305
Ostreococcus tauri Mamiellophyceae UGent ORCAE 21 8,036 3,782 5,054

Aureococcus anophagefferens Pelagophyceae JGI 1.0 1,031 11,637 7,032 8,680
Ectocarpus siliculosus Phaeophyceae UGent ORCAE 955 16,788 7,078 10,004
Fragilariopsis cylindrus Bacillariophyceae JGI 1.0 202 18,074 8,353 9,032
Phaeodactylum tricornutum Bacillariophyceae JGI 2.0 35 10,257 5,653 6,786
Thalassiosira pseudonana Coscinodiscophyceae JGI 3.0 29 11,632 6,501 7,402
Cyanidioschyzon merolae Bangiophyceae Tokyo University 74 5,178 3,058 3,889

Arabidopsis thaliana Streptophyta (1) TAIR10 7 33,602 22,087 21,467
Oryza sativa Streptophyta (1) TIGR6.1 14 57,874 24,583 24,735
Physcomitrella patens Streptophyta (1) JGI 1.1 1,448 36,137 14,283 16,275

Table 5.1: Data content pico-PLAZA database. (1) Phylum (2) Including organel genomes, if available

Clade-specific core families #Gene families
land plants (3) 974
green algae (10) 37
- Chlorophyceae (2) 1827
- Trebouxiophyceae (2) 139
- Mamiellophyceae (6) 449
diatoms (3) 1035

Table 5.2: Clade-specific gene families in pico-PLAZA. (1) Numbers between parentheses indicate species counts

5.3.1 Gene Dynamics in Algal Genomes

Using the Gene Family Finder tool which allows searching gene families through phylogenetic profiles
(i.e. the presence or absence of a gene family in a species), it is possible to study gene family dynamics
across species and shed light on ancestral gene content130. Comparing the number of genes assigned to
families reveals large differences for individual species: whereas O. tauri contains 6893 genes grouped
into families, V. carteri has more than 13,800 genes. The identification of orphan genes (genes lacking par-
alogs or homologous genes in any other species present in the platform; based on BLASTP E-value 1e-05
threshold) as well as splitting up gene families based on the copy-number (single-copy versus multi-gene)
and species content (species-specific or sharing homologs in other species) provides a general overview
of gene distributions in the different species (Figure 5.4A). The Ostreococcus species have the most
streamlined genomes characterized by a large number of multi-species single-copy gene families and a
low number of multi-copy families and orphans. Reversely, the largest number of genes in multi-copy
families is observed in V. carteri and C. reinhardtii. Together with the high abundance of species-specific
gene families, 1827 gene families are shared and unique to the Chlorophyceae (Table 5.2). These results
explain the overall high number of genes present in these two species. Counting paralogous genes for
all species reveals an important role for tandem duplication explaining putative gene family expansions
(Figure 5.4B).

In contrast to species-specific features, determining the number of core genes (i.e. genes shared in
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Figure 5.4: Overview gene content in different species. (A) Fraction of protein-coding genes assigned to different
categories based on homologs in other species and copy number. (B) The fraction of block and tandem duplicates is

depicted using bars whereas the fraction of single-copy genes is indicated by the green line.

all species from a clade or specific set of organisms) within green algae revealed that 2078 core families
are shared between all ten species (Figure 5.4). When including brown/red algae or higher plants, this
number further decreases to 1494 and 1089, respectively. Considering both the large number of new pan
families (Figure 5.4) as well as clade-specific families (Table 5.2), it is clear that both the acquisition of
new gene functions as well as the expansion of specific gene families plays an important role in the re-
lationship between genotype and phenotype204,227. Examples of expanded functional categories include
proteins with ankyrin repeat-containing domains in Ectocarpus siliculosus and Bathycoccus prasinos,
protein kinases in Chlamydomonas reinhardtii, and tetratricopeptide-like helical proteins in Ectocarpus
siliculosus and Aureococcus anophagefferens.
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5.3.2 Functional Analysis of Large-scale Expression Data

Apart from browsing individual genes or functional categories, pico-PLAZA can also be applied as a
data warehouse to analyze large gene sets or characterize new sequences. To demonstrate this feature,
we performed a functional and comparative analysis of a set of >10,000 EST sequences from Phaeo-
dactylum tricornutum using the Workbench. Based on a large-scale expression data set of >120,000
sequenced cDNAs from 16 different libraries228, we created two Workbench experiments for each li-
brary. The first experiment comprises all sequences expressed in that condition (called condition all),
the second experiment covers sequences uniquely expressed in that condition (called condition specific).
We present a detailed analysis of sequences from the ’urea adapted (ua)’ library. After mapping all
3436 ’ua’ sequences to the genome annotation of Phaeodactylum tricornutum using BLASTN against
annotated transcripts (E-value < 1e − 05), a total of 2863 gene models were tagged with one or more
EST sequence. 94% of these genes are associated to 1954 pico-PLAZA multi-gene families and a detailed
analysis of the phylogenetic family profiles reveals that 69 and 441 families are specific to Phaeodactylum
tricornutum and diatoms, respectively. Interestingly, the latter includes a family of S-adenosylmethionine
decarboxylases (HOM004619) involved in spermidine biosynthesis putatively acquired through horizon-
tal gene transfer from a bacterial donor228. GO enrichment analysis (Supplementary data file 4) of the
’ua all’ gene set reveals an over-representation of genes involved in nitrogen metabolism (405 genes),
amino acid metabolism (117 genes) and organic acid metabolism (132 genes), confirming previous re-
sults228. From the set of 145 ’ua specific’ transcript sequences, 46 could be mapped to gene models while
the 36 associated gene families comprising a variety of functional categories (no significant GO enrich-
ment). Interestingly, five ’ua specific’ gene families have only homologs in diatoms, therefore comprising
diatom-specific genes playing a role in urea-mediating signaling.

5.3.3 Environmental Genomics

Based on the different integrated genomes, pre-computed gene families and detailed gene orthology in-
formation, pico-PLAZA enables a systematic screen of the gene content from complete genomes of mi-
crobial photosynthetic eukaryotes to identify, apart from 18S rDNA, alternative barcoding genes. These
barcoding genes preferably should be single-copy genes with scalable phylogenetic spread from the genus
to the order and phyla level. Although this case study is currently restricted to the lineages represented
in pico-PLAZA, the number of available genomes will rapidly increase by future genome projects of
microbial eukaryotes and large-scale sequencing initiatives such as the TARA ocean protist sequencing
project229 and CAMERA230.

To identify lineage-specific genes for environmental monitoring, the Gene Family Finder tool can be used
find species/clade-specific gene families and identify putative gene markers. For example, 442 protein
coding genes are single-copy in all three Ostreococcus species (option ’Clade selection: Ostreococcus’)
and absent in Micromonas and Bathycoccus. The single-copy feature of a candidate barcoding gene is
essential to avoid spurious diversity overestimation from multiple gene copies within a genome. Per-
forming a query on single-copy genes in the order Mamiellales leads to the retrieval of 328 gene families.
For each of these gene families, visual inspection of the amino-acid alignment using JalView enables the
identification of conserved motifs for PCR primer design. This two-step protocol represents a practical
approach for the detection of genes that can be used to investigate the prevalence of Ostreococcus (or
Mamiellophyceae) in the environment. Because of relaxed selective constraint on synonymous positions,
these protein-coding gene markers will enable us to investigate intraspecific alongside interspecific diver-
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sity.

As a second example, we demonstrate how pico-PLAZA can be used to identify intraspecific markers
based on multi-species colinearity. The level of nucleotide polymorphism at neutrally evolving sites is
a fundamental parameter in molecular evolution, as it is informative about the mutation rate and the ef-
fective population size of a species. The proportion of neutrally evolving sites is expected to be lower in
protein-coding genes than in intergenic regions, where it depends on the neighboring gene orientation231.
In Ostreococcus, intergenic regions flanked by two stop codons (called ’tail-to-tail’ intergenic regions)
have the highest proportion of neutral evolving sites231. Based on the GenomeView genome browser199,
pico-PLAZA enables the rapid identification of tail-to-tail intergenic regions in each genome. Further-
more, using the cross-species colinearity information, it provides detailed information about conserved
intergenic regions that are flanked by orthologous genes. These regions are good candidates for the
estimation of intraspecific diversity from environmental strains. Previously, eight of these tail-to-tail
intergenic regions have been sequenced in 18 wild isolates of O. tauri in the NW Mediterranean sea to es-
timate the level of nucleotidic polymorphism232. This polymorphism pattern provided indirect evidence
for meiotic recombination in natural populations.

5.4 Author contribution
The work in this chapter is based on several published papers100,203 and one manuscript in preparation,
all of which contain me as a co-author.

• Section 5.1 is based on Proost et al. 100 , which I co-authored as a shared first author (see also
chapter 3).

• Section 5.2 is based on Movahedi et al. 203 , for which I performed a large part of the analysis: writ-
ing and testing the permutation and evaluation scripts of the expression data (with a redesigned and
optimized procedure compared to Movahedi et al.192 for generating the used background model),
as well as developing the code to generate Figure 5.3. Significant contributions were also made to
the manuscript by myself.

• Section 5.3 is based on a manuscript in prepation (which will present the pico-plaza platform). Here
I contributed significantly by being involved in the initial conception of the platform (based on the
PLAZA 2.5 code, see also chapter 4), parsing and uploading large parts of the initial structural
data, creating custom visualizations for shared genomic alignments between algae, as well as small
contributions to the manuscript. The enrichment of the used datasets was also automated by me.
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abstract
With the arrival of Next Generation Sequencing (NGS) technologies, it is now possible to acquire the
entire transcriptome of non-model species for a relatively low price. The processing of these transcripts
does however pose new challenges in terms of computational requirements and bioinformatics expertise.
In order to mitigate some of these problems, we have developed TRAPIDa: an efficient online tool for the
fast processing of transcriptome data. TRAPID can be used to perform both functional and comparative
genomics analyses, by taking homologous and orthologous relationships with species from pre-defined
reference databases into account. Functional analyses consist of evaluating Gene Ontology (GO) assign-
ments and protein domain information, while the comparative genomics analyses cover the investigation
of possible gene family expansions, and the creation of multiple sequence alignments and phylogenetic
trees. We benchmarked the critical components within the TRAPID pipeline against similar software,
although no other tool (that we know of) offers the full functionality of TRAPID.

This chapter is based on a manuscript in preparation. For the author contributions, see page 6-14.

ahttp://bioinformatics.psb.ugent.be/webtools/trapid/
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6.1 Introduction

Technological advances in sequencing have made it possible to rapidly and cost-effectively take a snap-
shot of gene expression in a specific tissue or condition and have led to an explosion of transcriptome
RNA-Seq data. For the plant kingdom alone, more than 600 RNA-Seq experiments were available in the
NCBI Short Read Archive database at the end of 2011, covering in total close to 2Tb of raw sequence
data. Remarkably, more than 80% of these experiments were derived from species for which a draft
or complete genome sequence was lacking, which makes the data processing and biological interpreta-
tion a challenging task. In case a reference genome is available, the short reads can be processed using
alignment-first (or align-then-assemble) methods that provide a genome-guided approach to study splice
site junctions, identify new or alternative transcripts, or to quantify expression levels using known gene
annotations233. In contrast, for species without a reference genome, assemble-then-align methods require
that the millions of reads are first processed using de novo assembly before the reconstructed transcrip-
tome is further characterized234. Examples of downstream analysis include the remapping of the input
sequence reads from the different libraries to the assembled transcripts to quantify expression levels, the
remapping of all reads to assess the genetic diversity within a genotype, or the alignment of the assembled
transcripts against genome or transcripts sequences from closely related species .

The development and improvement of de novo transcript assembly tools is an active research field and
algorithms like OASES/Velvet, Trans-ABySS and SOAPdenovo provide efficient tools to reconstruct
transcriptomes for non-model species starting from raw sequence reads234–237. Despite the fact that both
library normalization and increasing sequencing depths (or higher coverage) will have a positive influ-
ence on the completeness of a transcriptome238, most de novo transcriptome studies typically present
gene catalogues where the number of transcripts after the assembly phase exceeds the estimated number
of genes239. This pattern is mainly the result from redundancy caused by the presence of partial, unassem-
bled or highly heterozygous sequences. Despite these imperfections, transcriptomes provide a sequence
backbone for various non-model species and, in line with traditional genome projects, a detailed annota-
tion of these transcript sequences is an important feature for the downstream biological analysis. As an
increasing number of unassembled singleton reads is inversely correlated with the number of full-length
assembled unigenes, the success of generating high quality functional annotations will highly depend on
the complexity of the transcriptome being analyzed and the applied sequencing strategy238.

Although the workflow to process transcriptome data is highly dependent on the type of analysis, func-
tional annotation for the assembled transcripts is often derived in the same way via sequence similarity
searches against a reference database. Clearly, the default application of large-scale sequence similar-
ity searches against databases like NCBI or UniProtKB, which contain annotated proteins, drastically
increases the amount of data that needs to be interpreted to derive functional annotations. Currently, sys-
tems like KEGG Automatic Annotation Server (KAAS)240 , Blast2GO241 and T-ACE242 provide tools for
non-expert users to perform functional characterization of transcript sequences, but both the throughput
as well as the quality of the reference datasets are important factors influencing the biological knowledge
that can be extracted from non-model transcriptomes. Whereas systems like KAAS and Blast2GO can
be operated through a web-browser, T-ACE requires the installation of a PostgreSQL database on local
hardware. Although both Blast2GO and T-ACE can derive functional annotations from a BLAST search
against NCBI or through protein domain identification using InterProScan, the associated runtimes grow
rapidly, hindering the efficient processing of a complete transcriptome dataset. Furthermore, the quality
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of the functional annotations of known sequences as well as the number of species or genes included in
reference databases will have a big impact on the success of translating transcript sequences into func-
tional gene catalogs. Tools which apply the Gene Ontology (GO) controlled vocabulary benefit from
the different functional levels embedded in the ontology structure, while systems like KEGG Orthology
provide detailed information but only for a limited number of genes. Apart from functional transcript
annotations, the analysis of transcripts from non-model species using comparative genomics can also
generate valuable information about conserved pathways, gene family expansions, species-specific genes
and genetic diversity243–245. However, performing such evolutionary analyses for thousands of transcripts
is computationally expensive and user-friendly interfaces to compare de novo transcriptomes with high-
quality reference genomes are still missing.

To address some of the issues inherent to the analysis of de novo transcriptomes, we present TRAPID, a
web-based and high-throughput analysis pipeline which uses predefined reference databases. Available
analyses include automatically identify coding sequences in transcripts, correcting frameshifts, assigning
coding-sequences to multi-species gene families, performing transcript quality control and generating
functional annotations. Furthermore, detailed multiple sequence alignments and phylogenetic trees can
easily be generated providing a comparative framework for the analysis of non-model transcriptomes.
Finally, quantitative comparisons can be performed to study functional biases in transcriptome subsets
derived from different tissues or conditions.

6.2 Results and Discussion

6.2.1 General Properties of the TRAPID Transcript Analysis Platform

To provide a web-based resource for the high-throughput processing of assembled transcriptomes derived
from de novo RNA-Seq experiments or classical EST sequencing, a two-step procedure was developed.
First, large-scale sequence similarity searches and open-reading frame (ORF) detection are combined to
identify coding sequences, assign transcripts to gene families, identify partial/full length transcripts and
generate homology-based functional annotations. In a second step, detailed sequence analysis can be
performed on-the-fly to correct frameshifts and study transcripts within an evolutionary context using
multiple sequence alignments and phylogenetic trees (see Figure 6.1). Although building a transcriptome
analysis pipeline based on standard components for similarity searches and ORF detection is relatively
straightforward, the large number of sequences and the fragmented nature of RNA-Seq data makes bal-
ancing the processing speed and quality a challenging task. This section outlines the basic features of the
TRAPID system, with the following two sections focusing on the implementation and benchmarking of
specific analysis components, and the last section providing a case study which illustrates how TRAPID
can be used to quickly infer quality annotations for sets of transcriptomes in a transparent and repro-
ducible manner.

After the user has created a personal account, logged in into the TRAPID system and uploaded a set
of assembled transcripts (called an ’experiment’), a sequence similarity search using RAPSearch2246 is
executed against a specific protein database selected by the user (see Figure 6.1). Whereas Reference pro-
teome databases refer to the full set of proteins for a given species or clade based on integrated genomes
from PLAZA 2.584 or OrthoMCL-DB version 5247, the Gene family representatives contain one repre-
sentative protein for each species present in a given gene family. The former makes it possible to select
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Figure 6.1: Schematic overview TRAPID pipeline. The TRAPID pipeline consists of two separate parts. The first
one is a non-interactive processing step, during which all transcripts are assigned to gene families using a similarity
search, followed by functional annotation transfer and meta-annotation assignment. The second step is interactive

and directly commanded through the website interface. Here, the user has the ability to analyze his data using
functional enrichment analyses, multiple sequence alignments and phylogenetic trees.

an appropriate specific taxonomic level and the full set of associated proteins based on the species the
transcripts are originating from, while the latter provides a good alternative for the efficient processing
of datasets within a broad taxonomic context, for example in case no closely related species with a refer-
ence proteome is available. Through the TRAPID website, we offer users a variety of reference protein
databases and pre-computed gene families (see Table 6.1). Apart from 175 species-specific proteomes
(25 from PLAZA and 150 from OrthoMCL-DB, including >2 million proteins) covering 25 plants, 115
eukaryotes, 36 Bacteria and 16 Archaea, 12 different clade and two Gene family representative databases
were generated to assign transcripts to families in a high-throughput manner using RapSearch2.

The output of the sequence similarity searches is used to assign each transcript to a predefined gene
family and to generate frame statistics to subsequently perform ORF detection. By default these frame
statistics are submitted to a simple routine that extracts the associated longest ORF within the frame
showing similarity with reference proteins (see section 6.3). However, this information is also used to
predict whether specific transcripts contain putative frameshifts, which can in a later stage through the
website be automatically corrected using FrameDP, a self-training tool to predict peptide sequences in
mature mRNA sequences248. The association of a transcript to a specific gene family is also used to facil-
itate the transfer of functional consensus Gene Ontology and protein domain information to transcripts.
Finally, meta-information with regards to the length of the ORF of a transcript is generated, by comparing
the ORF’s length to the average coding sequence length of the genes in the reference gene family.

The second phase of the pipeline is performed interactively through the website, during which the
transcripts associated with each gene family are analyzed in more detail using homologous proteins from
a set of reference species selected by the user. For transcripts that were flagged as potentially contain-
ing frameshifts, the user can execute FrameDP to putatively correct the transcript sequence and identify
the correct ORF. Furthermore, based on the inferred coding sequences, per gene family a multiple se-
quence alignment is generated using MUSCLE140 and the protein conservation of different transcripts
with homologs from related species can be inspected using JalView151. Finally, after the application of
an automatic editing routine removing non-homologous alignment positions (see section 6.3), a phylo-
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Reference
database

Functional
annotation

Clade #species #proteins GF information

OrthoMCL-DB v.5 PFAM domains all 150 1,398,546 OrthoMCL clusters
Alveolata 15 98,796
Amoebozoa 4 41,930
Archaea 16 30,233
Bacteria 36 112,059
Euglenozoa 9 107,034
Eukaryota 98 1,256,264
Fungi 24 680,778
Metazoa 29 529,788

PLAZA v2.5 GO, InterPro Viridiplantae 25 780,667 TribeMCL clus-
ters, Integrative
Orthologs

Angiosperms 18 671,950
Eudicots 13 480,106
Monocots 5 191,844

Table 6.1: Overview and content TRAPID reference databases.

genetic tree is constructed using PhyML249 to identify orthologous and paralogous gene relationships or
trace allelic transcript variants.

The evolutionary analyses are based on predefined gene families from either OrthoMCL-DB or PLAZA,
and in some cases the latter, which were constructed using the TribeMCL clustering method including a
quality control post processing step100, contain multiple out-paralogous sub-types (sub-clades within a
family originating from an ancient gene duplication event predating most speciation events in the tree).
As a consequence, some transcripts will be assigned to big gene families covering multiple genes, which
make phylogenetic analysis difficult. Therefore, in case a single species Reference proteome is selected
(see Figure 6.1), it is possible to first assign transcripts to individual reference genes, e.g. from a closely
related model species, and in a second phase build custom gene families through the inclusion of PLAZA
integrative orthologs. These orthologs comprise for a reference gene all orthologs identified using an en-
semble method combining orthologous predictions inferred through OrthoMCL, reconciled phylogenetic
trees, colinearity information, and multispecies best hits and inparalogs (BHI) families84, including inpar-
alogs (genes from a duplication event that happened after a speciation event). In contrast to homologous
gene families, families based on integrative orthology will contain a smaller number of genes covering
less outparalogs which makes downstream comparative analysis more feasible and easier interpretable
for large or complex families. Complementary, the user can also discard some species within a specific
gene family in order to reduce the number of proteins prior that will submitted to the phylogenetic tree
construction routine.

Apart from the functional annotation of individual transcripts, TRAPID also supports the quantitative
analysis of experiment subsets using GO and protein domain enrichment statistics. Through the associ-
ation of specific labels to sets of sequences, transcripts can be annotated with specific sample informa-
tion (e.g. tissue, developmental stage, control or treatment condition) and be used to perform within-
transcriptome functional analysis. Based on the integrated functional transcript annotation, GO enrich-
ment analysis can subsequently be used to study the biological properties of specific experiment subsets
or to compare the functional biases present in for example a treatment/control transcriptome experiment
setup.
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6.2.2 Evaluation of Homology Assignments

As shown in Figure 6.1, the first step is to assign each transcript to a predefined homologous gene
family. Because transcriptome datasets for species lacking a reference genome sequence can contain
more than 100,000 transcripts (with a lot of them being fragments, allelic variants, splice variants, or
highly expressed non-coding genes), the efficient processing of all these transcripts is essential to pro-
vide users with results within a reasonable timeframe. Two sequence similarity tools were considered:
BLASTX250 and RapSearch2246. The transcript-to-family assignment results were compared using dif-
ferent protein reference databases with varying size, as the size of the database also influences the total
runtime. BLASTX is often used to find proteins similar to a query gene in a large database, but uses
a rather large amount of processing time. RapSearch2 was designed to perform the same searches but
for short reads, and uses more efficient data structures to significantly speed up this process. Both tools
were run using 1000 randomly selected Arabidopsis thaliana transcripts against different databases con-
taining all proteins from all species within a specific clade, and the correct assignment of a transcript to
a family was evaluated together with the running time. In all evaluations the protein sequences of Ara-
bidopsis thaliana and Arabidopsis lyrata were excluded from the database and the known assignments of
Arabidopsis thaliana gene sequences to families from the PLAZA 2.5 database were used as a golden
standard. Apart from reference databases containing all proteins for a specific species or clade, the Gene
family representatives database containing 32294 proteins was also included in the test (see section 6.3).

Assigning a transcript to a gene family was initially done with the top 10 similarity search hits using
a simple majority voting rule (see section 6.3 and Table F.2). As shown in Table F.2, it is clear that
both BLASTX and RapSearch2 assigned 87-98% of the transcripts to the correct gene family in all runs.
For most reference databases the runtimes for RapSearch2 were approximately 10x lower compared to
BLASTX, while overall the correctness of gene family assignment was equal. Increasing the reference
database from one to multiple species (e.g. from the Brassicales, which only contains Carica papaya, to
Eudicots, covering 11 species) quickly increases the runtimes for both tools. Overall, better results with
regards to the gene family assignment can be obtained by using a larger database.

Various metrics, for example taking only one or multiple hits into account, were evaluated to assign
transcripts to families (see Table F.3). The best performance was generally achieved by considering the
best hit when using species/clade reference databases and majority voting using the top five hits when us-
ing the gene family representative database. To avoid over fitting of this method to Arabidopsis thaliana
transcripts, this benchmark was repeated using Oryza sativa spp. japonica (excluding Oryza sativa spp.
japonica and Oryza sativa spp. indica from the databases) and Vitis vinifera (excluding Vitis vinifera from
the databases), yielding similar results (see Table F.2). Although one would expect the correct assignment
rate of a transcript to the corresponding gene family to decrease when the assembly quality of the input
transcripts deteriorates, this is not the case (see Table F.2). As such, even relatively short fragments of
transcripts can be assigned to the correct gene family. Based on manual inspection of the amino acid
and sequence similarity information, the user is able to modify the association between a transcript and a
family in case the automatic gene family assignment was deemed incorrect.

6.2.3 Evaluation of the ORF Finding Routine

In the absence of a reference genome, transcripts generated using de novo assembly of RNA-Seq reads
frequently contain errors (e.g. short insertions or deletions) and methods for the downstream analysis
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of coding sequences should be able to correct for potential frameshifts during ORF detection251. Al-
though advanced self-learning algorithms such as FrameDP248 exist to correct frameshifts during ORF
prediction, running these tools on a complete RNA-Seq transcriptome is computationally unfeasible,
even using multi-core or cluster hardware systems. Therefore, we implemented and evaluated a system
to first perform the detection of putative frameshifts on all input sequences and next only process these
frameshift containing sequences using FrameDP. This rationale is inspired by the observation that, when
running FrameDP on complete plant transcriptomes, such as Helianthus annuus252 and Pachysandra ter-
minalis253, in only 3-15% of the input sequences a frameshift was identified that could be corrected .

Apart from gene family assignments, the Rapsearch2 output is also used to estimate if a frameshift is
present in an input transcript based on the output from the similarity search. For each input transcript
the best hit in the reference database is selected and all alignments between this query and hit gene are
evaluated. For each alignment the frame of the transcript hit is determined and if no frameshift is present,
all alignments should report the same reading frame, which can immediately used to extract the corre-
sponding longest ORF (see Figure 6.1). To evaluate this method to identify input transcripts containing
frameshifts, we selected 1000 transcripts from Arabidopsis thaliana containing no frameshifts and an
equal amount of genes where one insert or deletion was artificially introduced at a random position in the
coding sequence of the transcript. Again databases of various clades, each time excluding Arabidopsis
thaliana and Arabidopsis lyrata, were used along with a database containing gene family representatives,
to perform similarity searches. We found that, using these alignment-based frame statistics, 72.8% of all
transcripts containing a frameshift were correctly identified, with only few false positives in the dataset
lacking frameshifts. To provide a good balance between global ORF quality and processing time, this
method was integrated as the default procedure to identify frameshifts and subsequently correct them
using FrameDP. As this benchmark experiment suggests that the applied frame statistics will miss a sub-
stantial fraction of frameshifts, the TRAPID system also provides an option for the user to run FrameDP
on all transcripts within a family context.

6.2.4 Comparison of TRAPID with Blast2GO and KAAS

A feature comparison between different publicly available web-tools for transcriptome analysis reveals
that TRAPID has some unique properties (see Table 6.2). The BLAST2GO241 interface is commonly used
to assign Gene Ontology functional information to DNA or protein sequences by using either BLASTX or
BLASTP, respectively. Although the BLAST2GO program can also be installed locally, reducing the run-
time for the user but also requiring dedicated hardware, we compared TRAPID with the online Blast2GO
interface in order to only compare web-based solutions. The KAAS platform240 provides users with
KEGG pathway information for a set of given sequences based on a BLAST bit scores. This functional
information is complimentary to other functional annotation systems such as GO or protein domains.
Whereas all tools focus on the functional annotation of input sequences, TRAPID provides function-
alities to identify and correct frameshifts, perform ORF detection and downstream sequence analysis.
Especially the comparative genomics functionalities of TRAPID offer the user an intuitive interface to
inspect sequence conservation using multiple sequence alignments and to identify, using phylogenetic
tree construction and an extensive set of reference genomes, orthologs in related species.

We conducted a series of benchmarks to assess both runtime and the transcript coverage of functional
assignments for the different web-tools reported in Table 6.2. As data-set we used 52,348 contigs from
Pogona vitticeps, the bearded dragon lizard245. For TRAPID we used the Eukaryota clade from the
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Features BLAST2GO (a) KAAS TRAPID
Sequence similarity search NCBI BLAST BLAST (bi-directional) RAPSearch2
ORF finding no no yes
Frameshift correction no no FrameDP
Reference database NCBI non redundant

database
Curated KEGG genes OrthoMCL-DB version

v5, PLAZA v2.5
Functional annotation Gene Ontology, Inter-

ProScan, Enzyme codes,
KEGG

KEGG (KEGG Orthology
groups)

Gene Ontology, Pro-
tein domains (InterPro /
PFAM)

Enrichment analysis yes no yes
Protein alignments no no Muscle
Phylogenetic trees no no PhyML
Other advanced stand-alone

graphical user interface
graphical pathway maps ORF length meta-

annotation

Table 6.2: Feature comparison web-based transcript analysis platforms. (a) Basic web-start version

Dataset KAAS(SBH) BLAST2GO TRAPID
(Eukaryota)

TRAPID
(GF representatives)

50 2 (16%) 15 (34%) 26 (28%) 3 (22%)
500 3 (21%) 146 (34%) 27 (29%) 4 (20%)
5000 6 (19%) 1460 (a) 44 (28%) 6 (18%)
52348 30 (19%) 15286 (a) 216 (28%) 42 (18%)

Table 6.3: Benchmark comparison between KAAS, BLAST2GO and TRAPID. Benchmark between the different
online platforms, giving both the used processing time (measured in minutes), and the fraction of genes which were

given a functional annotation (between brackets). The dataset was derived from P. vitticeps. For TRAPID two
different similarity search databases were used: the Eukaryota (1,256,264 proteins) and the gene family

representatives (216,189 proteins).(a) Extrapolated time measurements.

OrthoMCL-DB reference database (approximately 1.4 million proteins) as well as the corresponding
gene family representatives database (216,189 proteins proteins), while for the other tools we used de-
fault parameters. The results in Table 6.3 highlight that BLAST2GO requires 70-509x more computing
time to process the complete dataset, compared to TRAPID or KAAS. Comparing the fraction of se-
quences that received functional information reveals that BLAST2GO could annotate approximately an
extra 7-15% more genes than TRAPID and KAAS, respectively. Although the functional characterization
using TRAPID gene family representatives yields a 10% decrease in coverage compared to using all Eu-
karyota proteins, the processing is reduced drastically (216 minutes for all Eukaryota versus 42 minutes
for gene family representatives).

6.2.5 Detection of Functional Biases in Transcriptome Subsets Using Enrichment
Analysis

Apart from the general characterization of a complete transcriptome using various functional annotation
systems, the detailed analysis of genes expressed in specific tissues or developmental stages can provide
new insights about the underlying biological processes and their regulation. Starting from a recently
published transcriptome from Panicum hallii, a model for biofuel research, we analyzed a set of tran-
scripts showing distinct expression profiles in eight tissues for functional biases254. After processing all
25,392 contigs using the Oryza sativa ssp. japonica proteome as a reference and including integrative
orthologs from the PLAZA 2.5 database, 16,748 (66%) transcripts were assigned to 9860 gene families.
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Figure 6.2: GO enrichment results for plant Pamicum hallii subset covering transcripts in stem-associated tissues.
BP enrichment plot cluster 1 (stem-associated tissues) based on iORTHO Oryza sativa run. Explain collapsed

boxes and white/yellow.

Based on the results of an expression clustering procedure reported by Meyer and co-workers, 6517 tran-
scripts were tagged with a specific label (cluster 1-7) and GO enrichment analysis was performed for each
subset. Whereas cluster 1, including transcripts with expression in stem-associated tissues, was signifi-
cantly enriched for carbohydrate metabolism, cytoskeleton/cell wall organization and shoot development
(see Figure 6.2), seed specific transcripts (cluster 5) included genes involved in of precursor metabolites
and energy, wax metabolism and cuticle development (hypergeometric distribution, Bonferroni corrected
p-value <0.05). Transcripts showing differential expression in root and seedling (cluster 3) were en-
riched for translation, ribosome biogenesis and rRNA metabolism, while leaf-specific expression (cluster
6) coincided with photosynthesis, energy metabolism and multicellular organismal development, con-
firming previous results254, Finally, application of GO queries to tissue-specific subsets allows for the
identification of transcriptional regulators involved in development. For example, searching for example
transcription factor activity on subset root (cluster 4) yields 21 transcription factors showing differential
expression in root, including multiple CCAAT-binding, NAM and bZIP proteins.
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6.3 Material and Methods

6.3.1 Datasets, Construction Reference Protein Databases and Selection of Gene
Family Representatives

The PLAZA 2.5 database was used as reference, and was also used as data source for the Arabidopsis
transcripts used in the benchmark datasets. The similarity search protein databases containing clade-
specific content, for both the PLAZA 2.5 and OrthoMCL reference databases where created by using
NCBI taxonomy as reference. Gene family representative databases where constructed according to the
procedure outlined in Van Bel et al., 201284.

The Pachysandra terminalis dataset was retrieved from Vekemans et al., 2012253, Helianthus annuus
and Aquilegia formosa x Aquilegia pubescens were retrieved from TIGR Plant Transcript Assembliesb 252.
Panicum hallii transcript sequences were retrieved from Meyer et al., 2012254 and contig sequences show-
ing differential expression among tissues were isolated from Supporting Information, file S8.

6.3.2 Similarity Search, Gene Family Assignment and Functional Transfer Using
Homology

We used RapSearch2246 to search for protein hits for each query transcript (comparable to BlastX). In
case the selected protein database consists of either species or clade specific proteins, then only the top
protein hit is retained and the associated gene family for this protein is assigned to the transcript. In
case the selected protein database consists of gene family representatives, then the top 5 protein hits are
retained, and the gene family for the transcript is selected based on majority voting. For each protein hit,
all detected alignments are stored and used during the detection of putative frameshifts. The functional
annotation for each transcript is transferred from its assigned gene family, where per gene family the GO
terms and protein domains are selected which constitute 50% or more of the size of the gene family. In
case not a single protein hit was detected during the similarity search, no gene family and no functional
annotation is assigned to the transcript.

6.3.3 Frame Assignment and Detection of Putative Frameshifts

From each alignment of the top protein hit the strand and frame is determined for the region with sufficient
similarity to the hit. If the same frame and strand was detected for each alignment the longest Open
Reading Frame (ORF) within this frame is stored. In case multiple alignments occurred with the target
protein in different frames, the transcript was flagged as potentially containing a frameshift and the longest
ORF in all possible frames was detected and retained. For each longest ORF, additionally, it was detected
if the ORF contained a start and/or stop codon. No minimum length requirement was specified to be
required for each transcript.

6.3.4 Meta-annotation

The meta-annotation for all transcripts is determined by comparing the transcript length to the lengths of
the coding sequences which constitute its associated gene family. In case no gene family was assigned to
the transcript, or in case the associated gene family comprises less than 5 proteins, the transcript receives

bhttp://plantta.jcvi.org/
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the label No Information as meta-annotation. Otherwise, the lengths of the coding sequences from the
gene family are ordered, and the longest 10% and shortest 10% are removed in order to reduce potential
outliers within the reference data. Using the remaining lengths, the average and standard deviation are
computed. If the transcript length is shorter than the average minus two standard deviations, the transcript
receives the label Partial as meta-annotation. If the transcript is longer, it receives the label Full Length
as meta-annotation.

6.3.5 Correction Using FrameDP

Using FrameDP version 1.0.3248 transcripts with expected frameshifts could be corrected. As a reference
database all protein coding genes present in PLAZA 2.584 were provided. FrameDP was configured with
to run with blastall 2.2.17 (settings used; Expectation value: 1e-3, Open Gap Penalty: 9, Gap Extension
Penalty: 2 and retaining only the 100 best hits) while the GC3 split training with 3 iterations was used.
Other parameters were left at their default values.

6.3.6 Multiple Sequence Alignments and Phylogenetic Trees

Using MUSCLE140 translated Coding Sequences (CDS) from transcripts belonging to the same gene
family were aligned with amino acid sequences of homologous genes present in the reference database.
When building a phylogenetic tree, this multiple sequence alignment was edited following the same pro-
cedure as outlined in Proost et al., 2009100. From this final alignment phylogenetic trees were generated
using PhyML, using default parameters for protein sequences.

6.3.7 Implementation

The website of the TRAPID platform was developed using CakePHP (http://www.cakephp.org), with
Flash and JavaScript used for visualizations, except for the Java programs used for the multiple sequence
alignments and phylogenetic trees (Jalview151 and Archaeopteryx152 resp.). The backend of the on-
line tool consists of a MySQL database (http://www.mysql.com) with custom Java programs and Perl
scripts. A small computing cluster is available allowing the simultaneous processing of up to four differ-
ent datasets.

6.4 Conclusion
In this manuscript we have presented TRAPID, an online tool for the fast analysis of entire transcriptome
datasets. TRAPID is unique in that it is fast, web-based and offers a variety of features which are not
present in other comparable platforms, such as the tools for comparative genomics. We have benchmarked
the most critical entities within the processing pipeline with regards to both time usage and accuracy, on
real and simulated datasets, resulting in the followed rationales within the pipeline. We have compared
TRAPID to other platforms (where applicable), and here it is clear that TRAPID performs equally well
or better.

6.5 Author Contribution
This chapter is based on an unpublished manuscript, in which I had the lead in both writing and designing
the pipeline of the platform, determining software and hardware requirements, as well as developing the
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web-based frontend of the platform. I’m also the lead author on the paper. Sebastian Proost provided
valuable support with regards to benchmarking the platform and testing FrameDP, Klaas Vandepoele
provided much-needed feedback and oversight of the platform development.



6-16 CHAPTER 6



“Applications programming is a race between
software engineers, who strive to produce idiot-
proof programs, and the universe which strives to
produce bigger idiots. So far the universe is
winning. ”

Rick Cook – The Wizardry Compiled
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Abstract
The development of any software should be preceded by an assessment of the necessary requirements,
the number of expected concurrent users, potential avenues of expanding the software, etc... During the
development of both the PLAZA and the TRAPID platform I encountered multiple issues, which often
required me to revise the chosen design decisions: database layout, software interactions, merging and
splitting of functionality. In this chapter I will demonstrate some of the technological choices made, as
well as parts of the software design.

A very large portion of my time as a PhD student was dedicated to designing, writing, and debugging
software. The previous chapters were focused on the results of these endeavours, and how the produced
software could be used to help solve biological questions. In contrast, this chapter will give a deeper
understanding in the efforts and work behind the PLAZA and TRAPID platform.

For the author contributions, see page 7-11.
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7.1 Data Processing

7.1.1 Data Parsing

Various challenges are encountered in the first stages of the PLAZA pipeline, which encompasses the
gathering and parsing of the structural annotation of the various organisms to be added to the PLAZA
platform. Not only is this structural data (which contains the gene loci, gene structures, isoforms, etc. )
often presented in different file formats, but there can also be significant differences between instances of
the same format.

• Some of the annotations are presented in an XML format (Arabidopsis thaliana and Medicago trun-
catula). Although the XML-template is clearly defined by TAIR and logically ordered (e.g. a locus
containing multiple isoforms), this structure is not taken over fully for the Medicago truncatula
annotation, making the parsing much more complicated.

• Most of the other species’ annotations are in GFF3 file format. This format is a tab-delimited
format, and has the unfortunate property that the last column acts as a free format field in which
the annotators can enter any information they deem necessary. Although multiple standards have
arisen for the last column, the unfortunate side-effect remains that the content of this column often
complicates the data parsing, especially because identifiers and names have to be encoded at this
location.

Furthermore, it is not always clear from the start whether an annotation contains all the necessary data,
whether some extra data (such as isoforms) is present, and whether the data is actually consistent.

7.1.2 Data Validation

It is indeed not enough to ensure that the data is parsed correctly, an equally important step within the
PLAZA pipeline is ensuring that the data is not nonsensical, through data validation. One important
question which has to be answered is how inconsistent data will be dealt with: removal of the data,
correction (if possible) of the data, tagging of the data, etc. are all valid options. Within the PLAZA
framework we chose for the last option: if data is found to be inconsistent, we tag it as being as such in our
database. This approach has the advantage that we work with the structural annotation as was intended by
the providers, but the disadvantage is the possible inclusion of incorrect data in our downstream analyzes.
Inconsistencies (or even errors) come in many forms:

• Missing or double identifiers

• Genes which are present multiple times in the input files

• Non-matching or impossible coordinates of genes

• Genes mapped onto non-existing scaffolds or chromosomes

• Coding genes without start and/or stop codon

Although these issues should preferentially be resolved during the parsing of the data, it became apparent
that a separate validation program was needed. As such, all parsed annotation data was written to a
homogenous file format for each species, and the validation program was run on these files, reporting
eventual issues (see Figure 7.1). This would be an indication for the people responsible for the data
parsers to change their parsers to handle the indicated inconsistencies.
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Testing annotation.ath.public_02_5.csv
# genes : 33518
Total genes : 33518 || alternative transcript genes : 1428
Total genes : 33518 || 5’UTRs : 19537 || 3’UTRs : 19571
prot=eq :27363
prot=ne :7
transcript=eq :33486
transcript=ne :32
total genes :33518
Coding genes : 27379
Transposon genes : 3901
RNA genes : 1312
Pseudo genes : 926
# coding genes without ATG start codon : 18 (example : AT3G29255)

Figure 7.1: Validation of parsed structural annotation. Example output of the validation program, indicating
potential issues. No critical errors in this annotation were detected.

7.2 Visualizations

An introduction of the various technologies available for web visualizations has been given in sec-
tion 2.4.1. Here I will describe some of the choices made during the development of the visualizations
for the PLAZA platform. There are two orthogonal routes of inquiry: the used technology and whether
the visualization was developed by ourselves or was retrieved from an external developer (see Table 7.1).
Care was taken not to re-invent the wheel, and as such we made use of existing programs wherever we
could. However, specific demands coupled with non-available source code made it unfortunately neces-
sary to sometimes write visualizations for which already an implementation was available.

7.2.1 Graphs and Charts

The rise of JavaScript in web visualizations, at the cost of other technologies which require plugins (e.g.
Flash and Java), has several implications which we are slowly addressing. During the development of the
first version of the PLAZA platform the HTML5 standard was in its very early stages, and support for
the canvas-object was missing in most web browsers. For example, the Google Chrome browser has been
pushing the boundaries of HTML5, and has been critical in its rapid adaptation, but was only released
in December 2008 (after the initial development of PLAZA had started) and had yet to gain traction. As
such, the choice was initially made to create charts (such as the pie-chart on a gene family page, or the
line-chart of a KS-distribution) using the freely available OpenFlashChart 96 library. Later on, especially
during the development of the TRAPID platform, the use of Flash for charts was abandoned in favor of
JavaScript.

7.2.2 Phylogenetic Trees

The display of phylogenetic trees is a basic necessity in a comparative genomics platform, and many
tree viewers have already been developed for this goal35. The Archaeopteryx152 Java Applet (labeled
ATV until 2010) is a well-known tree viewer, and has the additional benefit of being created with the
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Developed Program External Program
JavaScript CirclePlot Charts

GO Enrichment Graph
GF Expansion
Species Tree

Java (Applet) WGDotplot Archaeopteryx (a)
Synteny Plot JalView
Integrative Orthology

Static Image Multiplicon View
Skyline Plot
Functional Clusters
WGDotplot (b)
Synteny Plot (b)

Flash Charts

Table 7.1: Web visualizations in the PLAZA platform. (a) XML-preprocessing necessary for display of protein
domains and gene structures. (b) Static image still present, but new interactive visualization available.

PhyloXML255 standard in mind. This PhyloXML standard (which is a template using standard XML) al-
lows for a great freedom in extra annotations in a phylogenetic tree (compared to the ubiquitous Newick
format), such as protein domain information per gene. The PhyloXML software package allows for the
easy translation from Newick to PhyloXML. The extra preprocessing done to the PhyloXML files, prior
to display by Archaeopteryx, is done by dynamically altering the XML code. This code was written by
me, and allows for a wide diversity of information to be added to the PhyloXML code.

The species tree which is displayed on the main page of PLAZA is not generated using this Java Ap-
plet, and also not using the HTML5 canvas object. A fast-drawing method, which would in an ideal case
also be dynamic, was needed for the phylogenetic tree which identifies the relations between the various
species present in the PLAZA database. Because Java Applets are too slow (long initial loading time
of the Java Virtual Machine), and because the HTML5 canvas object was not yet mature enough, the
DHTML jsgraphics256 JavaScript library was used. This library uses modified div-objects to mimick a
real drawing canvas, such as seen in HTML5, although with severe limitations. I wrote the code to parse
the species-newick string, and generate the associated phylogenetic tree. A key feature in the algorithm
is a two-step iteration over the leaves and branches from the tree, in order to assert their respective X and
Y coordinates.

7.2.3 WGDotplot

The study of genome evolution by studying by intra- and inter-species colinearity is aided by the popular
Whole Genome Dotplot (WGDotplot, see section 3.2.4 and section 4.2.5). In the first release of the
PLAZA platform a WGDotplot visualization was implemented using a generated static image together
with a clickable map, with two zoom-levels: genome-vs-genome and chromosome-vs-chromosome. This
approach was found to be lacking and limiting in the next years, for the following reasons:
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• A maximum of two species can be compared. Although the program which generates the static im-
age could be changed to deal with a more expansive comparison of collinearity between genomes,
the associated increase in query-time and the problematic design issues such as image size, made
such changes infeasible.

• Very limited extra onscreen information could be displayed, because of the used technology (click-
able map).

• When changing the zoom-level a new instance of the image generating program was started, requir-
ing a new set of time-expensive database queries to be executed.

Based on a comparative analysis of different available technologies (Flash, Java, SilverLight and JavaScript),
the choice was made to create a Java program to resolve most of these issues, with the implementation
done by a thesis student (see Figure 4.6). The original implementation retrieved its data through Re-
mote Function Calls (RFC) with a Java server. Highly problematic performance lead us to consider other
avenues for data retrieval. I changed the procedure from the Java RFC architecture to a PHP solution,
where the Java Applet retrieves the necessary data from files which were generated (and cached) by the
webserver. The raw data, necessary for the WGDotplot applet to function, is between 100kb and 600kb in
size. As such, the caching of data is not an issue. Furthermore, all data is cached on a genome-vs-genome
basis, leading to a maximum of 625 files (25*25) to be cached. When colinearity between more than two
genomes is visualized, the data is merged from the indicated cache.

7.2.4 CirclePlot

While WGDotplots are very powerful, the visualizations associated with intra-species colinearity often
lack a certain aesthetic appeal. Circular plots, as popularized by the Circos software, are a common visu-
alization present in many genome publications (see also section 2.4.1 and Figure 2.3). The development
of the CirclePlot within the PLAZA framework is fully based on the HTML5 canvas object, with no di-
rect dependencies on external JavaScript libraries. The main features are its interactivity and fast drawing
speed. The speed is achieved by smart caching of data (all colinearity data is cached once, irregardless of
the number of chromosomes or scaffolds displayed), as well as intelligent break points in the algorithm
to suppress spending computer resources on hidden colinear regions. The cached data is presented to the
JavaScript program in the form of JSON data, making the subsequent processing quite efficient.

The study of genomic duplications in the evolutionary history of an organism is the focus of much of
the intra-species colinear regions available within the PLAZA platform. To facilitate this research, the
coloring of colinear regions based on KS-dating was part of the initial design. With the multitude of
duplications present in the history of many plant genomes (see section 2.2.1), the image was however
quickly reduced to a garish display of colors for many species (see Figure 7.2 A). As such, features were
added to overcome this issue:

• Filtering of colinear regions based on KS-value (see Figure 7.2 B).

• Filtering out inter- and intra-chromosomal colinearity.

• An alternative coloring scheme which is based on chromosome combinations rather than KS-values
(see Figure 7.2 C).
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Figure 7.2: Comparison of CirclePlot features using Arabidopsis thaliana as reference species.(A) Basic display of
Circleplot. (B) Colinear regions with KS-values outside the [0.1,1] interval are removed. (C) Alternative color

scheme of colinear regions based on chromosomal combinations. (D) Inclusion of inter-species colinearity data.

In order to replicate the capabilities of the multi-genome WGDotplot as much as possible, we ex-
tended the CirclePlot to have inter-species colinearity visualizations as well, mapped onto the outer rim
of the displayed chromosomes/scaffolds of the reference species (see Figure 7.2 D). The various colinear
regions are color-coded as well, based on chromosome combinations. The current version of the Circle-
Plot gives one level per extra species, but this approach is problematic when multiple colinear blocks map
to the same region.

7.2.5 GO Enrichment plot

One of the most used features within the PLAZA workbench is the GO enrichment tool (later duplicated
in the TRAPID platform). The code to perform the enrichment analysis is written by Sebastian Proost.
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Initially the results of this enrichment were presented in a standard HTML table, but issues were raised
about the interpretability of these results: in a table form the relationships between the GO terms are
not discernible anymore. Therefore another JavaScript visualization was developed, which displays both
the results of the enrichment and the acyclic graph structure of the GO terms (see also section 2.3.1 and
Figure 6.2) and allows interactivity and linking as well.

The development of this visualization required both some inventiveness on the part of data retrieval and
data structure organization, as well as on the part of image layout and rendering:

• Because GO terms can have multiple parents in the graph, they can also appear at different depths.
This does, however, lead to the structural problem of deciding at which depths the GO terms should
be drawn, further complicated by the possibility that certain levels within the GO graph will contain
many more terms than others for which we would like to compensate.

• Only GO terms which appear in the results, or for which one of the child-terms appear in the results,
should be displayed.

• Too many GO terms are often organized on one single depth in the GO graph, and as such some
filtering needs to be applied to collapse GO terms. I solved this issue by creating an overlapping
field containing all information, when hovering with the mouse pointer over any displayed GO
terms (whether they are collapsed or not).

7.3 PLAZA Webserver Organization
The primary code executed when a user visits a page from the PLAZA website is written in PHP. More
specifically, I have made heavy use of the open-source CakePHP257 framework which is based on the
Model-View-Controller (MVC) design pattern. A clear separation between code which accesses the
database and the presentation logic results in far fewer potential security concerns, and enforces the
structuring of data into reusable elements.

PHP is however not the only code used for generating webpages: the creation of static images and
preprocessing of XML-data is delegated to Java programs, wrapped together with Perl-scripts. There
is a clear-cut distinction between these 2 types of code in the architecture of the PLAZA platform (see
Figure 7.3):

• PHP code, which is executed by by the Apache webserver. This handles the initial user-requests,
and generates the HTML-code for presentation after performing the necessary SQL-queries.

• Other code (mostly Perl and Java), which is called by the PHP code through an XML-based we-
binterface. This code is generally called to generate images and/or data for display on the PLAZA
website.

Both code-bases can connect to the database, and read/write to shared data storage. However, only the
PHP-code is called directly by the user, while the other scripts are not accessible, mainly due to security
concerns. This architecture has several advantages:

1. Scalability. Although at the moment both code-bases are run on the same physical webserver,
it would only require a small configuration change to move the Perl and Java code to a separate



TECHNOLOGY AND DEVELOPMENT 7-11

Figure 7.3: PLAZA architecture. A pictographic representation of the possible interactions within the webserver
following a user-request to generate a web page.

machine. The communication will still be done through a normal HTTP request with XML-data.
As such, profiling and balancing of the computational power becomes much easier. The database
is already located on a different server, and can as such also be scaled according to potential needs.

2. Stability. In case of problematic behavior, or during debuging, it is easy to deduce where the errors
are located using this architecture. The main pages of the website will not be affected by problems
with the image generating backend of the server.

3. Version Control and Avoiding Replication. At the moment there are a multitude of PLAZA
versions available: some are public, some are private. For each of these versions, the PHP-code has
to be replicated on the server, as it corresponds with a different URL. All these PLAZA versions
can however still make use of the same Perl/Java backend.

7.4 Author Contribution
This chapter is not based on any manuscript, but is rather based on the experience gained during the
development of the PLAZA and TRAPID platforms. All content in this chapter was written by myself.
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“Another flaw in the human character is that
everybody wants to build and nobody wants to do
maintenance.”

Kurt Vonnegut

8
Discussion and Future Prospects
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Abstract
In this chapter we will discuss how the field of genetics will change in the future and how we can deal
with these developments, as well as evaluate our work on comparative genomics. A thorough review of
our developed tools and methodology can give a glimpse on how to improve some of the design decisions
made during the development of the platforms.
Much of the topics will discuss the use of Next Generation Sequencing (NGS) data, because the stunning
decrease in cost-per-basepair10 has several important implications:

• The rate at which plant genomes will become available increases, taxing the comparative genomics
platforms to stay up-to-date.

• More data is becoming available per species. Not only is RNA-seq being used to extensively profile
the expression under many different conditions258, in a variety of tissues258 and in different devel-
opment stages258, but it is also revealing a much more detailed view of the transcriptional variety
present in genomes259. Other data types are becoming increasingly available as well: ChIP-seq
data for example is giving insight into the intricate transcriptional regulation of genes by measur-
ing DNA-protein interactions.

For the author contributions, see page 8-13.
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8.1 Introduction
The growth rate at which genomic data is currently being produced by the different sequencing centers,
most notably JGIa 260 and BGIb, is outpacing the advancements being made in the fields of data capacity
and computing power. New Next Generation Sequencing (NGS) technologies are constantly being devel-
oped and existing ones are refined. Illumina’s HiSeq8 and Roche 4547 are two examples of technologies
which are widely used in current genome and transcriptome projects, and since their introduction (2004-
2005) they have been drastically improved, with longer read-lengths making the subsequent assembly
more practical and computationally feasible.

With data storage and transfer being such a challenge, this will become even more of an issue with
the advent of the so-called third generation NGS technologies: Helicos261, PacBio262 and Ion Torrent263.
These technologies will provide longer read-lengths, making the subsequent assembly much easier, as
less memory is required to construct the de Bruijn graphs264 which are currently widely used in the as-
sembly process. However, the memory gains of the longer read-lengths are offset by the constant drive of
researchers to sequence ever more large and complex genomes. Other genome sequencing efforts, such
as the resequencing of a thousand Arabidopsis thaliana156 genomes, put even more strain on the data
storage and processing pipelines.

8.2 Regulatory Genomics
Much of the content within this thesis focuses on the protein coding genes of various genomes. With the
very small difference between the coding genes of human and chimp in mind265, it becomes clear that
the regulation of these protein coding genes is as important as their respective content. The Encyclope-
dia of DNA Elements (ENCODE)c 266,267 project for example, is specifically aimed at understanding the
regulation of the human genome. The phylogenetic distance between metazoa and plants is quite large,
and many regulatory systems will not be translatable. However, the developed techniques and computa-
tional tools from the ENCODE project will definitely help the research within the plant community as
well. Within the PLAZA framework, it would be highly advisable to not only invest in the comparative
analysis of protein coding genes, but to include their regulation as well.

Comparative expression regulation can be studied from the context of how genes are transcribed. To do
so, it is imperative that we can measure which transcription factors bind to the promotor of each gene, and
under which conditions. With transcription varying widely between tissues268, developmental stages268

and stress conditions269, the possible combinations to perform these measurements are enormous. Once
again, comparative genomics can help resolve this issue by studying a single model organism and through
translational research.

8.2.1 DNA Binding Motifs

With experimental detection and validation of promotor regions, transcription factors and DNA binding
sites a time-consuming, costly and often incomplete undertaking, multiple approaches have been made to
computationally predict possible DNA binding sites270,271. These sites are, just as their associated coding

ahttp://genome.jgi.doe.gov/
bhttp://www.genomics.cn/en/index
chttp://encodeproject.org/ENCODE/
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Figure 8.1: Possible use of DNA motifs within the PLAZA framework.(A)Mapping the motifs to a phylogenetic
tree. (B)Extending the Integrative Orthology view with extra DNA motif information.

sequences, often conserved due to evolutionary pressure, and as such more recent computional techniques
try to use these evolutionary constraints in their predictions272. The large search-space induced by motif
degeneration and large motif lengths makes the task at hand computationally very challenging, and it
is questionable whether DNA binding sites will be strongly conserved over very large phylogenetic dis-
tances.

The PLAZA platform would benefit greatly from the inclusion of these DNA motifs. Studying these
motifs within a gene family can reveal species-specific changes, as well as differences and similarities
between the transcriptional regulation of duplications. Aside from the gene family context several other
approaches become feasible as well. The functional enrichment studies within a species for genes asso-
ciated with a certain DNA motif (or sets of DNA motifs) might reveal shared transcriptional regulation
between genes, while the reverse (genes with the same DNA motif(s) but with opposite functional anno-
tation) can reveal on/off switches within the transcription networks.

Three possible ways to utilize and visualize these DNA motifs within the PLAZA framework easily
come to mind (see Figure 8.1):

• The most familiar way is to map the DNA motifs on a phylogenetic tree of a gene family (see
Figure 8.1A). Using this method, it can become apparent where binding sites were gained or lost
in evolution.

• The Integrative Orthology approach (see section 4.2.3) is an ensemble method which can be used
to infer the most likely functional ortholog in case M-N orthology is present between homologs of
two species. The current approach is based solely on the protein sequences of the homologs. By
including DNA motifs (see Figure 8.1B) in the Integrative Orthology approach, the transcriptional
regulation for the genes is included as well, which should make detecting functional orthologs
much easier.
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• A table-representation of the overlap between the DNA motifs and functional annotation, such as
Gene Ontology terms and InterPro domains. This approach would make it easy to correlate specific
binding sites with genomic functions, and in a more advanced stage combinations of binding sites
with genomic functions.

8.2.2 (Co-)Expression Data

The micro-array expression data which was gathered and normalized, and subsequently used in the analy-
sis of section 5.2, could potentially be integrated within the PLAZA platform. As such, the co-expression
between orthologs could also be seen as an extra evidence type within the Integrative Orthology approach
described in section 4.2.3.

The main problem with this approach is that there is no expression data available for all species in the
PLAZA database, and the species with expression data exhibit the issue that not all genes are represented
on the micro-arrays. Also, the amount of expression experiments per species varies wildly, depending
on the amount of scientific and economic interest. This leads to the conclusion that the inclusion of the
expression data might present some biases, which will then be exposed to the user. With micro-arrays
being slowly replaced by NGS expression technoloqies such as RNA-seq, the picture might shift in the
future. It is debatable whether for all species in the PLAZA database such expression data will be made
available in sufficient quantities, but for all the new genome projects there always seems to be at least one
associated expression study.

Simply replacing the micro-array expression data with RNA-seq data will not be possible, as both tech-
nologies have different biases and require different post-processing. However, once such a processing
pipeline is constructed, and once enough RNA-seq data has become available, the inclusion of these data
types into the platform should become possible.

8.3 Alternative Splicing
Alternative Splicing (AS), the process in which different coding sequences can be produced by a single
transcript, is quite prevalent in plant species273. Large differences exist in the prevalent types of AS be-
tween the plant and animal kingdoms, with intron retention being the most common in plants273 and exon
skipping the most common in animals274. This difference is very likely influenced by the difference in
intron lengths between the two kingdoms274.

In the current state of the PLAZA platform each gene locus is represented by one transcript, implemented
by selection of the longest transcript in case several splice variants are present. This simplification of the
true coding potential of a single non-spliced messenger RNA molecule was accepted because of several
considerations:

• First and foremost is the data availabilty aspect: splice variants were annotated for only the minority
(2 out of 9 species) of sequenced plant genomes during the initial development of the PLAZA
platform (see chapter 3). As such, paying special attention to splice variants did not measure up to
the required effort in software development. Spliced transcript variety has however become more
apparent in recent years due to increased interest, and due to the availability of NGS transcriptome
data and the dedicated support for splicing variants in current read-mappers259. As such, we see a
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steady increase in the amount of genomes with annotated splice variants, with 9 out of 25 species in
PLAZA 2.5 having been annotated with splice variants. Also, subsequent publications275–279 have
shown a growing ratio of genes with splice variants in Arabidopsis thaliana (see Figure 8.2). A
recent study280 puts the ratio of genes in Arabidopsis thaliana at 61%, at normal growth conditions
and DNA extracted from a full-grown plant. With many splice variants being characterized as stress
specific or developmental stage specific, this ratio is likely still an underestimation.

• Another reason is that there is the difficulty of balancing the data within the platform. If mRNA
transcripts instead of gene loci would be made the basic data entity, several major issues appear:

– Gene families would no longer be a possible form of clustering. Instead transcript families
would be created. This implies that for a single locus, its associated mRNA transcripts could
be categorized into different transcript families. If a gene has two splice variants, one with
and one without the retention of an intron, than the potential presence of a well-conserved
protein domain with that intron might cause the two variants to be clustered differently.

– There is still no AS data for all species available. Calculating gene family expansions (or
rather transcript family expansions) as such becomes non-trivial, as one would need to correct
for the absence of AS data. The used nomenclature could also be considered confusing: is a
gene with no duplications but with several splice variants still to be considered as single-copy,
compared to a gene with no duplications and only a single transcript?

– Some phylogenetic trees within the PLAZA platform are already very large. Expanding these
trees by introducing the splice variants could make them even larger, further reducing the
interpretability of these phylogenetic trees. The creation of the multiple sequence alignments
and trees might also become biased by the inclusion of multiple splice variants with very little
protein sequence diversity (such as induced by an alternative donor/acceptor splicing event).

– The functional annotation (such as GO terms) is in most cases currently assigned to genes, and
not transcripts. While the transcriptional regulation of splice variants would have to be similar
due to the same upstream DNA binding motifs, the produced proteins can be significantly
different.

The Ensemble Plantsd 104 resource does provide some information with regards to splice variants, but
many features (such as phylogenetic trees) are still only available at the gene level.

The inclusion of splice variants within the PLAZA platform is, given these challenges with no real solu-
tions yet, not a task to be taken lightly. And extending the PLAZA platform to include splice variants for
the sake of completeness with no scientific goal is not appropriate, as other possbile major improvements
have also been described in this chapter. However, several studies offer insights into how the protein
variation introduced by alternative splicing could be used. Comparative studies of alternative splicing in
plants can show how alternative splicing evolves in different plants281, and how the introduced protein
diversity can be beneficial to the organisms273. Since both gene duplication and alternative splicing can
be considered as two different evolutionary methods to induce protein diversity, the influence on one
another can be studied to distinguish different types of subfunctionalization and whether genes with mul-
tiple splice variants are more likely to be retained over a gene duplication282,283. Tandem duplicated genes
are known to be often stress-related, and splice variants are as well284, indicating a potential avenue of
research into making plants more stress resistant.

dhttp://plants.ensembl.org
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Figure 8.2: Fraction of genes of Arabidopsis thaliana for which multiple splice variants have been annotated. Data
collected from 275–280

8.4 Data Mining and Availability

8.4.1 PLAZA as a Data Resource

Data from the PLAZA platform is available through the following means on the website:

• Each page representing a specific data type (e.g. GO term, gene family, etc. ) contains the func-
tionality to download information directly related to this data type, together with basic structural
annotation information.

• Through the workbench (see section 4.2.6) a variety of data types can be accessed for a given set
of genes.

• Some tool pages (e.g. WGDotplot) provide the raw data used by these tools to create visualizations.

• The FTP server contains most of the content of the PLAZA database in structured files.

However, this approach indicates a scattering of specific information across the website, over multiple
web pages. This is in strong contrast with the BioMart tool285, which offers a structured and easily
understood (although somewhat slow as well) interface through which users can download a wide variety
of data. Through query concatenation a broad range of filters can be applied to this downloaded data,
further strengthening this approach. Associated with the BioMart tool is an Application Programming
Interface (API) which allows bioinformaticians to easily download custom datasets.
Over the years, the PLAZA platform has proven itself to be a valuable resource for standardized genome
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information. A substantial amount of the scientific citations of the PLAZA platform are coming from
researchers who downloaded the data to perform custom analyzes (e.g. 286,287). Several requests were
made with regards to a more complete access to the database, especially API access is in high demand.
It is thus clear that the PLAZA platform is lacking in this regards. The time investment required for
implementing such features, both an API and a BioMart-like download access point, forces us to fully
review some issues before fully committing ourselves to such a development:

1. Does the PLAZA platform offer any data that is not available from other sources? Or is the data
content not unique, but more readily accessible and easily processable compared to other sources?

2. Does making the entire content of the PLAZA database publicly available interfere with research
from within the group? Is it ethical to publish a resource and not make the total data content readily
available for download?

3. Is it worth to spend time developing these features, delaying the implementation of other data types
into the platform? Do we want PLAZA to become more of a data warehouse, competing with
bigger consortia such as Ensembl288 or Phytozome103 (JGI’s plant portal) ?

The answer to the first question is two-fold: most of the data can either be downloaded from third party
websites or be generated by the researchers themselves, except for the Integrative Orthologs (see sec-
tion 4.2.3). However, the ease of use through the standardized data files make PLAZA an attractive
solution. The second question is of course more subjective and open to debate. Bringing a next-version
of the platform online always takes a respectable amount of time, certainly when new data types are being
added. This next version does not need to be immediately publicly available though, giving our research
group a head start to use the data for our own purposes. However, I feel that when the platform is made
public, than so should all its data content be made fully accesible as well. The third question is the most
difficult to answer. It is clear that our small research group cannot compete with larger institutions with
personel dedicated to data integration. However, despite the large user-base of these other platforms, a
surprising amount of researchers still directly refer to us, indicating that the PLAZA platform is offering
something unique.

8.4.2 Automated Data Mining

Since the conception of databases, and the constant growth of the content in databases in the world, several
ideas have been put forward to automatically discover either inconsistencies or hidden patterns within the
data. One of the major applications is discovering financial discrepancies within and between databases,
to combat fraud. Identifying inconsistencies or contradictory data entries are, besides obvious data cu-
ration purposes, of limited use within the bioinformatics community. However, finding non-obvious
relationships between variables, or combination of variables, within genomic databases could result in
important discoveries289. The search for functional clusters (see section 4.2.4) within genomes already
pointed towards such an application. The complexity and multiple layers within the genomic databases
make automating such a discovery procedure very difficult.

To my knowledge, no efforts have thus far been applied to the automatic detection of patterns within
genomic databases, to link features and loci together, and as such predict properties for which we have
currently no knowledge. All current search solutions are custom, and based on existing ideas and the-
ories on how genetic data is used and organized within living cells. However, by limiting ourselves to
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these kinds of searches, we are unable to find actual hidden features. Some research has been done on
a lower level, for example to extract features from DNA sequences in order to classify those sequences
using machine learning methods290,291. This feature extraction is still not fully autonomous, although
subsequently applied feature selection techniques292 are. The main problem is still that in these cases the
researchers know what they want to classify.

The dimensionality of the data presents a formidable challenge, as do the hidden dependencies such
as gene order within a chromosome. As such, a fully automatic procedure will be very difficult to create.
While no positive results can be promised, data mining genomic databases might result in useful and
unexpected discoveries. The pitfalls of over-analyzing the data can not be overlooked, as multiple testing
might result in skewed statistics293.

8.5 Genome Challenges
With the constant publication of new plant genomes in the past years, and with no decrease in pace in
sight, some challenges with the PLAZA platform, or any platform for comparative genomics, become
apparent. Although the PLAZA platform and processing pipeline will be able to handle the inclusion
of up to 40 genomes pretty well, we should ask the question whether this approach still makes sense.
Gene families will be growing (in general) linearly with the number of genomes, making the subsequent
analysis pages, such as the phylogenetic trees, quite complicated. Researchers are in most cases only
interested in a small subset of genomes, but this subset varies wildly between research fields, and various
researchers each have their own pet genome they would like to see incorporated and extended within the
PLAZA platform.

8.5.1 Subversions of the PLAZA Platform

We have already demonstrated that different versions of the PLAZA platform can co-exist (see sec-
tion 5.3) and it is clear that this approach might work as well to deal with the constant sequencing of
new plant genomes. One solution would be to split up the PLAZA platform into multiple subversions:

• One Core high quality PLAZA version, containing a selection of the best annotated and assembled,
and most utilized species. Species such as Arabidopsis thaliana, Oryza sativa ssp. japonica, Zea
mays and Populus trichocarpa are prime examples of this. At the same time, some necessary
outgroup species from outside the dicot and monocot clades are necessary, with one of the mosses
and algae being the best choices. This core version should be kept relatively small in terms of
number of species.

• Subversions for each of the major clades with a sufficient number of sequenced genomes: mono-
cots, dicots and algae. Inclusion of the necessary outgroups for each subversion should still keep
the number of species below 20. Except for the dicots, for which a very large number of genomes
has been sequened, this limit should not really be a problem. The algae version is already created
(coined pico-PLAZA, see section 5.3), and the creation of the other subversions should be relatively
easy.

This approach should deal with most of the issues brought forth by the growing number of publicly avail-
able sequences. Further refinements can be made, such as benchmarking the quality of the genomes and
excluding the genomes which do not meet certain standards. The Lotus japonicus genome assembly and
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gene annotation are for example notoriously sub-standard: with a total number of coding genes of 43,146
only 25,716 (or 6̃0%) of these are not singletons (see Table F.1). With the average of this ratio of all
species in PLAZA v2.5 being 8̃7%, it is clear that there are serious issues with this annotation, even when
taking possible extreme species-specific gene developments into consideration.

Two problems become apparent with the subversion approach: the duplication of data and the required
processing time. Each subversion will be stored in a separate database, and seeing that Arabidopsis
thaliana is the model species in plant research and will be included in all subversions, this indicates that
the Arabidopsis genome will be stored at least four times. This may be viewed as a necessary evil, yet
potential solutions should be reviewed to remediate this. Revamping the database design in order to store
all subversions within one database is one solution, but this is contrary to the principle of data separation.
The problem of increased processing time is less of a problem. Although for each version the entire
processing pipeline needs to be run, each pipeline instance will take less processing time. And keeping
in mind that some of the used algorithms within the pipeline have greater-than-linear time and memory
complexity, the subversion approach might in fact keep the increase in processing time at a minimum.

8.5.2 Use of TRAPID Pipeline

The complexity of phylogenetic trees and multiple sequence alignments, induced by the the increase
in number of species, can also be reduced by allowing users to create the phylogenetic trees on-the-fly
by making use of the developed TRAPID pipelines. The default phylogenetic tree containing all pro-
teins from the gene family should remain available. However, by implementing an intermediate selection
screen in which the user can select the species he wants to investigate, the phylogenetic trees can become
markable smaller, and thus easier to analyze.

One potential issue is the processing time required to construct these custom phylogenetic trees. Cre-
ating the multiple sequence alignment and the tree can take up to several minutes for a medium sized
gene family of 200 proteins, depending on options such as bootstraps. If several users launch such re-
quests concurrently, the available power of the web cluster can become exhausted. A solution to this
problem would be to move the processing to the client, for example by implementing the used algorithms
in Java or JavaScript. This would, however, require quite an investment in development time.

8.6 Conclusion

The scientific world is in constant change, with new technologies rising and old technologies being send
to the scrapyard to be forgotten. The data integration aspect of genomic research is of clear importance,
both from an academic and economic point of view, yet multiple challenges still remain unsolved. The
PLAZA platform for comparative and evolutionary genomics which we created is definitely a good start,
but possible extensions still remain to be implemented, in order to be prepared for the challenges of to-
morrow. Predicting which features will be of most use to the resarch community is a difficult task, but by
communicating extensively with the users a ranking could be made in the development plants.

One thing is certain though, in the foreseeable future there will definitely be work for people working
on genomic data integration.
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8.7 Author Contribution
All content within this chapter was written by myself.
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“Truth is ever to be found in simplicity, and not in
the multiplicity and confusion of things.”

Isaac Newton

A
Summary
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SUMMARY A-3

The accelerating creation within the biological sciences of more data and new data types by innovative
technologies gives rise to unparalleled opportunities and challenges. This leads to further specialization
in a lot of areas, as more and more background information is required to understand how to process
and interpret the growing mountain of data in a correct fashion. Thus, in order to prevent the same data
being systematically analyzed over and over again by different experts, to serve the need of scientists over
the world, it makes absolute sense to centralize knowledge and processed data. Enhancing the collective
cognitive abilities of the scientific community can be achieved by providing centralized repositories which
give access to expertly processed data to non-expert users, who can use this data as a starting point for
further research.

A.1 Creating a Platform for Comparative and Evolutionary Ge-
nomics

In this thesis we have demonstrated how the integration, processing and presentation of genomic data can
be achieved, to the benefit of non-expert users. The PLAZAa platform is such an implementation, with a
core focus on compararive and evolutionary genomics in plants. By presenting structural and functional
plant genomic data in a visually appealing way that is easily searchable by interested plant biologists,
both academic and applied plant research is strengthened. Furthermore, by making as much of the raw
and pre-computed data available as possible in a common file format, bioinformaticians from around the
globe can make use of the platform to perform their own large-scale analyzes.

The design of such a platform is no easy task, as is the need for constant support and updates: there
is a continuous stream of new and updated genomes and genome annotations which has to be dealt with
to stay relevant in the field. Indeed, while pure academic research may focus on only a few model species,
the real world applications target economically important crop species, for which there is evermore data
available. The PLAZA platform we developed can be considered to be at the forefront of plant genomic
research. With a large, returning and growing user-community, our platform is widely known and recog-
nized for its value.

The various tools we have developed for the PLAZA platform, going from colinearity research to gene
families, from functional overrepresentation to orthology detection, each have their own research niche,
but are also interconnected within the website where necessary.

A.2 Applications of Comparative Genomics

In this thesis we have also shown how we can apply the PLAZA platform and the data contained within
to solve meaningful use-cases. By studying gene family expansions we have demonstrated how species
can adapt themselves to a particular ecological niche. With two major modes for gene duplication avail-
able, tandem and WGD, it is important to note whether and how each type of duplication provides an
evolutionary benefit to the organism. Though most genes become pseudogenes after a duplication event,
gene family expansions are still a common occurrence within the plant kingdom. As such, the study of
the retention of gene duplicates can provide insights into how gene networks can be expanded through
duplications without suffering from gene dosage effects.

ahttp://bioinformatics.psb.ugent.be/plaza
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Combining PLAZA orthology and expression data gives us the ability to study conserved co-expression
between various species, giving insight into how the evolution of orthologs and facilitating translational
research. By using co-expression instead of raw expression values the pitfall of incompatible expression
data can be circumvented.

By creating a custom algae-oriented PLAZA database, the focused analysis of important microbial eu-
karyotes becomes possible. The rise of marine environmental metagenomics also requires the necessary
reference databases to process the samples. We have shown that our PLAZA platform is also capable of
playing a role in these analyses.

A.3 A Look into the Transcriptome NGS Future
Finally, we have shown that there is merit in developing new systems and provide the necessary interac-
tions, rather than over burden existing platforms. Indeed, the TRAPIDb platform for fast transcriptome
analysis clearly shows the value of the PLAZA platform as a reference, while at the same time bringing
its own tools to the front to help users analyze their data. This way, we were not restricted by certain con-
ventions of the PLAZA platform, allowing us to gain the necessary speed improvements to very quickly
process entire transcriptome datasets, which are becoming ever more commonplace due to the constant
rise in NGS production capabilities.

bhttp://bioinformatics.psb.ugent.be/webtools/trapid



“Iedereen kan nummer één zijn, dat is geen kunst.
De kunst is uit te vinden waarin.”

Midas Dekkers
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SAMENVATTING B-3

De toenemende hoeveelheid data die wordt gecreëerd door nieuwe en innovatieve technologiën binnen
de genetica, maakt ongekende mogelijkheden en uitdagingen waar. Eén van de problemen bestaat er
echter uit dat er ook steeds meer specializatie nodig is, aangezien er meer kennis en training nodig is
om de groeiende hoeveelheid data correct te verwerken en te interpreteren. Het is dus nodig om een
gecentraliseerde punt te maken waar bepaalde kennis en data wordt opgeslagen, om te voorkomen dat
dezelfde data steeds opnieuw wordt verwerkt door experts ten bate van zichzelf en niet-experts. Het
verbeteren van de mogelijkheden binnen de wetenschappelijke wereld door deze verwerkte data aan te
bieden wordt op deze manier mogelijk, en wetenschappers die geen expert zijn op het gebied van data
integratie en verwerking kunnen zo hun eigen onderzoek sneller voortzetten.

B.1 Een Online Platform voor Vergelijkende en Evolutionaire Ge-
noom Studies

In deze thesis hebben we aangetoond hoe de integratie, verwerking en presentatie van genoom infor-
mation can bereikt worden, ten bate van wetenschappers die geen expert zijn op het gebied van data
integratie. Het PLAZAa platform is een implementatie voor vergelijkende en evolutionaire planten ge-
noom studies. Zowel academisch als toegepast onderzoek wordt ondersteund door het platform, dat zowel
structurele als functionele plant genoom data presenteert op een visueel aantrekkelijke wijze. Het gemak-
kelijk doorzoekbaar maken van de data is hierbij een extra pluspunt. Door het beschikbaar maken van
zoveel mogelijke verwerkte data, kunnen ook andere bioinformatici van de door ons verwerkte data ge-
bruik maken om hun eigen analyzes te doen.

Het ontwerpen van een dergelijk platform dat met de nodige functionaliteit is uitgerust, is geen gemak-
kelijke opdracht. Een constante toevoer van nieuwe genomen en nieuwe annotaties van reeds verwerkte
genomen, maken een constante support en update procedure nodig. De academische wereld blijft voor-
lopig inderdaad misschien gefocused op model organismen, maar er komt steeds meer en meer data
beschikbaar voor economische belangrijke voedsel gewassen. Het PLAZA platform kan beschouwd wor-
den als één van de betere platformen op het gebied van vergelijkende en evolutionaire genoom studies.
Er is een groeiende groep gebruikers van over de wereld, waarvan de meesten ook terugkeren om verdere
analyzes te doen, hetgeen aangeeft dat ons platform de wijdverspreid gekend is.

B.2 Toepassingen van Vergelijkende Genoom Studies

In deze thesis hebben we aangetoond hoe het PLAZA platform kan gebruikt worden om bepaalde use-
cases op te lossen. Door het bestuderen van gene families, en hoe deze geëvolueerd en uitgebreid zijn
doorheen de tijd, hebben we aangetoond hoe organismen zich hebben aangepast aan hun leefomstandig-
heden. Door de twee belangrijkste mogelijkheden van gen duplicatie te beschouwen (tandem en WGD),
kunnen we aantonen of deze duplicaties een evolutionair voordeel bieden aan het organisme, en hoe we
dit kunnen verklaren. Ondanks het feit dat de meeste genen een pseudogen worden na een duplicatie, zijn
gene family expansies toch een veelvuldige gebeurtenis bij planten. Het onderzoek naar hoe beide genen
van een duplicatie paar bewaard blijven kan us dus inzicht geven hoe gen netwerken zich aanpassen aan
deze veranderingen.

ahttp://bioinformatics.psb.ugent.be/plaza
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Het combineren van de PLAZA orthologie met expressie data geeft ons de mogelijkheid om evolutio-
nair bewaarde co-expressie te bestuderen. Dit kan ons inzicht verschaffen met betrekking tot de evolutie
van orthologen en het kan ons extra mogelijkheden geven met betrekking tot het vertalen van kennis
binnen een model organisme naar voedsel gewassen. Door het gebruik van co-expressie kan veel meer
expressie data gebruikt worden vergeleken met het gebruik van expressie data waarbij de experimenten
moeten overeenkomen op het gebied van weefsel en omstandigheden.

De creatie van een PLAZA versie die gefocused is op algen, maken we het onderzoek naar micro eu-
karyoten in de oceaan mogelijk. Door het opkomen van marine metagenomics, waarbij random samples
uit de oceaan worden gesequenced, is er nood aan de nodige verwerking van deze data. We hebben
aangetoond dat het gebruik van het pico-PLAZA platform hier een belangrijke rol bij kan spelen.

B.3 Transcriptome Data van NGS Technologiën
We hebben aangetoond dat het mogelijk is een platform te maken voor het vereenvoudigen van transcrip-
tome studies, door PLAZA als een referentie database te gebruiken. Het niet integreren van dit nieuwe
platform binnen PLAZA, maar eerder een nieuw platform aanmaken met de nodige connecties, heeft
duidelijk zijn voordeel aangetoond. Volledige transcriptoom datasets kunnen nu op korte tijd verwerkt
werden door ons online platform, zowel op functioneel gebied als binnen de context van gen families. Op
deze wijze dient het PLAZA platform zelf ook niet verandert te worden om met transcriptoom datasets
om te kunnen gaan.



“Why waste time learning,
when ignorance is instantaneous? ”

Calvin and Hobbes
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“Man has three ways of acting wisely.
First on meditation; that is the noblest.
Second on imitation; that is the easiest.
Thirdly on experience; that is the bitterest.”

Confucius
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List of Abbreviations

API Application Programming Interface

AS Alternative Splicing

BHI Best-Hits-and-Inparalogs

BLAST Basic Local Alignment Search Tool

DNA DeoxyriboNucleic Acid

EBI European Bioinformatics Institute

ECC Expression Context Conservation

ENCODE Encyclopedia of DNA Elements

EST Expressed Sequence Tag

EXP Inferred from Experiment

Gb Giga-base: 1 billion basepairs

GMO Genetically Modified Organism

GOC Gene Ontology Consortium

GUI Graphical User Interface

HMM Hidden Markov Model

IEA Inferred from Electronic Annotation

IEA Inferred from Electronic Annotation

ISS Inferred from Sequence or Structural Similarity

JGI Joint Genome Initiative

JVM Java Virtual Machine

KS Synonymous substitution rate

KAAS KEGG Automatic Annotation Server

KEGG Kyoto Encyclopedia of Genes and Genomes
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Mb Mega-base: 1 million basepairs

ML Machine Learning

MSA Multiple Sequence Alignment

MVC Model View Controller

NCBI National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/

NCBI National Center for Biotechnology Information

NGS Next Generation Sequencing

ORF Open Reading Frame

PCC Pearson correlation coefficient

PWM Positional Weight Matrix

RBH Reciprocal best BLAST-hit

RFC Remote Function Calls

RNA RiboNucleic Acid

SVG Scalable Vector Graphics

WGD Whole Genome Duplication



“A picture is worth a thousand words”
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Figure F.1: Pan and core genes of all organisms present in PLAZA v2.5. The pan genes (homologs present in a at
least one species) and the core genes (homologs present in all species) for all species from PLAZA v2.5.
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Figure F.2: Gene family sizes in PLAZA v2.5 The size of the circles indicate the number of gene families with X
genes from Y species. The color indicates the fraction of the total amount of gene families.
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Figure F.3: Functional clusters and colinearity The colinear regions between Arabidopsis thaliana chromosome 1
and Arabidopsis lyrata scaffold 1, together with their respective functional clusters. The conserved clusters are

indicated by dotted boxes, indicating the presence of the cluster in the common ancestor.
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Figure F.4: Integrative Orthology support in Arabidopsis thaliana chromosome 2. The Integrative Orthology
support per gene in chromosome 2 of Arabidopsis thaliana. Each species has its own color, and each species track
is subdivided in four lanes which correspond with the evidence types in the Integrative Orthology method. The top
track indicates the gene type fraction within a 100 gene window on that position: blue for coding genes, purple for

transposons, red for RNA genes and green for pseudo genes.
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Species Genes Coding RNA Pseudo TE (a) Genes in non singleton GF (b)
Arabidopsis lyrata 32,670 32,670 0 0 0 30,870 (94.5%)
Arabidopsis thaliana 33,602 27,416 1,359 924 3,903 26,118 (95.3%)
Brachypodium distachyon 26,678 26,632 46 0 0 25,687 (96.5%)
Carica papaya 28,072 28,027 45 0 0 22,531 (80.4%)
Chlamydomonas reinhardtii 16,841 16,788 53 0 0 13,666 (81.4%)
Fragaria vesca 34,809 34,809 0 0 0 30,833 (88.6%)
Glycine max 46,509 46,464 45 0 0 45,982 (98.9%)
Lotus japonicus 69,647 43,146 45 0 26,456 25,716 (59.6%)
Malus domestica 95,23 63,546 0 0 31,684 58,790 (92.5%)
Manihot esculenta 30,800 30,748 52 0 0 30,132 (98.0%)
Medicago truncatula 57,587 45,197 776 0 11,614 38,494 (85.2%)
Micromonas sp. RCC299 10,276 10,204 72 0 0 8,144 (79.8%)
Oryza sativa ssp. indica 59,43 49,202 39 0 10,189 44,310 (90.1%)
Oryza sativa ssp. japonica 57,874 42,211 92 0 15,571 37,391 (88.6%)
Ostreococcus lucimarinus 7,805 7,805 0 0 0 7,408 (94.9%)
Ostreococcus tauri 8,116 7,994 122 0 0 6,797 (85.0%)
Physcomitrella patens 36,137 28,097 72 0 7,968 21,287 (75.8%)
Populus trichocarpa 41,521 41,476 45 0 0 37,777 (91.1%)
Ricinus communis 31,221 31,221 0 0 0 24,455 (78.3%)
Selaginella moellendorffii 22,285 22,285 0 0 0 17,392 (78.0%)
Sorghum bicolor 34,686 34,609 77 0 0 31,921 (92.2%)
Theobroma cacao 46,269 28,882 45 0 17,342 27,575 (95.5%)
Vitis vinifera 26,644 26,504 88 52 0 23,268 (87.8%)
Volvox carteri 15,544 15,544 0 0 0 13,782 (88.7%)
Zea mays 39,597 39,19 0 323 84 35,221 (89.9%)

Table F.1: Gene types PLAZA v2.5. (a) Transposable Elements. (b) GF=Gene Families. Values between brackets
indicate percentage (using number of coding genes as denominator).
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Table F.2: BLASTX vs. RAPSearch2 comparison. Dataset consists of a set of 1000 full-length Arabidopsis thaliana
CDS sequences. The similarity search databases are based on PLAZA 2.5 phylogenetic clades, but do not contain
Arabidopsis thaliana or Arabidopsis lyrata genes. Performance is measured by comparing how well the assigned
gene families coincide with the default PLAZA gene families. The comparison was performed on the same single

core CPU. Red colors indicate the best values, green colors the worst.



SUPPLEMENTARY FIGURES AND TABLES F-9

Table F.3: Evaluation metrics for gene family assignment. Different evaluation metrics where used to assign
transcripts to gene families, using RAPSearch2. The Hit count metric assigns the transcript to the gene family with

most similarity hits, while the bitscore metrics use the sum of the bitscores of the similarity hits to reach a
conclusion. Dataset consists of a set of 1000 full-length Arabidopsis thaliana CDS sequences. The similarity search

databases are based on PLAZA 2.5 phylogenetic clades, but do not contain Arabidopsis thaliana or Arabidopsis
lyrata genes. Performance is measured by comparing how well the assigned gene families coincide with the default
PLAZA gene families. The comparison was performed on the same single core CPU. Red colors indicate the best

values, green colors the worst.
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Table F.4: Evaluation of the gene family assignments for other species. Using the RAPSearch2 software, different
data sets using different species were tested for the gene family assignments. Dataset consists of a set of 1000

full-length Oryza sativa ssp. japonica and a 1000 full-length Vitis vinifera CDS sequences. The similarity search
databases are based on PLAZA 2.5 phylogenetic clades, but do not contain Oryza sativa ssp. japonica or Oryza

sativa ssp. indica genes for the first data set, and no Vitis vinifera for the second data set . Performance is measured
by comparing how well the assigned gene families coincide with the default PLAZA gene families. The comparison

was performed on the same single core CPU. Red colors indicate the best values, green colors the worst.
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Table F.5: Evaluation of gene family assignments for partial transcripts. Using six different data sets, each
comprising 1000 Arabidopsis thaliana CDS sequences, the sensitivity to partial transcripts was measured. The first

data set comprises 1000 full-length CDS sequences, the second data set 900 full-length CDS sequences and 100
partial sequences, the third data set 800 full-length CDS sequences and 200 partial sequences, ... , the last data set

500 full-length CDS sequences and 500 partial sequences. These data sets are indicated with the prefix FL (Full
Length). For each data set, three different types of partial sequences where generated, where 75%, 50% or 25% of
the original CDS length is retained, indicated with the prefix PL (Partial Length). The similarity search databases
are based on PLAZA 2.5 phylogenetic clades, but do not contain Arabidopsis thaliana or Arabidopsis lyrata genes.
Performance is measured by comparing how well the assigned gene families coincide with the default PLAZA gene
families. The comparison was performed on the same single core CPU. Red colors indicate the best values, green

colors the worst.
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“I received the fundamentals of my education in
school, but that was not enough. My real educa-
tion, the superstructure, the details, the true archi-
tecture, I got out of the public library.”

Isaac Asimov
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