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Abstract

While there have been many studies of how to schedule ap-
plications to take advantage of increasing numbers of cores
in modern-day multicore processors, few have focused on
multi-threaded managed language applications which are
prevalent from the embedded to the server domain. Managed
languages complicate performance studies because they
have additional virtual machine threads that collect garbage
and dynamically compile, closely interacting with applica-
tion threads. Further complexity is introduced as modern
multicore machines have multiple sockets and dynamic fre-
quency scaling options, broadening opportunities to reduce
both power and running time.

In this paper, we explore the performance of Java applica-
tions, studying how best to map application and virtual ma-
chine (JVM) threads to a multicore, multi-socket environ-
ment. We explore both the cost of separating JVM threads
from application threads, and the opportunity to speed up or
slow down the clock frequency of isolated threads. We per-
form experiments with the multi-threaded DaCapo bench-
marks and pseudojbb2005 running on the Jikes Research
Virtual Machine, on a dual-socket, 8-core Intel Nehalem
machine to reveal several novel, and sometimes counter-
intuitive, findings. We believe these insights are a first but
important step towards understanding and optimizing man-
aged language performance on modern hardware.

Categories and Subject Descriptors D3.4 [Programming
Languages]: Processors—Memory management (garbage
collection); Optimization; Run-time environments

General Terms Performance, Measurement

Keywords Performance Analysis, Multicore, Managed Lan-
guages, Java
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1. Introduction

Multicore systems are here to stay. Since the first multicore
processor was released over a decade ago, today’s proces-
sors implement up to a dozen cores, and each generation is
expected to have an increasing number of cores because of
Moore’s law [19]. Multicore processors are abundant across
all segments of the computer business, from hand-held de-
vices such as smartphones and tablets, up to high-end sys-
tems. Today’s servers even host multiple sockets, effectively
creating systems with multiple tens of cores.

Given the ubiquity of multi-threaded managed language
applications [22], now running on modern multicore hard-
ware, their performance is critical to understand. While mul-
ticore performance has been extensively studied for multi-
threaded applications written in traditional programming
languages, understanding the performance of applications
written in managed languages such as Java has received lit-
tle attention. Part of the reason is the complexity of these
managed workloads. Java virtual machine (JVM) service
threads such as garbage collection, profiling, and compila-
tion threads, interact with application threads in many com-
plex, non-deterministic ways. Not only can these threads
stop the application, e.g., in order to collect a full heap, they
also interact with the application at the microarchitectural
level, sharing hardware resources, such as cores, cache and
off-chip bandwidth.

Looking forward, optimizing performance while taking
into account power and energy will be even more impor-
tant. Handheld devices have to minimize total energy con-
sumption with given performance goals, e.g., soft real-time
deadlines. For high-end servers, the goal is typically to op-
timize performance while not exceeding a given power bud-
get. Several studies point out that with the end of Dennard
scaling [7] — slowed supply voltage scaling — it will no
longer be possible to power on the entire processor all the
time, a problem referred to as dark silicon [9]. Intel’s Turbo
Boost technology [15], which enables increasing clock fre-
quency for a limited number of cores and for a short duration
of time, could be viewed as a form of dark silicon.

Understanding and optimizing managed application per-
formance on multicore processors and systems is therefore
a complicated endeavor. Some of the fundamental ques-



tions that arise are: How many application and JVM service
threads yield optimum performance? Should one initiate as
many application and garbage collection threads as there are
cores on the chip? If so, does this hold true for multi-socket
systems as well? Further, how should one distribute the ap-
plication, garbage collection and compiler threads across the
various cores and sockets in the system? In particular, in
case of a multi-socket system, should one schedule JVM ser-
vice threads on the same socket as the application threads,
and what is the performance penalty, if any, from offloading
JVM service threads to another socket? If optimizing per-
formance, but taking power into consideration, should one
speed up all threads or just the application threads? And how
much does performance degrade by slowing down JVM ser-
vice threads?

In this paper, we provide insight into Java multi-threaded
application performance on multicore, multi-socket hard-
ware. We perform a comprehensive set of experiments us-
ing a collection of multi-threaded DaCapo benchmarks and
pseudojbb2005 on a dual-socket 8-core Intel Nehalem sys-
tem with a current version of the Jikes Research Virtual Ma-
chine. We vary the number of cores and sockets, the num-
ber of application and garbage collection threads, clock fre-
quency, thread-to-core mapping and pinning, and heap size.

We are the first to extensively explore the space of multi-
threaded Java applications on multicore multi-socket sys-
tems, and we reveal a number of new, and sometimes sur-
prising, conclusions:

1. Java application running time benefits significantly from
increasing core frequency.

2. When isolating JVM collector threads onto a separate
socket from application threads, there is a cost: less than
20% of performance. However, isolating the compila-
tion thread is usually performance neutral, but for some
benchmarks actually improves overall performance.

3. If power-constrained, lowering the frequency of JVM
service threads costs a fraction of performance, but 3-5
times less than when scaling application threads.

4. Many benchmarks achieve good performance when all
threads run on a single socket at the highest frequency,
and the second socket is kept idle. However, all but one
benchmark have optimal performance when isolating the
compilation thread and lowering its frequency.

5. For our benchmarks, the best performance running on
one socket is usually obtained by keeping the number
of application threads equal to the number of collection
threads, also equal to the number of cores. With two sock-
ets, it is better to pair application and collector threads
together (unless there is a lot of inter-thread communi-
cation), and almost all benchmarks benefit from increas-
ing the number of application threads to be equal to the
number of cores while setting the number of collection
threads to half of that.

6. Pinning application and collector threads to cores does
not always improve performance, and some benchmarks
benefit from letting threads migrate.

7. During startup time, the cost of isolating JVM service
threads to another socket is less than at steady-state time,
while lowering their frequency still deteriorates perfor-
mance several times less than that of lowering the appli-
cation threads.

Analyzing Java applications on modern multicore, multi-
socket hardware reveals that it is difficult to follow a set of
rules that will lead to optimal performance for all applica-
tions. However, our results reveal insights that will assist
in identifying the right number and scheduling of applica-
tion and JVM service threads that will preserve performance
while saving the critical resource of power in future systems.

2. Motivation

As managed languages have become ubiquitous from the
embedded to the server market and in between, it is im-
portant to analyze their performance on multicore hard-
ware. Because Java applications run on top of a virtual
runtime environment, which includes its own management
threads and introduces non-determinism for applications,
choosing the correct parameters and configurations to bal-
ance performance and energy is complex. Modern machines
also introduce extra runtime parameters to study, offering
multiple sockets and frequency (and voltage) scaling op-
tions. Researchers have been studying the performance and
power consumption for managed languages as part of prior
work [4-6, 10, 11, 13], demonstrating that it is an impor-
tant problem. However, studies in prior work were limited
to single-socket systems, single-threaded Java applications,
and/or isolated JVM service performance, not end-to-end
performance. (See Section 5 for a more detailed description
of prior work.)

In this work we expand the exploration space consider-
ably. We consider multi-threaded applications written in a
managed programming language, Java. We focus on multi-
core, multi-socket hardware. We also aim at understanding
how design choices in terms of thread-mapping, frequency
scaling, thread-pairing, pinning, and more affect end-to-end
application performance. More specifically, there are a num-
ber of fundamental questions related to Java application per-
formance on multicore multi-socket systems that merit fur-
ther investigation.

Number of application and JVM service threads. First,
we would like to explore the number of application and col-
lection threads given a particular number of cores. Default
methodology sets the number of application and collection
threads equal to the number of cores; however, this does
not necessarily take into account the sharing of hardware re-
sources between these and other JVM threads, nor does it
take into account memory access ramifications of commu-



nicating across sockets. Although current practice is to have
thread-local allocation, collection threads are not tied to any
particular application thread or core (in our Java virtual ma-
chine), and can touch many areas of memory and incur inter-
thread synchronization in order to reclaim space. Other JVM
threads such as those that perform dynamic compilation and
on-stack replacement, also interact with application threads
and share hardware resources. It is unclear whether hardware
resource sharing between JVM and application threads actu-
ally helps or hurts performance, because of either better data
locality or resource contention.

Thread-to-core/socket mapping. Inherent in the choice of
the number of threads is where to place these threads on
a multicore multi-socket system. Current systems largely
leave thread scheduling up to the operating system which
can preempt and context switch threads when necessary.
Intuition suggests we should use all cores and maximize
parallelism. Further, benchmarks with large working sets
could benefit from the aggregate last-level cache capacity
across sockets. However, as previously mentioned, moving
data between sockets increases inter-thread communication,
leading to more memory accesses and coherence traffic and
potentially higher synchronization costs.

Frequency scaling and power implications. Because mod-
ern machines include the ability to dynamically scale the
core frequency, another axis to explore is the ramifications
of scaling on total application performance. Because power
is a first-order concern, and will become even more con-
strained in future systems, it might be worth paying the
price of somewhat reduced performance for power savings.
Hence, we need to analyze both the cost of moving threads
to another core or socket and then additionally, the cost of
lowering the clock speed. Because JVM service threads do
not run constantly, we surmise that they should be amenable
to running at scaled-down frequencies without hurting appli-
cation performance drastically. However, both compilation
and collection can be on the application critical path if they
need to stop the workload to perform on-stack replacement
or collect garbage when the heap is full. Garbage collection
threads have to trace all live heap pointers to identify dead
data to reclaim, and could thus suffer from higher memory
communication if moved to a separate socket.

Analyzing this challenging experimental space will shed
light on the ramifications of the many configuration and
scheduling decisions on overall goals, whether time or
power. We explore the performance of Java workloads, while
keeping power in mind, along these many orthogonal axes
on modern multicore, multi-socket hardware to provide new,
sometimes surprising, findings and insights.

3. Experimental Setup

Before presenting the key results obtained from this study,
we describe our experimental setup of running Java work-
loads on multicore, multi-socket hardware.

Socket O Socket 1

Nehalem Nehalem Nehalem Nehalem
Core 0 Core 3 Core 4 Core 7

DDR3 Memory
Controllers Controllers

DDR3 Memory
! !

Figure 1. Diagram of our two-socket, eight-core Intel Ne-
halem experimental machine, with memory hierarchy.
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3.1 Hardware Platform

The hardware platform considered in this study is an Intel
Nehalem based system, more specifically, an IBM x3650 M2
with two Intel Xeon X5570 processors that are 45-nm West-
mere chips with 4 cores each, see Figure 1. The two sockets
are connected to each other through QuickPath Interconnect
Technology; and feature a 1333 MHz front-side bus. Each
core has a private L1 with 32 KB for data and 32 KB for
instructions. The unified 256 KB L2 cache is private, and
the 8 MB L3 cache is shared across all four cores on each
socket. The machine has a total main memory capacity of
14 GB. We can use dynamic frequency scaling (DFS) on
the Nehalem to vary core frequencies between 1.596 GHz
and 3.059 GHz. However, on this machine, it is only possi-
ble to change the frequency at a socket-level. Therefore, all
four cores on each socket run at the same frequency, and we
are unable to evaluate more than two different frequencies
simultaneously. For all of our experiments, we set the fre-
quency only to the lowest and highest extremes to test the
limits of performance. We turn hyperthreading off in all of
our experiments.

3.2 Benchmarks and JVM Methodology

We perform experiments with the Jikes Research Virtual
Machine (RVM), having obtained the source from the Mer-
curial repository in December, 2011'. We updated from a
stable release of Jikes because of a revamping of their ex-
perimental methodology code. We modified Jikes slightly to
identify and control JVM service thread placement for the
purpose of frequency scaling. By default, we pin applica-
tion and garbage collection threads to a particular core, and
other JVM service threads are placed on the socket with ap-
plication threads, but not pinned to a specific core. We also
perform experiments without pinning application and JVM
threads for comparison, and these results will be discussed in
Section 4.5. In addition to threads that perform garbage col-
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avrora  DaCapo Bach 50 54
lusearch  DaCapo Bach 34 8152
lusearch-fix ~ DaCapo Bach 34 1071

pmd  DaCapo Bach 49 385
sunflow  DaCapo Bach 54 1832
xalan  DaCapo Bach 54 1104
pjbb2005  SPECjbb2005 200 1930

Table 1. Benchmark characteristics.

lection and compilation, other JVM service threads include a
thread to perform finalization and do timing, many threads to
coordinate on-stack-replacement (called organizer threads)
of dynamically recompiled method code, and a main thread
that is the first to execute the application’s main method.
Jikes does not perform compilation in parallel, so there is
only one compilation thread.

We perform experiments on the multi-threaded Java ap-
plications in the DaCapo benchmark suite [4] version 9.12-
bach that successfully run on our version of Jikes RVM.
These include avrora, lusearch, pmd, sunflow, and xalan. We
also perform experiments on pseudojbb2005 [3, 4], a vari-
ant of SPECjbb2005 with a fixed number of warehouses
that allows for measuring the execution time. These bench-
marks are real-world open-source applications. Table 1 de-
tails which suite our benchmarks came from, their mini-
mum heap size in MB and their total allocation in MB [25].
We control the number of application and collection threads
with command-line flags (which are by default both set to
four). Our experiments use the best-performing, default gen-
erational Immix heap configuration [2]. Although there are
garbage collection threads running in parallel, the collector
is “stop-the-world” meaning that the application is stopped
during both nursery and whole-heap collections. We per-
formed all experiments at 1.5, 2, and 3 times the minimum
heap size for each benchmark. For conciseness, we present
some graphs only with 2 times the minimum heap size. We
perform 10 invocations of each benchmark, and results are
presented as the average of these 10 runs, along with 90%
confidence intervals. For steady-state execution, which is the
default reported throughout results, we measure the 15th it-
eration. Although there is non-determinism inherent in us-
ing the just-in-time adaptive compilation system that detects
hot methods and dynamically re-compiles them to higher
optimization levels, measuring the 15th iteration gives time
for the benchmark to reach more steady-state behavior. For
comparison, we present two separate sections of results at
startup time, which are gathered during the first iteration of
each benchmark. The compilation and on-stack-replacement

threads are most active during startup time, and thus we in-
clude results for complete evaluation.

For targeted further analysis, we perform experiments
with a version of the lusearch benchmark updated with a
bug fix. The original lusearch derives from the 2.4.1 stable
release of Apache Lucene, and has a very high allocation
rate. This version included a bug that when fixed, only con-
ditionally allocates a large data structure and cuts allocation
by a factor of eight [25]. For additional experiments, we use
a version updated with revision r803664 of Lucene that con-
tains the bug fix [20], and we call this “lusearch-fix”. We
include results in all graphs for “lusearch-fix”’; however, we
still include the original lusearch because it is the official
benchmark in the current release of the DaCapo suite.

3.3 Methodological Design

Recent hardware trends point to a need for power savings
and capping while delivering high levels of performance. Al-
ready, recent research [6] has explored the effect of scaling
the frequency of service threads on power and energy, ex-
plicitly targeting a heterogeneous multicore processor with
big and small cores. While this is an important step to inform
future hardware design, it is also important to focus on evalu-
ating how to obtain the best performance from current multi-
socket systems. Therefore, we measure end-to-end perfor-
mance for multi-threaded workloads, and study the effect of
both isolating and scaling JVM and application threads.

Because we are unable to perform per-core DFS in our
hardware setup, we employ a two-step process. We first mi-
grate certain threads to a separate socket and evaluate the
cost of isolating threads on running time. Subsequently, we
quantify and report relative performance differences when
comparing frequency settings after isolating threads. By do-
ing so, we separate the effect of scaling frequency from iso-
lating threads onto another socket, and hence provide insight
into how scaling affects end-to-end performance in multi-
core systems.

The percentage of time spent in JVM threads is less than
in the application threads. For this reason, we expect scal-
ing down the frequency of JVM threads to have a smaller
impact on end-to-end performance than scaling application
threads. However, there is close interaction between applica-
tion and JVM threads which makes this an interest space to
explore. In particular, because we use a stop-the-world col-
lector, application threads are stopped during garbage col-
lection, hence slowing down collection only by a small frac-
tion may have significant impact on overall application per-
formance. Likewise, just-in-time compilation threads gener-
ate optimized code during runtime, and slowing these down
may cause the application to run unoptimized code for a
longer period of time, which may also have significant im-
pact on overall performance. Furthermore, the interaction
between JVM and application threads because of updating
code and managing data leads to unpredictable interference
in the memory subsystem. The interactions between appli-



cation and JVM threads are diverse and complex, and hence,
we perform detailed experiments to evaluate the impact of
both pairing and scaling the frequency of application and
JVM threads.

4. Results

We now present our experimental results running multi-
threaded Java applications on modern multicore, multi-
socket hardware, in which we vary the number of cores and
sockets, the number of application and garbage collection
threads, clock frequency, thread-to-core mapping and pin-
ning, and heap size. Because of the complexity of the space,
we break up the analysis in a number of comprehensive
steps. We first discuss the general effect frequency scaling
has on application execution time. We then analyze the cost
of isolating some JVM threads to a separate socket. After
isolating JVM threads, we analyze the cost of scaling the
frequency of isolated JVM service threads from the high-
est to the lowest value on end-to-end performance. Because
we see a significant cost from isolating garbage collection
threads, we then perform experiments that pair application
and collection threads, but put some pairs on each socket.
Finally, we analyze the effect that thread pinning has on per-
formance, and the effect of varying both the number of ap-
plication and collector threads while running on one socket.

4.1 The Effect of Scaling Frequency

Although a detailed power study is beyond the scope of
this paper, we first wanted to explore the effect core fre-
quency has on application performance. Figure 2 presents
the speedup as a percentage of execution time of boost-
ing core frequency from the lowest to the highest, when all
threads, including four collector threads, run on only one
socket. Results are for all six benchmarks for our range of
three heap sizes.

Finding 1. Java workloads benefit significantly from scaling
up the clock frequency.

Doubling clock frequency leads to between 27% and 50%
performance improvement. Results are not sensitive to heap
size. We see that doubling the clock speed does not lead
to doubling the performance improvement, which would be
100%. Our benchmarks fall short of perfect scaling, most
likely because of inter-thread synchronization and memory
intensity. However, as we will see in all of our results, core
frequency is one of the most significant factors in determin-
ing, and improving, application time. Below, we will show
that scaling down JVM thread frequency does not affect per-
formance as drastically as for application threads.

4.2 The Cost of Isolation

We now analyze the performance penalty inherent to iso-
lating JVM service threads to another socket. We investi-
gate this cost for four collector threads, for the compilation
thread, for all JVM service threads except collector threads,
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Figure 2. Percent execution time improvement when boost-
ing frequency from lowest to highest on one socket.

and then all JVM threads together. The motivation for this
experiment is twofold. First, in order to investigate the fea-
sibility of scaling down the frequency of only JVM service
threads, we must first isolate threads onto a separate socket,
because we are only able to scale frequency at the socket-
level. Second, we want to study how isolating JVM service
threads to another socket hurts (through reduced data local-
ity) or helps performance (by getting off the application’s
critical path).

Isolating garbage collection threads. Figures 3 through 6
show the cost of isolating some JVM threads to a second
socket, as compared with the execution times when run-
ning all threads on one socket. The graphs present steady-
state performance differences for our three heap sizes run-
ning at both the highest and lowest core frequencies. While
some benchmarks’ performance varies with heap size, we
see larger performance differences between high and low
core frequencies.

Finding 2. Isolating garbage collection threads to a sep-
arate socket leads to a small performance degradation (no
more than 17%) for most benchmarks because of increased
latency between sockets; however, one benchmark substan-
tially benefits (up to 66%) from increased cache capacity.

Figure 3 shows that all but one application suffer from
isolating four collection threads, due to more data commu-
nication between sockets. For all but lusearch, the degrada-
tion is less than 5% for the lowest frequency, and less than
17% for the highest. Lusearch is an outlier that particularly
suffers from both increasing the number of collector threads
(as shown in Figure 24) and from isolating those threads to
another socket, with over 40% degradation in performance.
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Figure 3 shows that when lusearch does not suffer from huge
amounts of allocation, lusearch-fix’s cost of moving collec-
tor threads to another socket lowers to be in line with other
benchmark trends.

Interestingly, avrora benefits from isolating the collector
threads to another socket. Performance improves by 36%
and 66% at the lowest and highest frequencies, respectively.
However, it should be noted that the confidence intervals
for avrora are large, and thus performance greatly varies
from run to run. For avrora, running all application and
collector threads on one socket makes the threads contend
more for the cache, and avrora benefits from the increased
cache capacity of two sockets. Analyzing hardware perfor-
mance counters revealed fewer L3 misses when the collector
threads were isolated. We will see later that avrora is particu-
larly sensitive to application-thread to core mapping because
application threads do not have uniform behavior, and share
data (see analysis in Sections 4.4 and 4.5).
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Figure 5. Percent execution time improvement of isolating
all JVM non-collector threads to a second socket.

Isolating the JIT compilation thread. Figure 4 shows the
effect of isolating just the compilation thread, with four
collector and four application threads that are pinned to the
first socket.

Finding 3. Isolating the compilation thread to a sepa-
rate socket leads to a either a performance boost, or is
performance-neutral. Only avrora’s performance at high
frequencies suffers because of increased latency between
sockets.

Four benchmarks have very little change to performance
when the compiler thread is isolated to a separate socket dur-
ing steady-state. Lusearch and pjbb2005 see a performance
win, especially at the higher frequency, by isolating the com-
piler away from other application and collector threads. Only
avrora sees a performance hit, up to 100% with the highest
frequency (although confidence intervals are large). It is pos-
sible that when the application is sped up, it is more sensi-
tive to the compiler being separated from other JVM threads
such as those that perform on-stack-replacement. When an-
alyzing startup time, indeed avrora is the only benchmark
for which performance degrades when isolating the compiler
or on-stack-replacement threads (see further analysis in this
section regarding Figures 8 and 9).

Isolating all JVM service threads. Figure 5 shows the
cost of isolating all JVM service threads except for the four
collection threads (or nonGC) which remain on the first
socket with application threads. Figure 6 then shows the
impact to performance when all JVM threads are isolated
onto another socket.

Finding 4. Isolating all JVM service threads to a separate
socket leads to larger performance degradation for a few
benchmarks (only one suffers more than 22% degradation,
and only at the highest frequency), while others are only
slightly negatively affected by offloading computation and
memory to another socket.
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Interestingly, while avrora benefited from collector thread
isolation, performance severely degrades when isolating all
nonGC threads. At the higher frequency, performance degra-
dation goes down to 107%! Comparing this to isolating all
JVM service threads, we see that avrora still suffers, but less,
with a maximum of only 88% degradation. Avrora is more
sensitive to frequency changes in combination with isola-
tion than other benchmarks, and is more sensitive to nonGC
threads being isolated, probably because of memory interac-
tion. The benefit avrora obtained from offloading the collec-
tor memory activity to another socket is shown in the differ-
ence between the nonGC and JVM isolation graphs.

Besides avrora, other benchmarks show smaller degra-
dations to performance when isolating nonGC, or all JVM
service threads. For nonGC thread isolation, pmd has up to
12% performance loss, but other benchmarks either slightly
improve or slightly degrade performance. When isolating all
JVM service threads, lusearch can suffer over 40%, but the
fixed version of lusearch lowers this cost to less than 20%.
In general, isolating all JVM threads seems to have a perfor-
mance impact that is the sum of isolating collection threads
and isolating nonGC threads (Figures 3 and 5), which is
overall slightly degraded. Pmd can suffer as much as 22%
when isolating JVM threads, which we investigate further
by isolating certain JVM service threads. We isolate only
the main thread, which calls the application’s main method,
and then only the organizer thread, which performs on-stack
replacement. Results are shown in Figure 7 on the left-most
bars, and we see that isolating each of these two JVM threads
makes pmd’s performance suffer, more so at the higher fre-
quency.

Overall, we see that benchmarks respond differently to
the isolation of particular JVM service threads. While avrora
benefits from separating collection threads, all other bench-
marks suffer up to 17%. However, other benchmarks benefit
slightly or are neutral to isolating the compilation thread.
All benchmarks but avrora do not suffer much from isolat-
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Figure 8. Percent execution time improvement of isolating
the compiler thread to a second socket at startup time.

ing nonGC threads. While the cost to isolate JVM service
threads is not insignificant, it is not unreasonable if the need
for power savings is paramount.

Isolation during startup. Although application perfor-
mance matters most during steady-state execution, the com-
pilation thread in particular is most active during JVM
startup time. Thus, for completeness, we analyze the cost
of isolating the compiler thread also at startup time.

Finding 5. During startup time, isolating only the compi-
lation thread has little impact on performance, but isolat-
ing all nonGC threads actually improves performance for
all benchmarks but avrora. In general, the performance of
isolating JVM threads to another socket is better, with some
performance improvements, at startup time than at steady-
state time.

Figure 8 presents the cost of isolating the compiler thread
at startup time (relative to a baseline run also at startup time),
during the first iteration of a benchmark when the compiler
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Figure 10. Percent execution time improvement of isolating
all JVM non-collector threads to a second socket at startup
time.

is most active. We see all benchmarks but avrora have neg-
ligible impact on performance when the compiler thread is
placed onto another socket. Avrora, which has high varia-
tion between different runs, sometimes sees degradation of
performance and sometimes improvement. Although during
steady-state, in Figure 4, lusearch and pjbb2005, see an im-
provement in running time due to separating the compila-
tion thread, at startup, there is not a big impact on perfor-
mance. There is more communication and memory sharing
between the JVM and application threads during actual com-
pilation activity that does not exist during steady-state, and
thus dampens the benefit of using extra CPU and memory
resources during startup time. However, with avrora during
startup, we do not see the large hit to performance at high
frequencies that we did during steady-state, therefore con-
cluding that avrora is less sensitive to frequency changes at
startup time.
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Figure 11. Percent execution time improvement of isolating
all JVM threads to a second socket at startup time.

In Figures 10 and 11, we redo the experiments isolating
nonGC and JVM threads at startup time. At startup time,
isolating all JVM threads except the collector threads leads
to performance improvements for all but avrora, including
up to 16% for pjbb2005. This contrasts with the neutral
or slightly negative (especially for avrora and pmd) results
we saw at steady-state time. Apparently during startup, the
nonGC threads benefit from the extra resources of another
socket, and do not suffer from extra communication be-
tween threads via memory. We see similar trends for all JVM
threads, which, at startup time, suffer less from isolation than
at steady-state time, even leading to performance improve-
ments for xalan and pjbb2005.

Because there is a noticable difference between the
startup performance of isolating just the compiler thread,
and all nonGC JVM threads, we perform experiments also
isolating only the organizer threads that perform on-stack-
replacement. Figure 9 shows that the organizer threads play
the main part in the performance of nonGC threads. When
organizer threads are isolated during startup time, all bench-
marks but avrora see a performance benefit, following very
similar trends to Figure 10, with pjbb2005 improving only
slightly less. Although organizer threads interact with appli-
cation memory, they benefit from being isolated to another
socket with extra resources. In fact, the organizer threads
have a larger impact on performance than the singular com-
pilation thread itself. The difference between both avrora and
pjbb2005°s performance when isolating only the organizer
thread and isolating all nonGC threads is due to the main
thread (see pjbb2005 in Figure 7), and other JVM service
thread interaction.

4.3 Analyzing Frequency Scaling

After exploring the cost of isolating JVM threads, we now
analyze the cost of scaling each socket’s clock frequency
from the highest to the lowest in regards to execution time.
In Figure 12 to 15, we compare against a baseline of separat-
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Figure 12. Percent execution time improvement when low-
ering frequency from highest to lowest, either four collector
threads, or application (plus the rest) socket.

ing some JVM threads to a second socket, with both sockets
at the highest frequency. The left groupings of bars compare
a configuration lowering only the isolated JVM threads’ fre-
quency, while the right groupings compare lowering only the
application and non-isolated threads’ frequency. We present
all results at all three heap sizes for all benchmarks, but note
that there is little heap-size variation.

Finding 6. On average, lowering the frequency of collector
threads does degrade performance (usually less than 20%),
but degrades about five times less than lowering application
thread frequency.

Figure 12 compares scaling down the frequency of four
collector threads in the left three bar groupings versus ap-
plication threads on the right. Although collector threads
can be on the application critical path because they force
the application to pause during collection, collector threads
do not run all the time, and thus they are amenable to be-
ing scaled down for more power-conscience environments.
Maximally, avrora performance degrades 69% for scaling
collector threads (with large confidence intervals), with the
next highest benchmark degradation at 20%. After scaling
application threads, we see avrora’s performance can de-
grade up to 315%!

Finding 7. Lowering the core frequency for the isolated
compiler thread affects performance very little, while appli-
cation performance suffers greatly.

Figure 13 shows that lowering the core frequency for only
the compiler thread does not affect steady-state performance
on average. In Figure 16, we show that at startup time, the
compilation thread is also unaffected by lowering frequency.
In comparison, benchmark application threads can degrade
by as much as 100% when we scale down frequency at
steady-state time. Interestingly, avrora is the only applica-
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Figure 13. Percent execution time improvement when low-
ering frequency from highest to lowest, either compiler
thread, or application (plus the rest) socket.
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Figure 14. Percent execution time improvement when low-
ering frequency from highest to lowest, either JVM non-
collector threads, or application (plus the rest) socket.

tion that does not see a performance degradation when the
application and other threads are scaled down together.

Finding 8. If worrying about a power budget, scaling down
the frequency of JVM threads, while costing some perfor-
mance (usually less than 20%), has a much more reasonable
effect on overall execution time as compared to scaling ap-
plication threads, which can take twice the running time.

Looking at the cost of scaling all but collector threads
in Figure 14, and scaling all JVM service threads in Fig-
ure 15, we see that sunflow’s application threads suffer the
most, more than 90%, from running at a lower clock speed,
while JVM threads’ performance degrades less than 30% for
all benchmarks. It is interesting to note the change in per-
formance for scaling pjbb2005’s application threads down,
between the configuration where the compilation thread is
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Figure 15. Percent execution time improvement when low-
ering frequency from highest to lowest, either JVM threads,
or application socket.

isolated (above 80% in Figure 13), and when nonGC threads
are isolated (less than 20%). We see similar, but less drastic,
trends for pmd. Both benchmarks see more of a performance
hit when isolated nonGC threads’ frequency is scaled down
on the left in Figure 14. The difference in performance is
due to the JVM main service thread, as analyzed with perfor-
mance counters, which is grouped with the application when
the compiler is isolated and with nonGC threads when they
are isolated. Figure 7 shows that the cost of lowering the fre-
quency of the isolated main JVM thread is quite significant
for pmd and pjbb2005.

On average, scaling JVM threads degrades performance
by around 11% in comparison with 50% for application
threads. As we see in Figure 15, lusearch-fix, pmd, sun-
flow, and xalan suffer the most from lowering application
frequency, which are the same benchmarks that benefitted
the most from boosting frequency in Figure 2. On the other
hand, lusearch, pmd, and pjbb2005 suffer the most for scal-
ing down JVM threads. Avrora, while having large varia-
tion in results, does not suffer as much degradation for either
the application or the JVM threads when their frequency is
scaled down.

Frequency scaling during startup. Here, we study the ef-
fects of frequency scaling during startup time, and juxtapose
that with the previous results for steady-state performance.

Finding 9. Scaling the frequency of JVM threads at startup
time follows similar trends as scaling at steady-state time.
During startup, lowering the frequency of JVM threads de-
grades performance three times less than when scaling down
application thread frequency.

Figure 16 shows the change in execution time when we
scale down the frequency, from highest to lowest, of the iso-
lated compilation thread versus all other threads scaled down
on the other socket at startup time. This graph is very simi-
lar with Figure 13, showing that although avrora experiences
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Figure 16. Percent execution time improvement when low-
ering frequency from highest to lowest, either compiler
thread, or application (plus the rest) socket, at startup time.
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Figure 17. Percent execution time improvement when low-
ering frequency from highest to lowest, either JVM non-
collector threads, or application (plus the rest) socket, at
startup time.

performance variation, all other benchmarks are unaffected
by scaling compilation thread frequency, and suffer heavily
(around 80% or more) when the other socket’s frequency is
scaled down.

When scaling the frequency of nonGC and all JVM
threads, Figures 17 and 18 show that startup time has very
similar effects as during steady-state execution. When plac-
ing the application and collector threads at a lower fre-
quency, lusearch and pjbb2005 see a slightly worse degrada-
tion for startup time as compared with steady-state time in
Figures 14 and Figure 15. These benchmarks might be more
sensitive to changes at startup time because of higher levels
of dynamic compilation. Avrora alone seems to be largely
unaffected by frequency scaling at startup time. Overall,
lowering the frequency of all JVM threads at startup time
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Figure 19. Execution time comparison normalized to min-
imum with different thread mappings and scaling frequen-
cies, at twice the minimum heap size.

degrades performance on average by 16%, and with appli-
cation threads 47%. While these degradations are slightly
less than steady-state time’s degradations of 10% and 50%,
respectively, we observe the same trends.

Overall best performance. Figure 4.3 compares overall
execution times of all benchmarks as we move from lower
to higher frequencies (left to right) and explore isolating
various JVM threads, and scaling the frequency of either
the isolated or application and other threads. These results
present runs for two times the minimum heap size. Whereas
previous graphs gave a percentage improvement in execution
time over a baseline run, we present here running times

normalized to the minimum time over this set of experiments
(so lower is better) in order to analyze trends.

Finding 10. When power-constrained in a multi-socket en-
vironment, it is better to either keep application and JVM
service threads on one socket, and power down the other
socket(s), or to isolate the compilation thread onto the sec-
ond socket and lower its frequency.

Figure 4.3’s left grouping shows performance when all
sockets are run at the low frequency. Moving right to the
second grouping, we boost the frequency of the application
and non-isolated threads. Performance generally improves
(closer to one on the graph), but not always for avrora. Al-
most universally, going from the second to the third group-
ing, now keeping the first socket at the lowest frequency
and boosting only the isolated JVM threads on the second
socket, running time increases. Avrora shows similar trends,
but unlike other benchmarks, achieves the lowest perfor-
mance when collection threads are separated from applica-
tion threads and application threads are boosted. We sur-
mise avrora has a lot of inter-application communication
and collection threads interfere with cache and bandwidth
resources. Finally, the last grouping shows overall improve-
ments when we boost the frequency of both sockets. For all
benchmarks but avrora, the fastest run times come from ei-
ther the configuration where the compilation thread is iso-
lated and the other socket is boosted (HiApp-LoComp), or
the configuration also with the compilation thread isolated,
but both sockets boosted (IsolateComp-Hi). For benchmarks
except for avrora, lusearch, and pjbb2005, the configuration
with all threads running together on one socket at the highest
frequency (1Socket-Hi) performs almost optimally as well.

4.4 Pairing Application and Collector Threads

Because our benchmarks have up to 17% performance
degradation from isolating collector threads to another socket,
here we explore the effect of splitting work between sockets
without separating all application from collection threads. In
this section, we pair an application and a collection thread
and place half of the pairs on each socket.

Figure 20 presents results for running two application and
two collection threads on each socket, with all application
and collection threads pinned to cores. The graph shows both
running all threads on one socket, and isolating collection
threads to a second socket versus this paired-and-divided
configuration. We present results at high and low frequencies
for two times the minimum heap size.

Finding 11. Other than the anomalous avrora benchmark
which likely has high levels of inter-thread communication,
applications benefit more from pairing collector threads to-
gether with application threads while running on multiple
sockets, with performance comparable to running on only
one socket.
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Figure 20. Percent execution time improvement going from
all threads on one socket and from isolating four collector
threads on a second socket to pairing application and collec-
tor threads and placing half each socket, at twice the mini-
mum heap size.

In comparison with all threads on one socket (left bars),
lusearch, lusearch-fix, pmd, sunflow, and xalan have almost
the same running time when pairing and dividing applica-
tion and collection threads. At the highest frequency, sun-
flow degrades performance by 9% because of more com-
munication through memory, while pjbb2005 has improved
performance by 15% by using twice the last-level cache
as with one socket. Unfortunately, although avrora benefit-
ted from separating collector threads, dividing application
threads costs up to 220% of performance. Upon further in-
vestigation, unhalted cycle and L3 miss performance coun-
ters on the Nehalem reveal that avrora’s application threads
have non-uniform behavior. Some run many more cycles and
incur more last-level cache misses than others. It is also pos-
sible avrora’s application threads have significant data shar-
ing, because the application threads suffer many more L3
misses when divided between sockets.

In comparison with isolating all collection threads from
application threads (right bars), benchmarks mostly see pos-
itive impacts to performance when pairing and dividing ap-
plication and collection threads. Again, avrora suffers heav-
ily from dividing up application threads — this time by max-
imally 460%, albeit with large confidence intervals. Other
benchmarks either improve (lusearch by 29% and pjbb2005
by 17%) or maintain performance by preserving some local-
ity between application and collector threads.

We explore increasing the number of application and col-
lection threads using the same paired-and-divided method-
ology. Using four application and four collector threads as
a baseline, Figure 21 presents performance improvements
for two times the heap size. We first increase the number
of application threads to eight while keeping four collector
threads, and then increase both to eight threads.

Finding 12. When running on two sockets, surprisingly, it is
not always recommended to set the number of threads equal
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Figure 21. Percent execution time improvement when pair-
ing application and collector threads and placing half on
each socket, varying the number of application and collec-
tor threads, at twice the minimum heap size.

to the number of cores. All but one benchmark benefit from
setting the number of application thread to the number of
cores, but only two of our benchmarks benefit from boosting
the number of collection threads above four.

The graph shows that almost all benchmarks improve
performance by having as many application threads as cores
(eight), but few benefit from increasing to eight collec-
tion threads. Specifically, avrora and sunflow benefit from
using more application threads, and are less sensitive to
the number of collector threads, improving performance
by 95% and 34-40%, respectively. Other benchmarks de-
grade performance when going from four to eight collector
threads. Lusearch’s performance degrades significantly (up
to 295%), but with the allocation bug-fix, lusearch-fix does
not experience the large degradation when going to eight
collection threads. Pseudojbb2005 alone has significant per-
formance degradation with more application threads, around
100%. This degradation could be due to not enough work
to keep application threads busy, and increases in thread-
synchronization time (particularly with the main thread). In
Section 4.6 we analyze the effect of varying the number
of application and collection threads on one socket, but the
optimal configuration highly depends on the benchmark.

4.5 The Effect of Pinning

Because all previous experiments were performed while pin-
ning application and collection threads to cores, this section
explores the effects of removing some thread-pinning on per-
formance. The experiments presented in this section have all
threads placed on one socket and are for two times the min-
imum heap size. Figure 22 compares pinning only the col-
lector thread, only the application threads, and pinning no
threads against a baseline of pinning all application and col-
lector threads.
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Figure 22. Percent execution time improvement when pin-
ning only collection threads, only application threads, or
with no pinning, as compared with pinning both, on one
socket at twice the minimum heap size.

Finding 13. Most benchmarks are neutral to application
and collector thread pinning, but a few benefit from thread
migration.

Apart from avrora, Figure 22 shows that other bench-
marks are mostly insensitive to pinning, with small exeuc-
tion time improvements from not pinning the collector
(PinApp). Lusearch-fix and xalan perform slightly worse
when not pinning the application (PinGC). Pjbb2005 alone
clearly benefits from thread movement, and more at the
higher frequency (38%) It is possible that, like avrora,
pjbb2005 has more sharing between application threads, and
because collection threads are not assigned work based on a
particular application thread, they, too, benefit from moving
to take advantage of sharing at higher levels of the cache.

Avrora is again an anomaly, having significant benefit,
up to 89%, from not pinning application threads. We have
surmised that avrora application threads could have a lot
of data sharing, and have discussed that they have non-
uniform behavior. We performed an experiment to test if
avrora’s large performance discrepancy between pinning and
not pinning threads has to do with using only one of the
two memory controllers on the socket. We re-executed the
baseline experiment, pinning all application and collection
threads on one socket, but this time starting pinning at core
one instead of core zero (still subsequently using round-
robin scheduling). With this small change, as compared with
starting at core zero, avrora’s execution time improves by 37
and 46% at the low and high frequencies, respectively. This
surprising result reveals that avrora is particularly sensitive
to how application threads are mapped to cores because
perturbations radically change memory subsystem behavior.
Other benchmarks did not suffer from the same artifact.
Therefore, avrora is a particularly anomalous benchmark

Vary #Threads vs 4App/4GC, 1 Socket

o 100

E 80 o = oN=\ o = o =

— 0l T JINTY 3T I X%

8 weo alalao ae

g Vs eyor oo oy g 2o
- 20 l€ < a N o | < < Dlusearch_
= <+ < [ 0 |0 © ©  alusearch-fix
0 ; =pmd

S L y / | = sunflow
o L % o xalan

> - o pj

3 40 i pibb2005
g_ -60

= -80

32

°* 100

Figure 23. Percent execution time improvement when vary-
ing the number of application and collector threads, on one
socket at twice the minimum heap size.

that prefers grouping application threads on the same socket
and letting them migrate between cores, and separating only
collection threads to another socket.

4.6 Changing the Number of Collector and
Application Threads

Finally, we explore changing the number of application and
collector threads, limiting experiments to one socket. Our
baseline experiment is always with four application and four
collection threads. We first analyze the effect of decreasing
the number of collector threads while keeping the applica-
tion threads at four. Then, keeping the same number of ap-
plication and collector threads, we vary the number between
three and five. And finally, we compare increasing the num-
ber of application threads from four to eight while holding
the collector threads at four. All results are presented in Fig-
ure 23 at two times the minimum heap size.

Finding 14. When running on only one socket, the per-
formance sweet-spot is setting the number of application
threads and the number of collection threads equal to the
number of cores.

Figure 23 shows that almost all benchmarks suffer slightly
or remain neutral from lowering the number of collection
threads from four to one, with four application threads.
Avrora in particular has degraded performance. Only luse-
arch benefits, but this is due to its excessive allocation as
lusearch-fix is performance-neutral. Because parallel col-
lector threads steal work from a list of pointers to identify
live data and are not accessing only core-local data, lusearch
could be a pathological case where the collector threads
are doing more coordination than useful work. We investi-
gated the performance for lusearch and lusearch-fix going
from one to four collector threads in Figure 24, with times
normalized to lusearch with one collector thread (at each re-
spective frequency), and lower numbers representing better
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Figure 24. Execution time comparison for lusearch and
lusearch-fix varying the number of collector threads normal-
ized to lusearch with one collector thread, on one socket at
twice the minimum heap size.

times. Although lusearch benefits for up to three collector
threads, performance degrades significantly with four col-
lector threads especially at a higher frequency. The same
graph shows that lusearch-fix does not suffer in the same
way and obtains better overall performance.

Figure 23 also compares running with three and five ap-
plication and collector threads. Except for pjbb2005, all
benchmarks degrade in performance when increasing or de-
creasing threads from the 4-4 configuration. Pseudojbb2005
surprisingly performs 85% better with only three application
and collector threads, probably because these are sufficient
to perform the computational work for the input set, and
more threads just increase inter-thread communication. The
right grouping in Figure 23 increases the number of appli-
cation threads to eight, while keeping the collector threads
at four. Because this experiment is performed on one socket,
all benchmarks suffer because many threads are contending
for limited resources. In general, setting the number of col-
lector threads equal to application threads, and equal to the
number of cores, seems to obtain best performance for our
multi-threaded benchmarks running on one socket.

5. Related Work

We first discuss previous work that tried to understand the
performance of managed language applications, and their
ramifications on power. We then discuss research that is
related to dynamic voltage frequency scaling.

5.1 Understanding JVM Services’ Performance and
Power

Hu and John [13] perform a simulation-based study and eval-
uate how processor core characteristics, such as issue queue
size, reorder buffer size and cache size, affect JIT com-
piler and garbage collection performance. They conclude
that JVM services yield different performance and power
characteristics compared to the Java application itself.

Esmaeilzadeh et al. [10] evaluate the performance and
power consumption across five generations of microproces-
sors using benchmarks implemented in both native and man-
aged programming languages. The authors considered end-
to-end Java workload performance, like our work, but as-
sumed a single socket where we use multi-socket systems.
Further, we explore how isolating and slowing/speeding up
JVM service threads affects end-to-end performance.

Cao et al. [6] study how a Java application can poten-
tially benefit from hardware heterogeneity. They tease apart
the interpreter, JIT compiler and garbage collector, conclud-
ing that JVM services consume on average 20% of total en-
ergy, ranging from 10% to 55% across the set of applica-
tions considered in the study. They further study how clock
frequency, cache size, hardware parallelism and gross mi-
croarchitecture design options (in-order versus out-of-order
processor cores) affect the performance achieved per unit of
energy for each of the JVM services. Through this analy-
sis, they advocate for heterogeneous multicore hardware, in
which JVM services are run on customized simple cores and
Java application threads run on high-performance cores.

There are at least two key differences between this prior
work [6] and ours. First, our experimental setup considers
multi-socket systems, not individual processors. Second, we
focus on end-to-end Java workload performance whereas
Cao et al. consider the Java application and the various
JVM services in isolation. These key differences enable us
to evaluate how scaling down frequency for particular JVM
services affects overall Java workload performance. This is
done by separating out the JVM service of interest to an-
other socket and scaling its frequency. A number of con-
clusions that we obtain are in line with Cao et al. In par-
ticular, we confirm that the Java application itself benefits
significantly from increasing clock frequency, and garbage
collection benefits much less. We also confirm a slight im-
provement to application performance if the compiler is iso-
lated, regardless of whether the isolated compiler runs at
the highest or lowest frequency. However, we also obtain a
number of conclusions that are quite different from Cao et
al. Whereas Cao et al. conclude that high clock frequency
is energy-efficient for the JIT compiler, we find that it has
limited impact on overall end-to-end performance. Also, al-
though reducing clock frequency for the garbage collector
may be energy-efficient according to Cao et al., we find that
it negatively affects end-to-end benchmark performance.

5.2 DVFS

Dynamic Voltage and Frequency Scaling (DVES) is a widely
used power reduction technique: DVFES lowers supply volt-
age and clock frequency to reduce both dynamic and static
power consumption. DVFS is being used in commercial pro-
cessors across the entire computing range: from the embed-
ded and mobile market up to the server market. Extensive
research has been done towards how to take advantage of
DVES and reduce overall energy consumption while meet-



ing specific performance targets, or improving performance
while not exceeding a given power budget, either through the
operating system [17], managed runtime system [23], com-
piler [12, 24] or architecture [14, 16, 21].

Intel’s TurboBoost technology [15] provides the ability to
increase clock frequency for a short duration of time if the
processor is operating below its power, current and temper-
ature specification limits. The frequency at which the pro-
cessor can operate during a TurboBoost period depends on
the number of active cores, i.e., the maximum frequency is
higher when fewer cores are active. TurboBoost thus has the
potential to improve performance by increasing clock fre-
quency during single-threaded execution phases of a multi-
threaded workload, or when few programs are active in case
of a multi-program workload environment.

DVES is typically applied across the entire chip, i.e.,
in case of a multicore processor, all cores are scaled up
or down. For example, our experimental setup using the
Intel Nehalem machine only allows for setting the clock
frequency at the socket-level. However, recent work has
focused on per-core scaling, see for example [8, 16, 18].
Per-core DVFS would be a useful extension to the work
presented in this paper, but we leave it for future work.

Barroso and Holzle [1] coined the term energy-proportional

computing to refer to the property that a computer system
should consume energy proportional to the amount of work
that it performs. Ideally, a computer system should not con-
sume energy when idling, and should only consume energy
proportional to its utilization level. Our findings suggest that
many benchmarks obtain very good performance when all
threads run on one socket, and hence also advocating mini-
mizing idle power.

6. Conclusions

This paper is one of the first to explore the many axes of ex-
perimental setup of multi-threaded Java applications running
on multicore, multi-socket hardware, drawing novel conclu-
sions that will help optimize running time while minimiz-
ing power. While varying the number of threads, we have
shown on a single socket, the number of application and col-
lector threads should be equal to the number of cores. On
two sockets, most benchmarks benefit from pairing appli-
cation and collection threads, but achieve best performance
with fewer collector threads than application threads. While
we found a cost, usually less than 20%, to offloading JVM
collection threads to another socket, we found that then low-
ering the core frequency of that socket provided reasonable
performance degradations in comparison with lowering the
clock speed of application threads, which is very detrimental
to performance. However, isolating the compilation thread is
performance-neutral or improves performance; and isolating
threads at startup-time is less detrimental, also sometimes
improving benchmark performance, than during steady-state
time. Many benchmarks achieve good performance when

keeping all threads on one socket, leaving the second socket
idle to also save power. However, overall execution time
is lowest for all but one benchmark when the compilation
thread is isolated, and for the other benchmark when the
collector thread is isolated (both regardless of the isolated
thread’s frequency). These interesting insights will help bal-
ance time and power goals of both managed language work-
loads and hardware resources.

This paper is a first, but important, step towards suggest-
ing enhancements to both operating systems and hardware
to facilitate balancing performance and energy on multi-
socket systems. It would be useful for the operating system
to work with the virtual machine to identify JVM threads
separately from application threads and offer more fine-
grained control over their movement and mapping to cores.
If pinning threads is discovered to be detrimental to perfor-
mance based on profiling or hardware performance counters,
threads could be dynamically moved. Similarly, if hardware
provides support for monitoring and scaling power dynam-
ically, on a per-core basis for finer time quanta, we could
scale individual JVM threads for compilation and on-stack-
replacement, for example, just at startup time. We could
potentially also avoid the cost of isolating collection threads
if hardware could scale one core only during collection, and
not during application running time. When the cost of iso-
lation cannot be avoided, cache optimizations for prefetch-
ing or otherwise avoiding inter-socket traffic could improve
memory system behavior. Our extensive analysis of end-
to-end performance of multi-threaded managed applications
running on multicore chips offers insights into how to design
and optimize machines from application to virtual machine
to operating system to memory system, down to hardware.
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