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Abstract 21 

The event-related brain potentials (ERPs) elicited by nociceptive stimuli are largely influenced by 22 

vigilance, emotions, alertness and attention. Studies that have specifically investigated the effects of 23 

cognition on the nociceptive ERPs support the idea that most of the components of these ERPs can 24 

be regarded as the neurophysiological indexes of the processes underlying the detection and the 25 

orientation of attention toward the eliciting stimulus. Such detection is determined by the salience of 26 

the stimulus that makes it pop out from the environmental context (bottom-up capture of attention) 27 

and by its relevance according to the subject’s goals and motivation (top-down attentional control). 28 

The fact that nociceptive ERPs are largely influenced by information from other sensory modalities 29 

such as vision and proprioception, as well as from motor preparation, suggests that these ERPs 30 

reflect a cortical system involved in the detection of potentially meaningful stimuli for the body, with 31 

the purpose to respond adequately to potential threats. In such a theoretical framework, pain is seen 32 

as an epiphenomenon of warning processes, encoded in multimodal and multiframe representations 33 

of the body, well suited to guide defensive actions. The findings here reviewed highlight that the 34 

ERPs elicited by selective activation of nociceptors may reflect an attentional gain apt to bridge a 35 

coherent perception of salient sensory events with action selection processes. 36 

 37 

Keywords: nociception, pain, event-related potentials, cognition, attention, executive functions, 38 

body, space, action 39 

 40 

 41 

 42 
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Résumé 44 

Les potentiels évoqués cérébraux (PE) induits par des stimuli nociceptifs sont largement influencés 45 

par la vigilance, les émotions, l’attention-alerte et l'attention sélective. Les études ayant 46 

spécifiquement exploré les effets de facteurs cognitifs sur les PE nociceptifs soutiennent l’idée selon 47 

laquelle la plupart des composantes de ces PE peuvent être considérées comme les indices 48 

neurophysiologiques des processus sous-jacents de la détection et l'orientation de l'attention vers le 49 

stimulus évoquant. Cette détection est déterminée par la saillance du stimulus qui le rend 50 

particulièrement émergeant par rapport au contexte environnemental (capture ascendante de 51 

l'attention) et par sa pertinence par rapport aux objectifs cognitifs et à la motivation du sujet 52 

(contrôle attentionnel descendant). Le fait que les PE nociceptifs soient largement influencés par les 53 

informations provenant d'autres modalités sensorielles comme la vision et la proprioception, ainsi 54 

que par la préparation motrice suggèrent que ces PE reflètent un système cortical impliqué dans la 55 

détection des stimuli potentiellement significatifs pour l'organisme dans le but de répondre 56 

adéquatement aux menaces éventuelles. Dans un tel cadre théorique, la douleur est considérée 57 

comme un épiphénomène des processus d’alerte, intégré dans des représentations multimodales et 58 

multi-référentielles du corps dont le but est de guider la réalisation des comportements de défense. 59 

Les données présentées dans cet article soulignent que les PE obtenus en réponses à des 60 

stimulations sélectives des nocicepteurs peuvent représenter l’activité des mécanismes de contrôle 61 

du gain attentionnel permettant de coordonner de façon cohérente la perception d’événements 62 

sensoriels saillants et la sélection de la réponse. 63 

 64 

Mots clés : nociception, douleur, potentiels évoqués, cognition, attention, fonctions exécutives, 65 

corps, espace, action 66 

 67 
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Introduction 68 

Since the first recordings of computer-averaged event-related potentials (ERPs) and event-69 

related magnetic fields (ERFs), these techniques were proposed as suitable methods to investigate 70 

human cognition (e.g. [98,109]), i.e. the cortical operations “by which the sensory input is 71 

transformed, reduced, elaborated, stored, recovered, and used” [77]. When for the first time Carmon 72 

et al. [12] obtained ERPs in response to selective activation of nociceptive Aδ- and C-fiber by laser 73 

radiant thermal stimulation, they noticed that the nociceptive ERPs were less sensitive to variations 74 

of the physical parameters of the stimulation than to variations of the subject’s perception. As a 75 

matter of fact, later studies showed that nociceptive ERPs are largely modified by vigilance [3,6,83], 76 

emotional state [19,21], alertness [69], and, even more, by the attention given to the stimulus [63]. 77 

The first generation of studies were mostly designed to investigate the influence of these factors in 78 

order to control them and to establish a reliable ERP recording protocol to be used in clinical settings 79 

[63]. Indeed, the primary interest was to use nociceptive-specific ERPs to assess dysfunctions of the 80 

nociceptive pathways [103]. Therefore, studies aimed to dissociate the so-called exogenous 81 

components of the nociceptive ERPs (supposed to reflect the selective and specific processing of the 82 

sensory inputs) from the endogenous ERP components (thought to reflect undesired psychological 83 

reactions of the patients). By contrast, the last decade of research tackled the issue of how 84 

nociceptive ERPs are modulated by cognitive factors, fostering the understanding of those processes 85 

underlying the detection, analysis, and reaction to the nociceptive event, i.e. the processes which 86 

underlie the interpretation of a nociceptive stimulus as a sensory event able to induce physical harm 87 

to the body. Data from this new course have been determinant in changing the understanding of the 88 

functional significance of cortical processes reflected by the nociceptive ERPs. 89 
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The present article attempts to provide a synopsis of the literature relative to the cognitive 90 

modulations of the ERPs elicited by nociceptive and painful stimuli1. After a short review of the first 91 

generation of studies (paragraph 1; see [63]), a more in-depth discussion will deal with the role of 92 

cognitive factors underlying the detection and the reaction to sensory stimuli perceived as potential 93 

bodily threats.   94 

 95 

1. Directing vs. distracting attention 96 

It is largely admitted that paying attention to a nociceptive stimulus makes it more painful. On 97 

the contrary, focusing attention either on another perceptual object or on another task reduces pain 98 

(see [107]). The studies that have explored the influence of attention on the nociceptive ERPs were 99 

mostly inspired by the theoretical framework proposed by the limited-capacity models of human 100 

cognition (e.g. [9]) and adapted to pain research by, for example, Leventhal and Everhart [60], and 101 

McCaul and Malott [65]. These authors proposed that sensory inputs – including nociceptive ones – 102 

may exceed processing capacity, and hence require attention to give priority to some inputs over 103 

others. Therefore directing the subject’s attention away from the nociceptive stimuli would decrease 104 

the amount of attentional resources allocated to process the nociceptive inputs and thus reduce the 105 

resulting pain.  106 

Based on these models, authors built paradigms in which nociceptive stimuli were intermixed 107 

with stimuli from another sensory modality and the participants were instructed either to attend the 108 

nociceptive stimuli by performing a task (e.g. counting them all [38,67,75,82,83,106,110] or some of 109 

them [93], rating their intensity [6,22], or even attending the stimuli without any specific instruction 110 

[35,111,112]), or to distract their attention from the nociceptive stimuli by performing a task on 111 

                                                           
1
In the present paper, the term “nociceptive” is used to describe stimuli that selectively activate the 

nociceptive system, while the term “painful” is used to describe stimuli that elicit a perception of pain, 

regardless of the selectivity of the eliciting inputs. 
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stimuli from another modality (e.g. arithmetic calculation of numbers [6,22,82,83,106,111-113], 112 

reading a book [93], performing an oddball auditory task [38], a word puzzle [67] or a memory test 113 

[35]). Sometimes, in the distraction condition, participants were simply asked to ignore the 114 

nociceptive stimuli without any control procedure [93,110]. The most recurrent result of these 115 

studies (excepting [82]) was a reduction of the magnitude of the vertex positivity of the ERPs (i.e. P2) 116 

supposed to mainly reflect the activity of the anterior cingulate cortex (ACC) [37] when attention was 117 

directed to the pain-unrelated task, both in studies that used nociceptive-specific stimuli delivered by 118 

laser heat stimulator [6,35,38,83,93,106,112,113] and studies that used unspecific electrocutaneous 119 

stimuli with an intensity rated as painful [22,67,111]. This P2 amplitude reduction was accompanied 120 

by a reduction of pain ratings, measured after each stimulation block [35,38,82] or after the 121 

experiment [67], except in the study by Zaslansky et al. [113] who found no modulation of pain 122 

ratings. While the late N2 component was also often found to be modulated by attention [6,38,112], 123 

results were less consistent regarding the early N1 component and its magnetoencephalographic 124 

counterpart (mN1) reflecting the earliest cortical processing in the somatosensory cortices [37, 104]. 125 

At a first glance, N1/mN1 was not found to be modulated by attention [38,106,111,112]. These 126 

results were interpreted as evidence that the early N1 reflected sensory processing impervious to 127 

cognitive modulation, whereas the late P2 reflected perceptual processing under the influence of 128 

attention. Therefore, it was proposed that the N1 was more suited for clinical examination than the 129 

P2. However, these conclusions were rapidly challenged by studies that found a clear modulation of 130 

the earliest ERP and ERF components with similar paradigms [75,110] or with paradigms in which the 131 

spatial location of the stimuli on the body was manipulated [5,54,91] (see [8,45] for conflicting 132 

results). This strongly supports the fact that, as it was concluded by neuroimaging studies [11,81,92], 133 

almost all cortical areas processing nociceptive inputs may have their activity modulated as a 134 

function of the attention directed to the stimulus [78], likewise reported in other sensory modalities 135 

[40,74,84,88]. 136 
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Based on the results of the studies reviewed in this section, standard stimulation protocols were 137 

proposed to assess nociceptive processing by controlling the level of attention given to the stimuli 138 

[103]. However, the paradigms were built in such a way that it was difficult to disentangle the effects 139 

due to the intrinsic attentional modulation of nociceptive cortical responses from the effects due to 140 

overlapping unspecific brain activities. For instance, standard paradigms required the subjects to 141 

count or to rate the nociceptive/painful stimuli delivered at a slow rate. Nociceptive ERPs recorded in 142 

such conditions, especially the P2, could therefore be contaminated by unspecific ERP components 143 

such as the P300/P3b related to decision making [4,39,43,44,48,54,55,79,93,102,113]. Similarly, the 144 

slow rate of stimulation facilitated the generation of ERP components related to attentional 145 

orientation such as the P3a [48,54].  146 

 147 

2. Bottom-up capture of attention. 148 

According to modern theories of attention, sensory inputs compete to be represented in the 149 

neural system [20,46]. Attention operates by biasing the processing and by selecting the most 150 

appropriate information for the ongoing behavioural and cognitive goals in order to guarantee 151 

coherent sensory-motor processing and to avoid the interference of irrelevant distracters. Such an 152 

attentional selection implies choices that have to be made to control voluntarily the information flow 153 

(top-down control). Nevertheless, attention can also be captured by sensory stimuli, independently 154 

of voluntary control, when they are salient enough to impose their own processing priority [29,46]. 155 

The salience of a stimulus refers to its physical distinctiveness and its ability to stand out relative to 156 

other sensory stimuli [29]. This property confers to a stimulus more ability to capture attention. 157 

Therefore, the bottom-up selection involves a shift of attention from its current focus to another 158 

one, so as to adapt behaviour to contextual constraints, such as the sudden occurrence of a 159 

potentially damaging stimulus [56].  160 
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The ability of painful stimuli to involuntarily capture attention was already observed in 161 

behavioural studies showing decrements of the performance in auditory discrimination tasks when 162 

the task was performed in the presence of task-irrelevant painful stimuli, resulting from a shift of 163 

attention from the auditory target towards the painful distracter (e.g. [15]). Noteworthy is that the 164 

ability of the stimuli to receive attention does not depend on their painfulness, and, more generally, 165 

on their sensory modality, but rather on the contextual relationship between co-occurring stimuli 166 

(i.e. their salience) and on the relative importance of each sensory event for the subject’s goals (i.e. 167 

their relevance; see next section) [56].  168 

Novelty is an important determinant to the salience of a stimulus: sensory events that are 169 

presented for the first time or infrequent events that differ from recent past events are highly 170 

distracting, i.e. they are more susceptible to capture attention from its focus and disrupt other 171 

ongoing cognitive activities [33]. To investigate the effect of novelty on nociceptive ERPs, Legrain et 172 

al. [57] presented their participants with series of visual stimuli, each of them preceded by a 173 

nociceptive laser stimulus. Participants were instructed to perform a task on the visual stimuli while 174 

the nociceptive stimuli were presented as irrelevant distracters. During most of the trials, nociceptive 175 

stimuli were delivered on a specific area of the hand (standard trials). Occasionally and unexpectedly, 176 

the position of the laser beam was shifted to another area of the hand. During these novel trials, the 177 

reaction times to the visual targets were slower compared to trials in which nociceptive stimuli were 178 

regularly presented on the same hand area. This suggests that nociceptive distracters captured the 179 

attention more when they were novel than when they were familiar. Interestingly, novel nociceptive 180 

stimuli elicited ERPs of larger amplitude than those elicited by standard nociceptive stimuli, despite 181 

the fact that stimuli from the two conditions had exactly the same energy. Similar ERP magnitude 182 

increases associated to stimulus novelty were observed when the location of the nociceptive stimuli 183 

was occasionally shifted from one hand to the other [48] or when their intensity was occasionally 184 

changed [49,54,55], suggesting that modification of the ERP waveform was not conditioned by the 185 
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physical dimension in which the change took place, but rather by the fact that the stimulus was 186 

detected as deviant.  187 

In Dowman’s experiments, painful electrical stimuli of different intensities were delivered on the 188 

right vs. left sural nerve, and, before each trial, the most likely spatial location of the forthcoming 189 

stimulus was cued [23,25]. In other experiments, somatosensory stimuli were intermixed with visual 190 

stimuli, and the most likely modality of the forthcoming stimulus was pre-cued [24]. Occasionally, in 191 

a small proportion of trials, the target stimulus was invalidly cued: it appeared at the wrong location, 192 

or belonged to the wrong modality. In these invalid infrequent conditions, stimuli elicited ERPs with 193 

greater amplitude, despite the fact that these stimuli were unattended. Dowman [25] interpreted 194 

these modifications of ERP amplitude as reflecting the activity of neural threat detectors, while other 195 

authors argued that such modifications are not dependent on the threat value and on the sensory 196 

modality of the eliciting stimulus [56,57,73]. 197 

These studies showed that significant ERP modulations may take place when a change occurs 198 

occasionally, even unattended, in the stream of sensory events. Other experiments reported similar 199 

ERP modulations when the nociceptive stimulus is absolutely new (i.e. presented after a long break). 200 

Indeed, by administrating trains of three consecutive laser stimuli of identical intensity at a constant 201 

inter-stimulus time interval, the largest ERP amplitude was observed for the very first stimulus of the 202 

trains, while the magnitude of the ERPs evoked by the second and third stimuli was reduced, without 203 

any significant reduction of pain perception [42]. This magnitude modulation concerned all ERP 204 

components, including the early N1. In successive experiments, the same group tested the influence 205 

of changes introduced within the trains (bottom-up modulation), and controlled for the role of the 206 

participants’ prior knowledge of these changes (top-down modulation) [101,105]. In these 207 

experiments, while the second stimulus was a repetition of the first one, the third stimulus could 208 

either belong to a different modality (e.g. a laser stimulus following two auditory stimuli) [105], or be 209 

delivered on a different body location [101]. While spatial change produced rather small effects, the 210 
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introduction of a change of modality produced a dishabituation of ERPs, i.e. a significant increase of 211 

ERP magnitude for a mismatching third stimulus, as compared with ERPs elicited by the third stimuli 212 

preceded by identical stimuli. Such a dishabituation was observed regardless of top-down 213 

expectations.  214 

Altogether, these data show that nociceptive laser stimuli and painful electrical stimuli elicit ERPs 215 

of larger amplitude when they are novel, i.e. when they are delivered for the first time and after a 216 

long break or when they represent a change relatively to the preceding sensory events. The fact that 217 

these modifications were observed even when nociceptive stimuli were completely irrelevant for the 218 

task and when attention was initially directed to another body location or to a stimulus of a different 219 

sensory modality [49,54,57] suggests that stimulus novelty boosted cortical processing of nociceptive 220 

and painful stimuli irrespective of top-down factors such as the expectation of the occurrence of the 221 

change [101,105]. However, it does not mean that these modifications reflect mechanisms 222 

completely independent from voluntary control. Indeed, both task-relevant and -irrelevant novel 223 

stimuli evoke ERPs of large amplitude, but this effect is larger when the novel stimulus is the target of 224 

the task [54] (Fig. 1) and when the primary visual task requires a minimal level of attention resources 225 

to allow attentional shifting to the nociceptive distracters [49]. Therefore, ERP components such as 226 

the P2 would reflect the actual engagement of attention to the stimulus, instead of a pure automatic 227 

detection of novelty [57]. As the effect of novelty on N1 and N2 amplitude was less recurrently 228 

observed [49,57,105], further studies are mandatory to elucidate the effect of the bottom-up 229 

capture of attention on early-latency nociceptive ERPs.  230 

Interestingly, the modulation of the P2 amplitude induced by novel nociceptive stimuli is highly 231 

similar to the modulation observed for ERPs evoked by auditory, visual and tactile stimuli (i.e. P3a) 232 

[33]. These data further support the notion of a multimodal salience detection system that involves, 233 

among others, brain structures such as the insular and cingulate cortices [26,27]. This multimodal 234 
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nature of the nociceptive ERPs cannot be interpreted as direct index of the subjective experience of 235 

pain [56,73]. 236 

 237 

3. Top-down control of attention and executive functions. 238 

As pain can be modified by attention [107], the manipulation of attention represents a 239 

potentially efficient therapeutic strategy in the clinical management of pain (e.g. [70]). On the other 240 

hand, it is also hypothesized that attention is involved in the persistence of pain symptoms [18]. 241 

However, clinical psychologists might wonder how to help patients to voluntarily control their 242 

attention to pain as painful stimuli are highly susceptible to capture attention involuntarily. As 243 

mentioned in the previous section, attention modifies sensory processing for the purpose of 244 

achieving ongoing cognitive goals or satisfying high-order motivational drives, defining the relevance 245 

of the stimulus, and inhibits interference from distracters. Recently, three factors were proposed as 246 

guarantors of an efficient attentional control over pain stimuli [53,58]. First, attention should be 247 

engaged in the processing of stimuli that are largely unrelated to pain and, more broadly, to 248 

somatosensation. This hypothesis originates from the notion of attentional set that defines a mental 249 

set of information corresponding to the stimulus features the subject needs to identify in order to 250 

perform a task [34]. Thus, the more segregated is the competing sensory information with respect to 251 

the ongoing pain the better will be the control over pain. Second, the engagement of attention 252 

should be effortful [1]. The more attentional resources are loaded on the achievement of a particular 253 

cognitive activity, the less they are available to process the distracters (attentional load) [47]. Finally, 254 

the engagement of attention toward pain-unrelated information should be controlled by executive 255 

functions that guarantee the full achievement of cognitive goals [66] and inhibit the intrusion of 256 

distracters [68]. 257 
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One important consequence of the concept of attentional set is that stimuli which share common 258 

features with the relevant target, even if task-irrelevant, will capture attention more easily. This 259 

could explain why people who are hyper-responsive to body-related information are more easily 260 

distracted by somatosensory stimuli [16,17]. In an ERP experiment, during laser stimulation randomly 261 

delivered on the two hands, participants were instructed to identify target stimuli delivered on a 262 

specific hand. All the stimuli delivered on the relevant hand elicited ERPs of larger amplitude, 263 

regardless of whether they were targets or non-targets of the task, as compared to the ERPs elicited 264 

by similar stimuli delivered when the opposite hand was relevant [54] (Fig. 2). It was thereby 265 

proposed that nociceptive processing was biased by cognitive goals having set, in the present case, 266 

the spatial location of the stimuli as a relevant feature for the task. Since the amplitude modulation 267 

also affected the N1 component, these biases could affect the very early stage of cortical processing, 268 

as shown in other sensory modalities [40,84]. More interestingly, it was shown that the novelty 269 

effect on the P2 (i.e. the magnitude increase observed in response to occasional stimulus change) 270 

was larger for novel stimuli delivered to the attended hand (i.e. the target of the tasks) than for novel 271 

irrelevant stimuli with similar physical properties but delivered to the unattended hand (Fig. 1). This 272 

finding supports the idea that the bottom-up effect induced by stimulus novelty was under the 273 

control of the attentional set.  274 

The role of attentional load was investigated in an ERP experiment in which nociceptive stimuli of 275 

the same intensity were delivered either in regular and homogenous series or as novel stimuli in 276 

series containing regular stimuli of lower intensity [49]. When the participants were instructed to 277 

perform a low-demanding visual task, novel nociceptive stimuli elicited ERPs (N2 and P2) of larger 278 

amplitude. In addition, reaction times to visual targets were slower if the nociceptive stimulation 279 

series contained the novel stimuli. But when the visual task required a higher load of attentional 280 

resources, the novelty effect on P2 magnitude (i.e. the difference between P2 evoked by novel 281 

stimuli and P2 evoked by regular stimuli) was reduced. These results were complemented by 282 
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neuroimaging studies showing a significant reduction of metabolic activity in response to painful 283 

stimuli when the participants performed high-demanding pain-unrelated tasks [2,7,92]. However, it 284 

is important to note that increasing the attentional load on the visual task was not sufficient to 285 

reduce the disruptive effect: reaction times remained slower during the stimulation series with novel 286 

nociceptive stimuli, and participants made more errors [49]. This suggests that an experimental 287 

design which establishes an attentional set unrelated to pain (or to bodily information) does not fully 288 

prevent involuntary attentional shift as well as distraction from salient irrelevant stimuli to take 289 

place.  290 

Therefore, it was proposed that an efficient attentional control over nociception and pain should 291 

also involve executive functions. For instance, working memory might help guiding attention to goal-292 

relevant information [94], by maintaining active the attentional set during the achievement of 293 

cognitive goals, and by shielding goal-relevant information from interference. The role of working 294 

memory in the attentional control of nociception was recently tested [51-53]. Participants were 295 

asked to perform a task on visual stimuli, each of them being shortly preceded by a somatosensory 296 

distracter. Distracters were non-painful median-nerve electrical stimuli occasionally replaced by 297 

nociceptive laser stimuli. Because of the novelty of the nociceptive distracter, reaction times were 298 

longer in response to visual targets preceded by a nociceptive distracter than in response to similar 299 

targets preceded by a standard tactile distracter. However, when participants were asked to 300 

rehearse in working memory some features of the visual targets from trial to trial, the disruption was 301 

reduced: there was no difference between visual targets coupled with novel distracters and visual 302 

targets with standard somatosensory distracters [53], regardless of the attentional overload 303 

generated by the task [51]. In addition, the magnitude of the N1 and N2 ERPs was reduced during the 304 

working memory condition, suggesting a control by working memory over early cortical processing of 305 

nociceptive inputs [52]. Surprisingly, the P2 magnitude was reduced only during a working memory 306 

task consisting in delaying the response to a target to the next trial. Because this task is thought to 307 
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manipulate the representation of the response associated to the target stimulus, it was therefore 308 

hypothesized that the modulation of the nociceptive-evoked P2 would reflect attentional processing 309 

associated with the selection of the motor response (see paragraph 5). Conversely, P2 amplitude was 310 

not affected by the instruction to rehearse in working memory the sensory features of the visual 311 

target. 312 

 313 

4. Multimodal interaction and spatial representations of the body. 314 

The studies described above provide converging evidence that the cortical processing of a 315 

nociceptive stimulus, as sampled with classic neurophysiological and neuroimaging techniques2, is 316 

strongly determined by the salience and the relevance of the stimulus. Therefore, it was proposed 317 

that ERPs elicited by nociceptive stimuli mainly reflect cortical processes involved in the orientation 318 

of attention when the stimulus is sufficiently distinctive to receive priority processing over other 319 

sensory inputs [56]. This hypothesis has received strong support from studies demonstrating that 320 

ERPs elicited by nociceptive and painful stimuli are not specifically related to the perception of pain 321 

[42] but represent a pattern of cortical activities that can also be generated by stimuli from other 322 

sensory modalities [73]. Therefore, the nociceptive ERPs could reflect the activities of a cortical 323 

network involved in an important but non-specific function of pain: that of detecting salient sensory 324 

events and prompting the appropriate response. Because salient stimuli can represent events with 325 

significant impact on the organism in terms of adaptation, it was proposed that this network could be 326 

particularly important to process significant sensory stimuli for the physical integrity of the body [56]. 327 

In other words, nociceptive ERPs would reflect the activity of a cortical system that could be used as 328 

                                                           
2
 It is important to emphasise that the claim according to which the cortical activity elicited by a nociceptive 

stimuli does not reflect the perception of pain [42,56,73] is not meant to dismiss the existence of any cortical 

activity specifically involved in the generation of pain. Nevertheless, there is converging evidence that such an 

activity is not accessible to classic methodologies used to record and analyse brain activity [56]. This evidence 

calls for developing novel methods to characterise the cortical activity elicited by a nociceptive stimulus and its 

relationship to the perception of pain [14, 114]. 
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a defensive mechanism to detect, localize, and react to physical threat, whatever the modality of the 329 

threatening stimulus.  330 

An efficient localization of external sensory events involves the ability of the brain to represent 331 

space according to different frames of reference [13]. In addition, it is known that the brain can 332 

construct coherent spatial representations of the body and of the surrounding space by integrating 333 

information from different sources, i.e. somatosensory, proprioceptive, vestibular, visual [95]. The 334 

role of multimodal representations of the body and the peripersonal space is well documented by 335 

studies investigating tactile processing, including ERP studies [88]. Indeed, it has been consistently 336 

shown that viewing the stimulated body part or visual cues close to the stimulated body part 337 

enhances the magnitude of the ERPs induced by tactile stimulation of that body part [30,31,89,99], 338 

and that such a modulation is also influenced by body posture [32]. These studies have shown that 339 

the influence of vision on tactile processing depends on the close spatial proximity between the 340 

visual stimulus and the tactile stimulation of the body [87].  341 

Although multimodal integration of nociception with stimuli from the other sensory modalities 342 

has received less attention, there is some evidence that nociceptive processing is largely modulated 343 

by vision and proprioception. This claim is supported by clinical neuropsychological studies. For 344 

instance, Hoogenraad et al. [41] reported a case of a neglect patient with a right parietal lesion who 345 

suffered from hemianesthesia for both nociception and touch, which manifested specifically when 346 

the stimulus was applied while the patient had his eyes closed. In contrast, when the patient had his 347 

eyes open and saw the sensory testing tool approaching his contralesional limb, he reported a 348 

sensation of burning pain in the arm. In addition, it was shown that patients suffering from complex 349 

regional pain syndrome (CRPS) tend to neglect their affected limb [50]. More importantly, their 350 

neglect-like symptoms are influenced by the vision of the limbs [72] and by the posture [71], thus 351 

suggesting that neglect symptoms of CRPS do not depend on a purely somatotopic representation of 352 

pain [50,71]. Intriguingly, when CRPS patients were asked to indicate in the dark what they estimated 353 
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to be the midline of their body, they neglected the opposite side of space, i.e. the side corresponding 354 

to the location of the healthy limb [96,97]. When the visual field of the patients was shifted by 355 

prismatic glasses toward the hemispace corresponding to the unaffected limb, CRPS symptoms, 356 

including neglect-like symptoms and pain, were alleviated [10,96]. In healthy participants, an ERP 357 

study showed a significant influence of viewing the stimulated hand on the magnitude of laser-358 

evoked potentials [61]. Participants were looking directly at their stimulated hand or an image of that 359 

hand manipulated through a mirror illusion (see [85]). In this latter condition, the stimulated hand 360 

was placed behind a mirror aligned with the participant’s sagittal plane and the illusion of seeing that 361 

hand was created while the participant was actually seeing the mirror-reflected image of the 362 

opposite hand. This illusion was created in order to disambiguate whether the effect was driven by 363 

viewing one's own hand or the threatening stimulus on the hand (i.e. the laser beam). As compared 364 

to control conditions in which the stimulated hand was out of sight and masked by a neutral object, 365 

or the participants were looking at the experimenter’s hand, laser stimuli were rated as less intense 366 

and evoked ERPs of smaller amplitude when the participants looked at their own stimulated hand. 367 

Similarly, Mancini et al. [64] showed that viewing one’s own hand increases pain threshold, in 368 

comparison to viewing an object in the same location. They demonstrated that the visual appearance 369 

of the hand further modulates pain perception. The participants’ hand was observed through a 370 

distorting mirror so that the size of the visual image appeared magnified or minified. Enlarging the 371 

visual image of the hand enhanced the reduction of pain, while reducing the visual image of the hand 372 

decreased the reduction of pain. The results from the two latter studies [61,64] are surprising as, 373 

based on the known mechanisms of spatial attention, one should expect that looking at the hand 374 

would direct spatial attention in a cross-modal way to that location [30], which would amplify 375 

nociceptive processing [54], and therefore increase pain [108]. In contrast, it was proposed that the 376 

reduction of pain by viewing the body could be mediated by an integration of the body part in pain 377 

within a stable representation of the body [62]. Noteworthy is that the reverse pattern was observed 378 

in CRPS patients [72], perhaps due to specific aspects of CRPS pathophysiology. 379 
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Regarding the influence of proprioception, Gallace et al. [36] showed a modulatory effect of hand 380 

posture on nociceptive ERPs. Non-nociceptive electrocutaneous and nociceptive laser stimuli were 381 

applied distinctly on one of the hands, while the vision of the hands was precluded by a screen. 382 

Participants were tested with the hands in a canonical posture vs. in a crossed posture (relatively to 383 

the sagittal midline of the trunk). Both the perceived intensity and the magnitude of the evoked ERPs 384 

(N2/P2, but not N1) were reduced for stimuli applied during the crossed posture relative to the 385 

canonical posture. Finally, a recent study provided compelling evidence that body posture modulates 386 

not only the cortical processing but also the subcortical activity elicited by electrocutaneous 387 

stimulation. Sambo et al. [90] showed that the proximity of the hand to the face, which was 388 

manipulated both by changing the position of the hand and by rotating the head, modulated the 389 

excitability of the brainstem circuits mediating the blink reflex elicited by intense electrical 390 

stimulation of the median nerve at the wrist. That is, when the hand entered the proximal space 391 

surrounding the face, the electromyographic correlate of the blink reflex elicited by the stimulation 392 

of the hand showed an earlier onset, longer duration, and greater amplitude (Fig. 3). This suggests 393 

that multimodal areas responsible for remapping the location of somatosensory stimuli according to 394 

the current body posture exert a tonic modulation of the brainstem circuits of the hand-elicited blink 395 

reflex. 396 

 397 

5. From sensory processing to action 398 

The P2 wave elicited by nociceptive stimuli is reduced when the participants have to keep in 399 

working memory the representation of the response associated to a concurrent visual target, but not 400 

when it involves the rehearsal of the sensory features of that visual target [52]. Other authors 401 

showed that the delivery of laser stimuli during the preparation of a motor response to a visual 402 

stimulus elicited ERPs of weaker amplitude if the laser stimuli were ipsilateral to the prepared hand 403 

movement [59]. These findings may hint to interpret the P2 wave as reflecting processes related to 404 
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the selection of motor responses. This hypothesis finds supporting evidence in the identification of 405 

the mid-section of the cingulate cortex as the main generator of P2 [37], an area involved in motor 406 

processing [28,100]. Primary motor and supplementary motor areas were also proposed as potential 407 

generators of the nociceptive ERPs [80]. Therefore, one might hypothesize that the P2 generators (or 408 

at least part of them) could reflect the selection and the preparation of the appropriate action in 409 

response to the most salient stimulus in the environment. However, to date, most of the 410 

electrophysiological studies that directly investigated the relationship between nociception and 411 

motor function tested the effect of movements on the nociceptive ERPs with the aim to understand 412 

the neurophysiological mechanisms underlying the analgesic effect of motor cortex stimulation (e.g. 413 

[76]). Thus, further investigation on the role of the P2 vertex positivity as an index of cortical 414 

processes related to action preparation and selection is needed. 415 

 416 

Conclusion 417 

The studies reviewed here support the idea that classic ERPs elicited by nociceptive stimuli 418 

represent the cortical activity related to an important but non-specific function of pain: to detect and 419 

react against stimuli that are potentially significant for the physical integrity of the body. In such a 420 

theoretical framework, these cortical responses could represent the joined activity of three major 421 

processes. The first process detects and orients attention selectively to the most salient sensory 422 

event in order to prioritize its processing. The salience of a stimulus is defined by its physical 423 

properties making it contextually conspicuous with respect to other surrounding stimuli. But it can be 424 

modulated by the relevance of the stimuli in relation to the subject’s cognitive goals, on the effort 425 

exerted to achieve these goals and on the executive control over interference between competing 426 

sensory inputs. The second process is involved in the spatial localization of the stimulus using spatial 427 

frames of reference that integrate the stimulus in global and multimodal representations of the body 428 

and the proximal space. The third process reflects cognitive operations apt to bridge a coherent 429 
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perception of salient sensory events with action selection in order to prepare and triggers the most 430 

appropriate motor response to the stimulus.   431 

Such perspective provides support to, and is in turn supported by, clinical application. 432 

Indeed, the therapeutic potential to alleviate pain experience in chronic pain patients [10,96], as 433 

shown by the mirror box [85] and the prism adaptation technique [86], is largely grounded on the 434 

notion of a multimodal representation of the body. These clinical studies, in addition to the ERP 435 

studies reviewed here, support the idea of a close interplay between the processing of sensory inputs 436 

arising from multiple sources and cognitive functions ranging from attentional capture to action 437 

selection. This highlights the potential synergy between medical intervention and neuropsyhological 438 

rehabilitation for the treatment of pain and other sensory-motor deficits associated with chronic 439 

pain diseases (see [50]). 440 
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Figure Caption 705 

 706 

Fig. 1. Bottom-up attentional effects on the nociceptive ERPs. Graphs illustrate ERPs recorded in 707 

different sessions in response to laser stimulus of the same intensity, but with different probabilities 708 

of occurrence. Laser stimuli were delivered either in regular and standard series of stimulation 709 

(green, 80% of trials), or in series of mismatching novel stimulation (i.e. their intensity was different 710 

than the standard stimuli delivered in the same block, blue, 20% of trials). The stimulated hand was 711 

either attended (left panel, red solid box), or unattended (right panel, orange dashed box). In the 712 

former case the novel stimuli were the targets of the task, in the latter case the novel stimuli were 713 
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non-target stimuli with the same physical properties and the same probability of occurrence than the 714 

targets. Amplitude of the P2 component, elicited at the vertex (see topographical maps, all 715 

conditions merged), was larger in response to novel stimuli than is response to standard stimuli, both 716 

on the attended hand and the unattended hand. The difference due to stimulus novelty was 717 

nevertheless larger on the attended hand than on the unattended hand. Also note that the presence 718 

of a parietal P3 component (or P300/P3b) was significantly observed only in response to the novel 719 

stimuli on the attended hand (i.e. the targets) (the map in this time-window illustrates only the 720 

topography of the ERPs elicited by the rare targets). This suggests that the participants only 721 

responded to the rare targets, and not to rare non-targets. As a consequence the magnitude increase 722 

for the P2 was indeed related to novelty-detection processes and partially independent from the 723 

voluntary decision to detect the targets (adapted from [54]). 724 
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 726 

Fig. 2. Top-down attentional effects on the nociceptive ERPs. Laser stimuli were delivered randomly 727 

on the dorsum of the two hands. Participants were instructed to attend to the stimuli delivered of 728 

one hand and to detect occasional changes of stimulus intensity (i.e. targets), while ignoring all the 729 

stimuli delivered on the other hand. Graphs illustrate the ERPs elicited by attended and unattended 730 

non-targets stimuli. The left panel represents the ERPs recorded over the left hemisphere in response 731 

to right hand stimulation, the right panel the ERPs recorded over the right hemisphere in response to 732 

left hand stimulation. Topographical maps illustrate ERPs in the time-window of the N1 and N2 733 

components (all “attention” conditions merged). Nociceptive stimuli of the right hand elicited ERPs of 734 
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larger amplitude when the right hand was attended (red) than when the left hand was attended 735 

(blue). Similarly, left hand stimuli elicited ERPs of larger amplitude when the left hand was attended 736 

(blue) than when the right was attended (red). This modulation was observed as early as during the 737 

latency of the first laser-evoked component, i.e. N1 (adapted from [54]). 738 

 739 

 740 

Fig. 3. Modulation of hand blink reflex by hand position. Blink reflex was elicited by intense electrical 741 

stimulation of the median nerve at the wrist, and electromyographic activity was recorded from the 742 

orbicularis oculi muscle (hand blink reflex or HBR).HBR was induced when the stimulated hand was 743 

near to the face (red lines) vs. far from the face (blue lines). The hand was positioned ipsilaterally 744 

(solid lines) vs. contralaterally (dashed lines) to the recording sites. The HBR had a significantly 745 

greater magnitude when the stimulated hand was near to the face than when it was far, and when 746 

the stimulated hand was ipsilateral than contralateral to the eye over which the HBR was recorded. 747 

This shows that brainstem activities mediating defensive reflexes can receive top-down modulation 748 

in order to respond adequately to external potential threats with respects to the position of the body 749 

parts (adapted from [90]). 750 
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