How to smooth your fMRI data? A comparison between Gaussian and Adaptive Smoothing

Marijke Welvaert¹, Yves Rosseel² & Karsten Tabelow²

¹ Department of Data Analysis, Ghent University, Gent, Belgium
² Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

You smooth your data...
- to accommodate for intersubject variation in brain anatomy
- to increase the signal-to-noise ratio (SNR)
- to enhance inference from Random Field Theory

Spatial smoothing is mostly performed during the pre-processing stage of the data analysis; however, it has a significant influence on the sensitivity and specificity of the activation detection analysis.

Case 1: activated regions that differ in size
All simulations were performed in R (http://www.r-project.org). The data were generated using nilearn (Welvaert et al., 2011) and analyzed and smoothed with fmri (Tabelow and Polzehl, 2011).
- Block design with 3 activation blocks (21 scans each) and 2 activated spheres (radius 3 and 5 mm).
- rich noise including temporal and spatial correlations and physiological noise
- 4 smoothing conditions:

Which smoothing method results in the highest power and lowest false positive rate (FPR)?

Case 2: neighbouring regions
- Block design with 2 conditions: 5 activation blocks (10 scans each and 50 scans each).
- 2 activated regions (64 mm radius) next to each other accounting for activation based on conditions 1 and 2 resp.
- same noise model as in simulation 1
- 2 smoothing conditions

Which smoothing method results in the highest power and lowest FPR for the contrasts of each condition separately?

Spatial smoothing methods
Non-adaptive smoothing applies a Gaussian smoothing kernel with a pre-defined Full-Width Half-Maximum (FWHM). The amount of smoothing typically matches the spatial extent of the signal of interest.
(see for example Worsley, 2003)

Structural adaptive segmentation takes into account the functional boundaries of the activated region and avoids loss of information on spatial extent and shape. Local kernel widths are determined in an iterative process.
(see Polzehl et al., 2010)

Example
Analysis of an artificial fMRI experiment in a central slice (real activation on the right). The results of the voxelwise analysis are displayed below. From left to right, the results without smoothing, for Gaussian (non-adaptive) smoothing and for structural adaptive smoothing.

Tabelow et al. (2006)

Results simulation 1

Results simulation 2

Conclusions
Both simulation studies show that structural adaptive smoothing outperforms Gaussian smoothing. When adaptive smoothing is applied higher sensitivity and specificity is obtained compared to Gaussian smoothing for a wide range of SNR values.

References

Contact
E-mail: Marijke.Welvaert@UGent.be
Website: http://users.ugent.be/~mwelvaer
Address: H. Dunantlaan 1, B-9000 Gent, Belgium