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Electronic structure calculations have emerged as a key contributor in modern heterogeneous

catalysis research, though their application in chemical reaction engineering remains largely

limited to academia. This perspective aims at encouraging the judicious use of first-principles

kinetic models in industrial settings based on a critical discussion of present-day best practices,

identifying existing gaps, and defining where further progress is needed.

1 Introduction

Predictive-quality electronic structure calculations have emerged

as a key contributor in modern heterogeneous catalysis research.

Next to the dedicated computation of thermostability, spectro-

scopic signals and reactivity descriptors, they are increasingly

used for detailed mechanistic studies that culminate in the

formulation of entirely first-principles based microkinetic

models,1–5 with often surprisingly good agreement to experi-

mental rates and selectivities.6 While cherished by parts of the

community, the application of quantum chemical calculations

in chemical engineering and industry is unfortunately still far

from optimal. Most likely, this has to do with a lack of

awareness of what the current first-principles machinery can

really do for ‘‘practical’’ or ‘‘real’’ technological catalysis.

Intriguingly, this leads not only to profound skepticism, but

also increasingly to unrealistic expectations. In the context of

kinetic model development, a natural motivation is for instance

the hope for improvement in the predictive capability and range

of transferability to other mechanisms when substituting first-

principles energetics into existing microkinetic formulations.

However, here one must recognize that data fitting makes

that many phenomenological models provide a good descrip-

tion of experimental data, even when based on an erroneous

mechanism or unrealistic approximations.7 As first-principles

kinetic parameters no longer allow for this fitting flexibility, it

may well be that the ‘‘improvement’’ they bring first means

deterioration in the performance of the model. Nourished by

possibly existing resentments, this may then readily be blamed

on an insufficient accuracy of the underlying quantum engine,

e.g. the employed density-functional theory (DFT) exchange-

correlation (xc) functional. Rather than realizing the potential

of first-principles methods to allow identifying possible errors

in the catalytic mechanism or model assumptions of the

existing kinetic model,8 the deterioration of the model perfor-

mance would only serve to confirm the preconceptions.

Of course, one has to recognize that an insufficient accuracy

of the quantum engine, or e.g. an inappropriate catalyst

model, might indeed equally well be the reason for a disagree-

ment to experimental data. Identifying which of the situations

applies is admittedly not a simple task. The minimum it

requires, however, is a critical understanding of the first-

principles kinetic modeling methodology, of its present-day

capabilities and challenges. This concerns not only electronic

structure theory and microkinetic modeling techniques, for

which many excellent accounts exist in the literature.9–12

Rather, it also concerns the specific implementation of the

first-principles methodology in the context of heterogeneous

catalytic reaction engineering.13,14 Here, next to the obvious

accuracy issue, crucial aspects are (i) the modeling of the

catalyst, including a proper representation of the reactive

surface present in situ; (ii) the determination of accurate rate

constants, (iii) the treatment of coverage effects (both at the

electronic structure and mesoscopic level) to arrive at intrinsic

reaction rates, and (iv) the integration of the first-principles

kinetics into particle- or reactor-level models to arrive

at effective reaction rates. These crucial aspects are rarely

concisely covered in one text and in a style accessible to the

practitioner. In this perspective, we therefore describe our

views on the state-of-the-art and best practices in the field.

Our motivation thereby is twofold. On the one hand the clear

aim is to encourage the use of first-principles kinetic models in

industrial settings. On the other hand, a critical discussion of

present-day best practices inevitably identifies existing gaps

and as such also provides a look forward to establish where

further progress is needed.

a Laboratory for Chemical Technology,
Department of Chemical Engineering (EA12), Ghent University,
Technologiepark 918 – 9052, Zwijnaarde, Belgium.
E-mail: mariefrancoise.reyniers@ugent.be;
Fax: +32 (0)9 264 4999; Tel: +32 (0)9 264 4516

bDepartment Chemie, Technische Universität München,
Lichtenbergstr. 4, D-85747 Garching, Germany.
E-mail: karsten.reuter@ch.tum.de; Fax: +49 89 289 13622;
Tel: +49 89 289 13616

Catalysis
Science & Technology

Dynamic Article Links

www.rsc.org/catalysis PERSPECTIVE

D
ow

nl
oa

de
d 

on
 0

6 
D

ec
em

be
r 

20
12

Pu
bl

is
he

d 
on

 2
5 

Ju
ne

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2C
Y

20
26

1A
View Article Online / Journal Homepage / Table of Contents for this issue

http://dx.doi.org/10.1039/c2cy20261a
http://dx.doi.org/10.1039/c2cy20261a
http://dx.doi.org/10.1039/c2cy20261a
http://pubs.rsc.org/en/journals/journal/CY
http://pubs.rsc.org/en/journals/journal/CY?issueid=CY002010


This journal is c The Royal Society of Chemistry 2012 Catal. Sci. Technol., 2012, 2, 2010–2024 2011

2 Modeling the catalyst

Classical kinetic modeling of heterogeneous catalysis commonly

assumes the existence of a single type of abstract ‘‘active sites’’,

uniformly distributed over the catalyst surface. Clearly, this is a

profound approximation, far off from reality with its specific

surface structure, site geometry, bonding pattern, dopants and

additives, as well as edge and support effects. Furthermore often

multiple reactive sites are in fact available, of which typically

only the most dominant one is considered as the ‘‘active site’’.15

It is exactly this straddle that causes much confusion and

misunderstandings between experimental-based modelers and

(quantitative) theory-based modelers: the former prefer to work

at an abstract level, little interested in the exact nature of the site

as long as the model fits the data, while the latter require a

precise atomic-scale formulation of the active site structure,

including all effects that contribute to its energetics.

As illustrated in Fig. 1 there are currently three prevailing

first-principles approaches to model the catalyst at the atomic

level: (i) cluster approaches, (ii) embedded cluster approaches,

and (iii) periodic models.16 They all have their merits and

flaws, and the choice is mainly made depending on the catalyst

in question – though in a practical, industrial context, a limited

availability of computational resources is sometimes erroneously

invoked to go for the computationally cheapest choice. Cluster

approaches are fast, but critically depend in their accuracy on

absolute size and the chosen bond saturation at the cluster

periphery (e.g. saturation with H atoms). They are generally

inadequate to model any kind of extended metal or ionic

surface, but are useful for covalently bound surfaces (including

amorphous structures) and obviously perfectly suited to

describe finite atomic clusters of interest in nanocatalysis.17,18

Embedding the cluster into either arrays of mere point charges

or atomistic potentials, often referred to as QM/MM, mitigates

the edge effects and is a very efficient approach to ideal and

defective ionic surfaces, as well as supported finite clusters.19

Periodic models computed in so-called supercell geometries,

cf. Fig. 1, effectively mimic infinitely extended surfaces and are

the only approach that reliably captures delocalized metallic

bonding. They are thus the unparalleled best practice for metal

surface calculations, properly representing a facet of a larger

nanoparticle where facet edge effects become negligible. Due

to the inherent periodic images (vide infra), modeling of lower

adsorbate coverages, point defects or semi-crystalline materials

requires larger surface unit-cells, i.e. increased lateral periodicities,

which leads to further steep increases in the anyway comparatively

large computational costs. Regardless of which approach is

pursued though, it is essential to realize that each contains

computational parameters that critically affect the results: the

number of atoms in a cluster model, the number of slab layers

or the vacuum thickness in periodic models etc. Just as much as

with the computational settings (vide infra) it is thus imperative to

rigorously check that the property of interest (imagine e.g. an

energy difference for an activation energy) is converged with

respect to these model parameters.

Applying these computational approaches it is straightfor-

ward to model ideal, ‘perfect’ systems: defect-free (low-index)

surfaces, regular structures such as zeolites, or regularly

formed nanoparticles with a mono-disperse particle size dis-

tribution. However, the actual catalyst under working condi-

tions is often far from these idealizations. In order to properly

describe the catalyst, the models should include (i) (point or

extended) surface defects, (ii) multifaceted surfaces to include

a possible structure sensitivity of the reaction, (iii) support

effects on the catalytic phase, (iv) possible spillover effects

and catalytically acting supports, and (v) the presence of

dopant atoms and additives. Also surface restructuring to

the extent of a morphological transition is an important

phenomenon. Yet, this can be such a complex function of the

reaction conditions that we discuss it separately in the following

section. Generally speaking, there are computational approaches

to each of these complications. They often require so much

additional effort though, that current computational research

typically incorporates at best only one of them, to merely

illustrate the effects of the phenomenon that is expected to be

most relevant for the system under study. As such, we are

presently mostly still far away from routine quantitative calcula-

tions, which would instead require a model of the active site that

mimics the realistic situation as faithfully as possible.

To better assess the current state of the art and the perspec-

tives for future progress let us briefly review the various

present-day approaches to address the individual complexities.

Fig. 1 Different catalyst models for a fcc(111) surface: (left) cluster model, (middle) embedded cluster approach, and (right) periodic slab model

with unit cell indicated.
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In principle, the conceptually most straightforward to tackle,

albeit at high computational cost, are multifaceted surfaces in

the case of structure sensitivity.20 To first order this merely

demands repetition of all calculations for differently indexed

surfaces corresponding to the facets involved, and later on

combining these data at the level of the microkinetic simula-

tions as discussed in Section 7. What is not covered by this

relates then already closely to the problem of modeling facet

edges, steps or kinks, namely the processes occurring directly

at the corresponding undercoordinated atoms or in their

vicinity, such as B5 step-edge sites essential in many metal

catalyzed processes.20 In cluster approaches both aspects are

easily addressed by simply devising structural models that

represent the edge, step or kink under study. In supercell

geometries this is much harder to achieve and requires at

brute force simply large enough lateral surface unit-cells and a

zig-zag slab structure, cf. Fig. 2, this way simultaneously

exposing the aspired edge, step or kink and complying with

the periodic boundary conditions. Somewhat more efficient

are calculations of high-index vicinal surfaces, which contain

regular arrays of the desired step or kink, separated by terraces

of specific width as illustrated in Fig. 2.16 The advantage of

these surfaces is that they ideally only contain one defined type

of step or kink in always the same local environment, which

is not the case in most zig-zag realizations. The central

disadvantage of both models is that the extracted properties

may be masked by the inherent periodicity, e.g. step–step

interactions at decreasing terrace width.21 Since one would

precisely try to perform first-principles calculations by

employing surface unit-cells that are as small as possible, in

order to reduce the computational effort, this periodicity often

profoundly affects the results. Exactly the same applies, of

course, also to the modeling of individual point defects in

periodic boundary models.

Interaction with the support can strongly affect the bonding

properties of catalyst particles due to e.g. charge transfer

effects or strain effects in the case of epitaxial particles. The

picture is further complicated by a possible coverage dependence

of the metal–support interaction, in which the particle responds

to molecular adsorption by adapting its geometry and changing

its bonding with the underlying oxide support.22 Also spillover

effects, i.e. adsorbate diffusion between the support and the

particle, can have a significant contribution to the overall

activity that surpasses the sum of the individual parts.23 While

all this calls for a simultaneous modeling of the catalyst

particle and the support (especially for smaller nanometer-

scale particles), support effects are at present completely

neglected in the vast majority of computational studies.

Models that gradually start to integrate support effects rely

typically either on fully periodic film formulations, in which

several layers of the active phase are deposited on a periodically

modeled support,24 or on approaches in which finite clusters are

deposited on a periodically modeled support.25–29 The first

approach is most interesting from a computational point of

view, as it only requires relatively small unit cells. On the other

hand, results obtained in this way may be severely affected by

the (spurious) strain that is imposed by the lattice mismatch

between the active phase and the support, or by a falsified

charge transfer due to electrostatic effects between the periodic

image cells. The cluster-on-periodic-support approach instead

always allows for full relaxation of the catalyst structure,

depending on the strength of the particle–support interaction,

Fig. 2 Modeling of more complex surfaces: facet edges, steps and three-phase boundary, shown for an fcc metal: (left) zig-zag slab structure;

(middle) high-index surface, here the (211) surface; (right) modeling of the particle-support interface: infinite metal rod on support.
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the adsorbate coverages, or the temperature. The exposure of

the support to the fluid phase furthermore allows us to also

study adsorption at the support, diffusion of adsorbates to and

from it, as well as reactions at the support-cluster interphase.

The corresponding DFT calculations on such models have e.g.

been performed using static approaches,18 as well as molecular

dynamics.30,31 On the down side, the necessity to include a

sufficiently wide fringe of support to prevent spurious inter-

actions between the cluster and its periodic images quickly

leads to large surface-unit cell models. Out of computational

constraints, typically only very small sub-nanometer metal

clusters containing below B15 atoms were thus hitherto

modeled using this approach. As such clusters often have

surprisingly different catalytic properties compared to larger

nanoparticles,18 an intermediate approach proposed by

Hammer and co-workers appears particularly appealing.32,33

Here, the supported nanoparticle is described as an infinite

rod, see Fig. 2, allowing to keep a small periodicity in one

lateral direction (as in the film approach) and only using a

large periodicity in the other lateral direction to explicitly

model the finite nanoparticle, support and the support–parti-

cle–fluid boundary between the two. The Au rods on a MgO

support, as modelled by Hammer and co-workers, result in an

almost strainless metal rod, which however does not need to be

the case for other oxide–metal combinations.34

Finally dopant materials, additives and remaining precursor

material further complicate the picture; even modeling e.g. the

traditional Lindlar’s Pb-doped Pd hydrogenation catalyst

requires a multistep procedure.35 Materials with extremely

low dopant concentrations or very complex compositions

can often simply not explicitly be modeled yet. This would

require very large catalyst models that are currently compu-

tationally unfeasible. Notwithstanding, such explicit modeling

might also in many cases not be required when considering

what effects such dopants or compositional details might

actually have on the surface reactions. If they e.g. merely

induce elastic strain, then this can be captured by performing

calculations at varying lattice constants. If their effect is to

fine-tune the Fermi-level, and as such the electron availability,

then ab initio thermodynamic approaches can provide a

powerful alternative.36 Such approaches would concentrate

on faithful representations of the local active site structure and

consider e.g. the changing Fermi-level through appropriate

electronic reservoirs with which the local site is in equilibrium.

This is a very common procedure in semiconductor modeling,37,38

but has not yet been much appreciated in the catalyst modeling

community.

This short overview illustrates that it is still a ‘cutting edge’

to include the many factors that may influence catalytic

activity in the catalyst model. The key problem is that an

effect is either included or neglected; there is no middle

way in which an abstraction can be made of a certain

effect as is common in parameter-fitting procedures. There-

fore, it is of utmost importance to have as accurate an

(experimental) view on the precise structure and composition

of the catalyst during the reaction as possible. In situ spectro-

scopy methods are most helpful in this respect,39 explaining

the many recent successes of experiment-and-theory-combined

studies.40

3 Restructuring of the catalyst surface

In the attempt to minimize their surface energy, catalyst

surfaces may restructure in many different ways to adapt to

the reaction conditions. Most straightforwardly, this may

simply be adsorbate/dopant/additive-induced changes in the

top-layer structure of the catalyst. Examples are the hydrogen-

induced lifting of the quasi-hexagonal overlayer of fcc(100)

surfaces of some late transition metals,41 or the frequent

hydroxylation of the surface of oxide catalysts (or oxidic

supports).42,43 However, the structural changes may also ex-

tend further into the surface fringe. Adatoms on the surface,

obtained either from adsorption or from decomposition of

adsorbates, may diffuse into the bulk or eventually even induce

a phase transition at sufficiently high concentrations. The

resulting phase may lead to catalyst poisoning, e.g. sulfide

formation on metal catalysts, or form an essential element in

the catalyst activity, as e.g. the carbide formation that forms

the active phase on Fe Fischer–Tropsch catalysts.44 For

composite materials like oxides, hydrides and sulfides the on-

going reactions may also (slowly) change the surface composi-

tion by consumption of lattice oxygen, hydrogen or sulfur, as

e.g. in Mars–Van Krevelen oxidation mechanisms. During the

oxidation, not only surface oxygen but also bulk oxygen may

be consumed at low oxygen pressures due to the high mobility

of lattice oxygen in e.g. CuO and CeO2 crystals.
45,46 This may

lead to complete phase changes at the surface (into totally or

partially reduced states) or at least to significant (disordered)

vacancy concentrations. The equivalent of this in metal alloys

are (adsorbate-induced) surface segregation phenomena, in

which the different types of metal atoms migrate preferentially

to and from the surface, leading to substantially changed

stoichiometries in the near-surface region.

The crucial point in all of this is that the changes are

intimately connected to the specific reaction conditions; the

catalyst material adapts to them and as such knowledge of

the nominal catalyst material and/or surface termination

ex situ either before or after time on stream is often of very

limited use, if not misleading. Obviously, rather than faithfully

representing the nominal catalyst any first-principles catalyst

model must instead aim at mimicking as closely as possible the

actual structure and composition of the active surface in

the reactive environment. This is a rather critical problem,

the importance of which can hardly be overstated: Corresponding

atomic-scale information about the detailed surface structure

from experimental in situ characterization is rarely available,

while performing first-principles kinetic calculations on the

wrong surface model will simply not provide any adequate

insight into the ‘‘real’’ system. Obtaining this information

from comprehensive first-principles kinetic models that would

explicitly account for the possibility of catalyst restructuring is

at present also largely elusive. This would require knowledge

of the detailed atomistic mechanism underlying the restructuring,

which in particular for surface morphological transformations

(even if known to happen) will typically involve an intractable

number of elementary processes and correspondingly require

first-principles kinetic parameters.

In this situation, next to whatever experimental guidance is

available, ab initio thermodynamic considerations have become
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an invaluable tool to determine the best structural model to be

used as basis for ensuing kinetic studies.36,47 The idea behind

this approach is to compute the surface free energies of a range

of candidate structures as a function of the gas-phase chemical

potentials. Identifying the structure by minimizing the surface

free energy as the most stable one then allows establishing

surface phase diagrams covering the operational range of the

catalyst as illustrated in Fig. 3. Hereby, the multi-component

reactive environments of catalysis can be accounted for by

suitably resorting to so-called ‘‘constrained equilibria’’, in

which the surface is considered in full equilibrium with all

gas-phase chemical potentials, while the latter are treated as

mutually independent of each other.49,50 The appealing feature

of this approach is its computational efficiency. All that is

required in a first step are total energies and vibrational free

energies of the candidate structures. In many cases even rough

estimates of the vibrational free energies may be sufficient,47

while routes for their detailed evaluation also exist.51 One has

to clearly recognize though, that the approach is only approximate

and may as such only provide rough guidance. Significant errors

may arise from the typical neglect of configurational entropy,

which above all precludes a reasonable description of phase

coexistence,52 and from the neglect of kinetic effects, e.g. when

the on-going reactions consume surface species faster than

they can be replenished from the gas phase.53 However,

probably the largest limitation of the approach arises from

the selection of candidate structures itself, as the prevalent

formulations of ab initio thermodynamics only allow comparing

their relative stabilities. If an important structure is missing

in this set of structures that are compared, it will also not

show up in the surface phase diagram, potentially providing

completely wrong guidance as to the selection of a useful

catalyst model.

The ab initio thermodynamics approach has also been

generalized to treat adsorbate-induced surface segregation

in alloys.54–57 If the compositional segregation is restricted

to the host lattice, it is even possible to combine this approach

with cluster-expansion techniques common in bulk alloy

modeling58,59 to explicitly address configurational disorder

and entropy, i.e. a temperature-dependent non-uniform surface

composition.60 In practice, however, most studies involving

such or even more approximate theories completely neglect

the effect of a surrounding gas-phase and evaluate the surface

segregation profile under vacuum conditions.61 The focus in

these works centered in the alloy/materials community is largely

only the dependence of the segregation thermodynamics on

the bulk alloy reservoir. As adsorbate-induced segregation

can substantially change the surface composition in reactive

environments, great caution is advised when aiming at transferring

such vacuum results obtained for a clean surface to catalysts under

working conditions.

In applied work, researchers resort mostly to even much

less sophisticated (and accurate) treatments. The composi-

tion of alloy nanoparticles is often simply approximated

Fig. 3 Surface phase diagram for the Pd(100) surface in ‘‘constrained thermodynamic equilibrium’’ with an environment consisting of O2

and CO. The atomic structures underlying the various stable (co-)adsorption phases on Pd(100) and the surface oxide, as well as a thick bulk-like

oxide film (indicated by the bulk unit-cell), are also shown (Pd: large blue spheres, O: small red spheres, C: white spheres). Phases involving

surface or bulk oxide are to the right bottom of the dotted and dashed line, respectively. The dependence on the chemical potentials of O2 and

CO in the gas phase is translated into pressure scales at 300 and 600 K. The black hatched ellipse marks gas phase conditions representative

of technological CO oxidation catalysis, i.e., partial pressures of 1 atm and temperatures between 300 and 600 K (adapted from Rogal,

Reuter, Scheffler48).
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by a core–shell structure, with enrichment of one type of metal

atoms in the outer layers, and of the other type in the core. In

periodic modeling this is then typically modeled as ‘skin’ or

‘monolayer’ surface alloys, with a uniform surface layer on top

of a different substrate, cf. Fig. 4. However, this misses the

frequent oscillatory pattern of surface segregation profiles,

where the enrichment of one element in the top layer is

compensated by a depletion of the same element in the second

layer, while the third layer is already close to the bulk

composition. Periodically formulated models for this type of

segregation usually involve ‘surface sandwich’ structures with

a subsurface layer of the minority compound in the alloy, and

a homogeneous top and bulk composition, see Fig. 4. Such

‘skin’ or ‘sandwich’ models have the advantage of exposing

only a few different types of adsorption sites, i.e. not more

than a simple monometallic surface, in contrast to more

realistic inhomogeneous structures that involve numerous

inequivalent adsorption sites. On the other hand, of the effects

that are commonly believed to have a strong influence on

the catalytic properties of bimetallic systems,63 they thus

completely miss out on any ensemble effects (e.g. blocking

of reactions involving nearby ensembles of same active sites)

and often also yield only a blurred view of ligand effects

(i.e. modifications due to the electronic interaction between

the system components). In principle, both ‘skin’ and

‘sandwich’ approaches could be extended to larger surface

unit-cells, which would then allow mimicking local motifs

involving surface atoms of different alloy species. The

rapidly increasing number of inequivalent motifs to be studied

makes this a rather tedious task though, which has to

date been only rarely undertaken for bimetallics and simple

adsorbates.56,57,64 Even less work covers the complex segrega-

tion behavior of ternary alloys, and if so it is typically not

done at the full quantum mechanical level, but e.g. combines

Monte Carlo models with DFT-based modified embedded

atom methods.65

4 Obtaining accurate electronic energies

At the core of all first-principles approaches is obviously

the quantum mechanical determination of the electronic struc-

ture, usually a solution to the time-independent Schödinger

equation for the electron–nuclei system. Direct wave-function

based approaches, such as Hartree–Fock (HF) and post-HF

methods, have a computational cost that grows very rapidly

with the number of basis functions, and hence the number of

electrons, in the system. The explosion of the computational

cost with the size of the system has rendered it to date largely

prohibitive to use such methods for heterogeneous catalytic

systems. At present essentially all first-principles calculations

in the area of heterogeneous catalysis are therefore done with

DFT.9,10 DFT starts from a reformulation of the Schrödinger

equation in terms of the three-dimensional electron density

r(r) instead of the high-dimensional wave function without

loss of relevant information. Within the DFT formalism, the

energy E of the ground state can be expressed as a unique

functional of the electron density. The key challenge with this

functional is the exchange-correlation functional EXC[r(r)],
the exact form of which remains unknown. Depending on

the approximations made, this leads to the hierarchy of DFT

functionals with increasing complexity and computational

requirements as shown in the Jacob ladder classification

scheme in Fig. 5.66 Constrained by the computational demands

imposed in particular by the system sizes inherent to supercell

geometries, many of the calculations in heterogeneous catalysis

are in fact still performed with the semi-local xc functionals that

represent the two lowest rungs in this scheme. While these local-

density (LDA) and generalized gradient (GGA) approximation

Fig. 4 Common model assumptions for using approximated ‘skin’ (upper structures) and ‘surface sandwich’ (lower structure) monolayer

bimetallic surfaces (after Menning and Chen62).
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functionals often yield a surprisingly decent account of covalent

bonds and geometric structure, they are generally plagued by

two big problems: spurious electron delocalization and lack of

van der Waals (vdW) interactions.67,68

The former problem arises from an incomplete cancelation

of repulsive Coulomb self-interaction contributions by the approx-

imate exchange energy given by the employed functional. The

resulting artificial delocalization of the electron density stands

behind many of the well-known issues of semi-local DFT like

the underestimation of band gaps and reaction barriers, or its

inability to describe localized f-electron systems.69 For small

gas-phase molecules this error can be substantial, with e.g. the

popular PBE GGA-functional overestimating the binding

energy of O2 by about 1 eV.
70When interested in the interaction

of such molecules with solid surfaces, the best one can then

hope for is a large degree of error cancelation. Intriguingly, this

isn’t as shaky a foundation though as one might think at first

glance.With functionals often exhibiting rather systematic errors,

for instance an on average always too strong binding of the

mentioned PBE functional,71 it is primarily error cancelation

that affords the often quoted B0.2–0.3 eV (20–30 kJ mol�1)

generic uncertainty estimate for reaction energies.6 Neverthe-

less, infamous examples like the CO puzzle, where standard

semi-local functionals even predict the wrong adsorption site

at close-packed transition metal surfaces,72–75 underscore that

uncritical use of semi-local energetics is ill-advised. This holds

equally for the often uncritical mixing of experimental and

semi-local data in kinetic models, which inevitably breaks the

delicate balance of systematic errors and thus annihilates any

hope for error cancelation.

The vdW problem of semi-local DFT arises from the mere

fact that functionals that only consider the local density (or in

the case of GGA functionals also the density at infinitesimally

neighboring distances) can, by construction, not properly

account for a fully non-local effect like dispersive interactions

between distant fluctuating dipoles.76 For larger organic molecules

with highly polarizable conjugated ring systems and molecules

in porous media corresponding dispersive contributions to the

adsorption energies become a crucial factor. This is e.g. nicely

illustrated by benzene bonding to close-packed coinage metal

surfaces, which prevalent GGA functionals underestimate by

about 0.5 eV due to the lacking vdW interactions.77 For

alkane, alkene and alcohol adsorption in zeolites these same

functionals typically yield as low adsorption strengths as

0.1–0.2 eV per carbon atom, highlighting that it is in fact

vdW interactions that are the dominant factor counteracting

destabilization by steric constraints.78–80 Ironically, the large

self-interaction error of the LDA functional sometimes mimics

an artificial contribution of roughly the same size as the

missing vdW component. Aware or unaware that this yields

‘‘the right answers for the wrong reason’’ this has led some

applied works to resort to the doubtful approach of using

LDA data as a pragmatic solution to the vdW problem.

Recent years have instead also brought considerable and

proper fundamental progress to both problems of semi-local

DFT. The admixture of exact HF exchange mitigates the self-

interaction error in hybrid functionals like B3LYP, cf. Fig. 5.69,81

For molecular and band-gap systems such as organic molecules

or simple metal oxides this indeed brings a qualitative improve-

ment, such that corresponding fourth-rung functionals have

already become the new standard there. This paradigm change

has been particularly facilitated by the fact that the localized

basis sets commonly applied for the corresponding finite catalyst

models of such systems, cf. Section 2, allow for highly efficient

evaluations of the Fock operator. The thus only moderately

increased computational costs compared to semi-local DFT

make hybrid functional level calculations especially appealing

for practitioners. This stands in stark contrast to the situation

for the plane wave basis sets traditionally employed in the

context of periodic boundary supercell calculations. There,

hybrid functional level calculations incur at present still roughly

one order of magnitude higher computational costs, which is

one of the reasons why even reference data for adsorption and

reaction at metal surfaces are still rather scarce. Unfortunately,

the few existing studies presently suggest that this class of

functionals does not bring any significant improvement in the

description of bonding in these systems.82,83

With respect to the vdW problem simple dispersion-correction

approaches represent the biggest step forward for practical present-

day calculations. In these semi-empirical, so-called DFT-D

approaches the vdW interactions that are not described by the

short-ranged xc functionals are approximately considered by

adding a pairwise interatomicC6R
�6 term to the DFT energy.84–86

At distances below a cut-off, motivated by the vdW radii of the

atom pair, this long-range dispersion contribution is heuristically

reduced to zero by multiplication with a short-range damping

function. For molecular and band gap systems such simple

corrections yield generally substantial improvements at essen-

tially negligible costs compared to the semi-local or hybrid

DFT calculations to which they are applied.84–88 On the down

side, though their semi-empirical derivation has given rise to a

manifold of suggested DFT-D schemes that all have the same

conceptual structure, they differ in their material-specific para-

meters. While increasingly popular and widespread, also in the

context of supercell packages,89 there is thus no particular scheme

that would have emerged as a well-established standard. Also

problematic is again the application to adsorption at metal surfaces.

Fig. 5 Jacob’s ladder of density-functional approximations (after

Perdew66).
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Due to the strictly pairwise evaluation of the dispersion inter-

action the strong electronic screening of the vdW interactions

between the adsorbate and substrate atoms at such surfaces is

difficult to account for. In prevalent DFT-D schemes bonding to

metals is thus significantly overestimated,90 with only very recent

schemes specifically aiming to overcome this limitation.91

Both with respect to the self-interaction error and the vdW

problem it is thus catalytic processes at (supported) metals that

represent a particular challenge to contemporary electronic

structure theory. With no single approach beyond semi-local

DFT established yet, there are several promising candidates

which currently receive a great deal of attention. Among these

are range-separated hybrids or advanced fifth-rung non-local

functionals like the van der Waals functional92,93 or exact

exchange with the Random Phase Approximation (RPA) to the

correlation energy,94,95 where in particular the latter functionals

offer the prospect to simultaneously tackle both the self-interaction

and the vdW problem. Unfortunately, as a common feature all

these exploratory functionals incur at present substantially

increased computational costs, which is why only scattered

applications to catalytic problems have been reported to date.96,97

Dedicated and extensive benchmark calculations for representative

sets of reactions and adsorption problems are now urgently

required to arrive at conclusive assessments as to the suitability

of these functionals for technological applications.

Until then, the accuracy level accessible in production work

will roughly remain at the one set by semi-local DFT. In this

situation, only larger energy differences or trends are generally

considered trustworthy.6,68 Notwithstanding, already at this

level corresponding computational screening approaches

provide for instance most valuable insight and popularize

the use of first-principles calculations in the field.6,98 When

aiming for more quantitative results for one specific system,

repeating the calculations with different xc functionals represents

a worthwhile, though not a fundamentally justified option. For a

mindfully selected range of functionals this may at least provide

some idea of the uncertainty in the computed energetics.

Particularly in the context of kinetic models combining this

with sensitivity analyses might then already provide conclusive

answers if and how this uncertainty actually translates to the

aspired catalytic function. Varying the kinetic parameters

within the uncertainty range, corresponding sensitivity analyses

allow identification of the rate-limiting steps99–102 and states103,104

in the reaction network. First applications in the context of first-

principles microkinetic models show that only the uncertainty

contained in these, typically few kinetic bottlenecks matters.105

This invalidates the traditional argument that first-principles based

kinetic modeling is pointless, unless chemical accuracy is reached

in all underlying energetics. On the other hand, it demonstrates

that this accuracy is indeed needed for the few rate-limiting steps in

order to reach a fully quantitative kinetic description. Fortunately,

obtaining this accuracy for these few crucial steps e.g. with the

computationally demanding exploratory functionals will be a

much more feasible task than an unselective high-accuracy

standard for all reaction steps.

While significant fundamental research efforts are thus

necessary to reach fully quantitative first-principles energetics

from the xc functional point of view, there is another source

of (often at least as worrisome) uncertainty that requires no

further research, but only best practice: the computational

settings. This concerns both numerical convergence with respect

to the employed basis set (or k-point sampling), and as already

mentioned with respect to the employed surface model (cluster

size, slab thickness). At the latest since the advent of hierarchical

localized basis sets, there has been absolutely no excuse for

not systematically testing numerical convergence anymore. One

cannot overemphasize that just choosing e.g. a given plane wave

cutoff without any further justification is a no-go that only brings

harm to the field. Data computed this way contain an unspecified

degree of error, and the corresponding literature should in fact be

dismissed. Generic default values sometimes provided by DFT

packages are also questionable, as they often refer to reference

systems like bulk that must not necessarily meet the same

demanding requirements as dedicated surface calculations.

Instead, the best practice is undoubtedly to systematically check

the effect of all parameters of the employed computational

setting on the specifically targeted quantities for representative

test systems that are as close as possible to those ultimately

used in the production calculations. In order to minimize the

computational burden this can e.g. be basis set tests for small

surface unit-cell models corresponding to a high coverage limit,

or single-point calculations for larger catalyst models that are

derived from fully optimized smaller models by for instance

adding further bulk-like layers at the bottom of the slab. The

evaluation should also include the effects of parameters not

directly related to the electronic structure calculation, such as

geometry optimization parameters that can differ widely depending

on the final purpose, e.g. preliminary geometry screening vs.

frequency analyses.

5 From energies to rate constants

The central gateway to introduce the detailed first-principles

electronic structure information into the microkinetic modeling

level is via the rate constants of the individual elementary processes.

These rate constants are inherently dynamical quantities that would

correspondingly require dynamical simulations for their exact

determination.106 Common practice in the area of surface

chemistry and catalysis is instead to resort to approximate

reaction rate theories that provide the rate constants exclusively

from properties of the underlying potential energy surface and

thus require only static total energy calculations.107 In fact, for

the typically rather highly activated surface chemical processes

even the lowest level reaction rate theory in the form of

conventional transition state theory (TST) is generally deemed

sufficient and, in turn, almost unanimously employed. However,

despite its profound approximations and concomitant relative

simplicity compared to more advanced reaction rate theories,

even the application of conventional TST requires rather

demanding first-principles calculations to properly determine

the rate constants of surface chemical reactions. This concerns

in particular the pre-exponential factor of the Arrhenius-type

expression, which contains the entropy contributions and for

which e.g. tedious (and numerically often severely impaired)

surface vibrational frequency calculations are required to

calculate the vibrational entropy.

In this situation a vast majority of ‘kinetic’ studies in

computational catalysis restrict themselves to merely reporting
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electronic reaction barriers and reaction energies. While this

clearly provides a first idea of the reactivity of the elementary

steps, it does generally not even allow us to safely conclude on

typical mechanism reduction approaches such as the dominant

path and rate determining steps,11,12 which instead follow

from the interplay in the complex reaction network under

the given reaction conditions. A widespread approach to hence

get at least rough and minimal-effort rate constant estimates

for explicit kinetic modeling resorts to the use of ‘generic’

prefactors like the kBT/h-motivated B1013 s�1 or of fixed pre-

exponential factors depending on the degrees of freedom

that are constrained or released during the reaction.108 In

experimental-based microkinetic analysis this is very popular

(and also largely justified), since parameter fitting (e.g. of the

activation energies) can compensate for the errors introduced.

In first-principles microkinetic studies there is instead a more

conceptual argument to stay at the qualitative level, apart

from simply dodging the large computational burden of more

accurate prefactor determinations. This argument recognizes

the much more pronounced influence of the energetic barrier

in the exponential of the TST expression: As discussed in the

previous section, a generic uncertainty estimate for reaction

energies of semi-local DFT is 0.2–0.3 eV, implying an uncertainty

in rate and equilibrium coefficients of 1 to 3 orders of magnitude in

the 400–600 K range, which does not even include the additional

uncertainty coming from the typically only approximately located

transition states. At such uncertainty in the electronic energy,

any improvement towards more elaborate prefactor calcula-

tions or even advanced reaction rate theories appears at the

first glance of lower priority.

While the achievable accuracy of first-principles rate constants

is admittedly a most central (and unresolved) issue in first-

principles kinetic modeling, it is also clear that even perfectly

quantitative reaction energetics would not help without adequate

rate constant expressions. As such, the current best practice to

improve beyond the qualitative rate constants as obtained

with generic-prefactor TST is to perform harmonic vibrational

analyses and use this information to explicitly compute (potentially

tunneling-corrected) harmonic prefactors, as well as to correct

for zero-point energy contributions. Both aspects can induce

severe changes as compared to generic-prefactor TST, for

instance already highlighted for methane steam reforming

over Ni(111)109 or hydrogenation reactions over Pt(111).110

Exploiting e.g. the large mass difference between reacting

species and transition metal catalysts, the computational

burden of the corresponding vibrational analyses can often

at least somewhat be reduced by focusing on the relevant

adsorbate modes through Partial and Mobile Block Hessian

approaches.111 Even less demanding is a somewhat intermediate

approach, which avoids the explicit surface vibrational calculations

and predicts the entropy of surface species by scaling that of the

corresponding gas-phase molecule and subtracting the loss in

translational entropy.112,113 This scaling factor is typically obtained

from regression to experimental data, which clearly hampers the

application of this method in a purely first-principles context.

Especially for kinetically insignificant steps, e.g. suitably

identified through sensitivity analyses, maybe even less accurate

rate constants than provided by generic-prefactor TST might

also be of interest. Corresponding approaches have hitherto

almost exclusively been used in the empirical/engineering context.

However, they might also be of relevance for first-principles

kinetic modeling, considering that the latter should ideally

focus all its attention (and CPU time) on accurate rate

constants for the critical rate-determining steps, while treating

the other processes at more efficient and approximate levels.114

One route could be to use time-saving lower-level methods to

get approximate reaction energetics for the TST exponential.

Among these, Bond Order Conservation (BOC)/Unity Bond

Index-Quadratic Exponential (UBI-QEP) potential methods115–117

and Brønsted–Evans–Polanyi relationships118–120 are most

promising candidates that provide these energetics using only

(measured or computed) thermochemical data. Basic BEP

relationships sufficed e.g. for the computational screening to

determine a Pareto optimal set of methanation catalysts.6 As

another example, Benson-style group additive methods have

e.g. been developed to predict the standard enthalpy of

formation for adsorbate–metal surface interactions.121,122 While

highly appealing in terms of their efficiency, key concerns in using

these methods are, however, their parameterization procedures (in

particular in hybrid theory–experiment procedures117), their unclear

range of transferability (beyond what is covered by the para-

meterization), and their general reliability (how inaccurate may

the energetics be to still yield useful rate constant estimates).

Another aspect of utmost importance both in general and in

this mixing of calculations performed at different levels is to

ensure overall thermodynamic consistency. An accurate surface

thermochemistry is the heart and soul of any kinetic simulation,

as no proper kinetic insight can be obtained from models that

approach the wrong thermodynamic limits. This caveat is not

limited to the classical picture of expressing a reverse rate

coefficient as the ratio of the forward rate coefficient and the

equilibrium coefficient for that reaction, as e.g. the use of

different approaches to calculate the thermodynamics of

the surface species may also infer incorrect relative stabilities.

As a last point, let us also emphasize that all of the above

TST-centered discussion only applies to processes with at least

moderate activation energies. For barrierless processes or very

low activation energies, TST is either inapplicable or exceedingly

inaccurate as the actual rate constant is predominantly deter-

mined by entropic, not energetic bottlenecks. This applies

e.g. prominently to adsorption processes which are often

governed by the strong entropy reduction in going from the

gas-phase to the bound state at the surface. The accurate

determination of corresponding rate constants then necessarily

needs to involve explicit dynamical simulations, in the context of

adsorption processes presently often performed within efficient

‘‘divide & conquer’’ approaches.16 More approximate approaches

typically rely, similar to the prefactor vs. exponential argument in

TST, on the linear dependence of the rate constant on the sticking

coefficient, and set the latter often simply to one.

6 From rate constants to intrinsic reaction rate

Surface coverages are non-uniform in many applications, with

a heterogeneity that can range from the microscopic scale

(concerning the occupation of immediately neighboring active

sites) up to the mesoscopic scale (concerning the formation of

different domains). In prevailing microkinetic modeling based
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on rate equation approaches any details of such heterogeneity

are usually discarded in favor of an effective treatment in the

form of average coverages, i.e. a mean field approximation is

applied.123,124 It is well established in the academic literature

that this approach has many flaws, with the microscopic

spatial corrections often summarized under the header ‘strong

site correlations’.7,125 However this has not at all impaired its

popularity in practical catalysis research. Apart from the

appealing simplicity, one reason for this is certainly that the

errors incurred by the mean-field treatment can to some extent

be fudged by the fitting power in prevailing phenomenological

modeling, see Fig. 6. As pointed out before though, the latter

does no longer apply when aiming for first-principles based

descriptions.

At the microkinetic level this supports the recent rise of kinetic

Monte Carlo (kMC) simulations to replace the traditional

mean-field equations.126 Methodologically, both approaches

tackle the solution of the same Markovian master equation

that describes the time evolution of the reacting system,

coarse-grained to the discrete rare events constituted by the

elementary processes of the reaction cycle.127 In the catalytic

context this master equation describes e.g. the change in time

of the occupation of the active sites128

dPa

dt
¼
X

b

½WabPb �WbaPa� ð1Þ

with a and b configurations of the adlayer with corresponding

probabilities Pa and Pb, and Wab and Wba the transition

probabilities per unit time, specifying the rate at which the

adlayer changes due to the elementary processes (adsorption,

desorption, reaction and diffusion), respectively, from state

b to a and vice versa. The master equation considers the

evolution of the system in phase space, representing all

possible states of the system, with each possible state of the

system corresponding to one unique point in the phase space.

Rate-equation theory applies a mean-field approximation to

reduce the complexity of this master equation and thereby

breaks it up into the familiar rate equations governing the evolution

of the average surface coverages. Instead, kMC algorithms provide

a direct numerical solution to the Markovian master equation

itself, which thus fully accounts for the detailed spatial distribution

of the species at the surface, for the statistical fluctuations

and site correlations. As such, kMC simulations are perfectly

suited for first-principles kinetic parameters that exclusively

describe the microscopic processes involving the individual

species and no longer offer effective flexibility to fudge errors

in the description at the mesoscale.

The down side of kMC simulations is to some extent

the computational cost which is significantly increased as

compared to solving the reaction network with rate equations.

Notwithstanding, this increased cost is mostly still completely

negligible compared to the cost of the first-principles calcula-

tions required to determine the rate constants. In this respect,

a second disadvantage of the numerical nature of the solution

is much more consequential. To one end, this renders the

evaluation of partial derivatives as e.g. required for sensitivity

analyses99–102 much more cumbersome than in rate equation

theory, where such derivatives can be analytically derived and

are thus easily available.105 For similar reasons, it is also much

more involved to integrate numerical kMC-based microkinetic

formulations into fluid dynamical simulations at the reactor

level (vide infra). In consequence, application of kMC simulations

in chemical engineering has to date been restricted to a few

seminal works1,48,129–138 and significant efforts to provide

these functionalities in easy-to-use program packages are

required to popularize this technique.

While kMC simulations thus potentially provide a route to

overcome present-day limitations in treating coverage effects

at the mesoscopic level, one has to recognize that such effects

are also omnipresent at the electronic structure level. The local

spatial distribution, i.e. the species occupations in the immediate

Fig. 6 Dependence of the steady-state turnover frequency (TOF) for CO2 production as a function of the CO partial pressure at T = 600 K and

p(O2) = 1 atm over a RuO2(110) model catalyst. The black line describes the TOFs obtained from standard mean-field (MFA) rate equations using

the DFT rate coefficients. The red circles show the TOFs obtained using exactly the same rate coefficients and reaction mechanism, but using

spatially resolved kinetic Monte Carlo (kMC) simulations. The blue line represents the TOFs given by the phenomenological microkinetic model

when the reaction rate coefficients are adjusted to yield the best fit to the kMC data (adapted from Temel et al.7).
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surroundings of an active site, determines not only possible

elementary processes, namely events that involve neighboring

sites, such as bimolecular reaction, diffusion, dissociative

adsorption or associative desorption steps. It may also directly

affect the kinetic parameter of each elementary process itself.

Corresponding lateral interactions between species sitting in

nearby surface sites may arise from through-space effects like

dipole–dipole interactions between neighboring adsorbates, or

through-surface-effects, e.g. due to bond competition arising

from coordination of adsorbates to the same surface atoms,

which in a more delocalized picture is often referred to as changes

of the local metal density-of-states. With respect to the rate

constant of an elementary process, such lateral interactions can

change either the vibrational entropy in the prefactor and/or the

activation energy in the exponential. Accounting for them in

microkinetic formulations thus requires providing rate constants

that are either coverage-dependent in mean field models or that

even explicitly depend on the detailed local environment around

an active site in kMC simulations.

Performing corresponding first-principles calculations that

properly determine the vibrational properties and activation

barriers as a function of the population of neighboring sites

is to the least computationally very expensive – recall the

discussion in Section 5 on the expense of determining the TST

prefactor; now this would mean to perform such calculations

for many different coverages/neighbor populations for every

elementary process. Moreover, also technically it is not easy to

realize. (Embedded) cluster models are typically chosen to

have the actual active site of interest in their center to minimize

possible edge effects due to the finite size of the (quantum-

mechanically described) region. Neighboring active sites are

then necessarily closer to the perimeter of the cluster model

and their electronic structure description as such potentially more

afflicted by edge effects. In contrast, in supercell calculations the

problem is that periodic images of the adsorbates are inherently

present, and lateral interactions with these images might in

fact inadvertently mask the determined kinetic quantities. In

this situation, it is common practice to perform the calcula-

tions in an aspired low-coverage limit, i.e. without any lateral

interactions. This is naturally realized in (embedded) cluster

calculations by considering only one adsorbate in the best

described center site(s), and in supercell calculations by resort-

ing to rather large surface unit-cell models to shift periodic

images to large distances and thus suppress unwanted inter-

actions. While this establishes a firm well-defined reference, it

obviously incurs an error to use corresponding low-coverage

rate constants later on in microkinetic simulations that need to

describe a high local surface coverage.

Systematic approaches to properly extract lateral interactions

from first-principles calculations exist and come under the name

surface cluster-expansions or lattice-gas Hamiltonians,36,58,59,139

cf. the discussion in Section 3 where these techniques

are employed to describe surface segregation in alloys. The

conceptual idea is to write the targeted quantity (typically the

binding energy, but equally the activation energy or even a

vibrational mode) as an algebraic sum of the low-coverage

limit and all lateral interactions to first, second, third etc.

neighbors. Here, not only pairwise interactions are considered,

but also higher-order trio, quattro etc. interactions to describe

many-body effects if e.g. the interaction with two simulta-

neously present nearby adsorbates is not just pairwise additive.

Truncating this expansion at interaction terms that are

deemed sufficiently small to become negligible, this gives rise

to a finite set of interaction parameters that are systematically

determined by first-principles calculations for different surface

unit-cells and coverages. Being fairly expensive and requiring

some methodical training of the modeler, the use of these

rigorous approaches to include lateral interactions in kinetic

models in heterogeneous catalysis is very limited. Somewhat

more spread are more qualitative descriptions which consider

a few leading lateral interactions, chosen to roughly reproduce

the variation of activation barriers/vibrational modes observed

in calculations at a small number of different coverages or

local environments. In particular for more complex reaction

networks and the concomitant need to further reduce the

computational costs, alternative approaches even resort to either

describing lateral interactions just effectively by consistently using

first-principles data obtained at some fixed intermediate coverage

(instead of the low-coverage limit). Or, interactions are described

explicitly, but at a lower level. In the latter explicit first-principles

data are then employed for the low-coverage limit, and

selected lateral interactions to nearby neighbors are described

semi-empirically or even just phenomenologically. One rather

popular approach in this respect is again the UBI-QEP

method,115 which allows coverage-dependent activation energies

to be calculated by means of thermochemical data of the

involved species.130,131,140,142 To date there have been very few

to no detailed studies to assess how much the uncertainties

inherited by any of these coarser approaches affect a given

kinetic model. Singular works suggest on the positive side that

an enhanced error cancelation could lead to particular accuracy

in first-principles lateral interactions143 and on the negative side

that particular care in mixing first-principles and experimental/

semi-empirical data is again advised.117 At present this under-

standing is, however, too rudimentary to reach a recommenda-

tion on (tractable) best practice with respect to the treatment of

lateral interactions in first-principles kinetic models.

7 From intrinsic reaction rate to effective reaction

rate

Once established, a first-principles microkinetic model yields

the intrinsic reaction rate, i.e. the catalytic conversions per unit

area and time, as a function of the local composition and

temperature of solid and fluid phase. Already at this level and

despite their approximations, such first-principles calculations

can offer mechanistic insights and structure–reactivity correlations

that are invaluable for a rational design of novel catalysts.

However, in an industrial context, assessment of the performance

of novel catalysts at an industrial reactor scale is equally important

since they potentially impact the plant economy. For large

commodity plants, production costs are paramount and, given

the high level of integration of processes, industry thus requires

the novel catalyst technology to be reliably demonstrated since

implementing a new catalyst technology for a given process

engenders risks for all processes integrated in the chain.144 Also,

catalyst deactivation phenomena – either by side reactions or by

trace impurities in the feed – often determine the optimal
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process lay-out and operating conditions and, hence, establishing

the factors that need to be controlled to ensure the desired

lifetime of the catalyst is an important topic where first principles

studies might contribute in the future.

Scaling-up to the industrial process requires to account for

heat and mass transfer effects in a given reactor geometry, i.e.

the first-principles microkinetic description of the intrinsic

catalyst function needs to be integrated into a modeling of

the flow structures at the micro-scale, at the catalyst pellet size,

and at the macro-scale, either through simplified heat and

mass balance differential equations or detailed computational

fluid dynamics (CFD) simulations. At the level of continuum

heat and mass balances, the surface catalytic function merely

appears as a boundary condition, albeit a dynamical one: the

turnovers depend on local solid/fluid properties (temperature,

gas-phase composition) at the boundary, which vice versa depend

on the turnovers. This requires a self-consistent solution of

both microkinetic and fluid-dynamical equations. For microkinetic

formulations based on rate equations this is common practice,

usually with closed-form expressions that can directly be incorpo-

rated in the continuum modeling or in CFD models, since most

major CFD packages allow for versatile analytic expressions to be

used as boundary conditions.145 As already pointed out in the

previous section, integration of the only numerically available kMC

solutions is much more involved. Seminal work attempted this

through direct coupling, but found it potentially numerically

unstable.146–148 This concept is furthermore difficult to extend to

complex reactor geometries, as independent kMC simulations

would be required for each spatially resolved cell at the surface.

In this respect, a recent approach based on an instantaneous

steady-state approximation appears much more promising.

This approximation decouples the problem and allows

presenting the boundary information for the CFD simulations

in the form of pre-computed and interpolated kMC steady-

state turnovers.149,150 Notwithstanding this progress, further

work with respect to the integration of kMC-based micro-

kinetics into reactor-level modeling is certainly still needed,

keeping in mind that it is these models rather than traditional

rate equation approaches that offer a proper account of

the statistical interplay at the mesoscale and therewith the

prospect of an error-controlled multiscale modeling.

Nevertheless, a much more crucial and hitherto barely tackled

problem in the integration of first-principles kinetic models, which

applies to both kMC and rate equation based approaches, concerns

the resolution of the catalyst microstructure.145 Corresponding first-

principles models are hitherto almost exclusively restricted to a

dominant facet of the active particles. In contrast, reactor scale

simulations, in particular in the industrial catalytic reaction

engineering context, consider highly reduced dimensions, e.g.

the one-dimensional plug-flow model. Furthermore, typical

engineering models of catalyst pellets consider a homogeneous

solid with simplified intraparticle mass and heat transfer,

usually using effectiveness factors, Thiele and Weisz moduli

etc.151 This discrepancy may again not be too consequential in

phenomenological modeling, where effects not resolved in the

fluid-dynamical model, e.g. explicit consideration of mass trans-

port in the porous media, are at least to some degree fitted into

the kinetic parameters. As pointed out several times already,

this does no longer work when using first-principles kinetic

parameters. A successful integration of first-principles kinetic

models will therefore likely need to resolve the real catalyst

structure in much more detail than in state-of-the-art engineering

models. To which degree this will be necessary is presently largely

unclear though and will require dedicated efforts bridging

between the physicochemical and engineering modeling commu-

nities. Until then, the only thing we can hope for is that if a first

principles based model can obtain quantitative agreement to

intrinsic kinetics obtained from a lab-scale reactor experiment

operated without mass transfer limitations, the traditional

engineering scaling-up machinery will perform as good as for

phenomenological kinetic models.

If the actual particle structure needs to be resolved, this would

touch on another severe limitation of current first-principles based

kinetic modeling, namely the accessible complexity. As mentioned,

the high computational costs involved restrict present-day first-

principles kinetic models almost exclusively to a single crystal

surface as model for the dominant facet of nanoparticles.

Extending this to full particles will require information about

the crystal habit under reaction conditions (which can either come

from experiment or theoretically fromWulff-constructions152) and

will eventually mean having to build first-principles kinetic models

not only for one facet, but for several ones, potentially even

including reactions at facet edges or the particle/support perimeter.

As discussed in Section 2 this is at present still as barely feasible a

task as the description of extended defects like steps at individual

facets, and has been to date only very rarely performed.153,154

Even for ideal facets, the same limitations arise when moving to

more complex reaction networks. With the exploding number of

possible elementary steps, the total amount of required first-

principles data for a comprehensive kinetic modeling becomes

intractable, let alone that it is not at all a trivial task to identify the

elementary steps themselves. Full reaction networks including all

possible pathways are therefore rarely studied, and kinetic models

are often reduced to a dominant path with a rate determining step.

This dominant path and/or rate determining step is thereby often

not properly established, but instead simply postulated or at best

only vaguely motivated. Obviously, this bears the risk that the

model is based on an erroneous mechanism, invalidating the entire

progress brought about by the first-principles kinetic parameters.

Recent progress to overcome this dilemma relies as a central

element on efficient sensitivity analyses to determine the rate

determining steps.103,104 As it is only the latter which needs to be

described with highest accuracy, this conceptually speaking would

open up a treatment of more complex systems by focusing the

modeling efforts to the really critical aspects. One potential

approach in this philosophy would e.g. be an iterative refinement

process, in which kinetic models based originally on less accurate

kinetic parameters are subsequently improved by substituting

the parameters of identified rate-limiting steps successively

with first-principles ones. Clearly, such approaches are at

present only in an exploratory stage though and significant

research is still required to validate their practicability.

8 Conclusions

As initially stated, the objective of this paper was twofold. On

the one hand, we briefly reviewed the current best practices

and state-of-the-art of first-principles based kinetic modeling
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in order to promote its use in industrial heterogeneous catalytic

reaction engineering. On the other hand, in doing so we

attempted to localize existing gaps, identifying the ‘construction

zones’ in which progress is needed. Particularly from the latter

discussion it is clear that full-fledged, self-standing first-principles

kinetic simulations remain out of reach to replace traditional

experimental catalyst screening and testing in the foreseeable

future. In contrast, first-principles modeling of idealized catalyst

models and well-defined reaction sequences is rather straight-

forward nowadays. Already at this level, first-principles calcula-

tions can, despite their approximations, provide such invaluable

mechanistic insights and structure–reactivity correlations that

there is little doubt that missing out on emerging first-principles

technology would be a fatal strategic decision. In fact, the two

central general limitations presently preventing a further

advancement of first-principles kinetic modeling in the engi-

neering context have little to do with the methodological gaps

reviewed in this paper, but instead concern (i) considerate use,

including dedicated training and (ii) refined experiments.

While breaking-edge method development and high-accuracy

methods are for their complexity and computational demands

always centered in the academic world, many problems in

present-day industrial modeling arise mainly from uncritical

use of the existing machinery and unawareness of tricks of the

trade that are well established in leading academic groups but

are not explicitly conveyed in journal papers. Closer collabora-

tions, counseling, as well as hands-on training visits could

provide miracles in this respect. As to (ii), it is generally not

sufficiently appreciated how closely intertwined progress in

first-principles catalyst modeling is with progress in refined

characterization and kinetic experimentation. This so-called

‘dual-feedback loop’ allows e.g. first-principles aided inter-

pretation of experimental data, while the experiments can be

used as validation for the modeling. As became clear from the

discussion on the choice of the catalyst model, the more

atomic-scale information is available as input to the first

principles modeling, the more detailed, reliable and relevant

will be the insights it can provide. As such it finds a natural

partner in novel in situ/in operando spectroscopy, providing

data of unprecedented resolution and quality. However, this

intimate relation should not be confused with ‘‘dependence’’.

After all, the one and foremost asset of first-principles quanti-

tative modeling is the independent information it can provide.

While traditional microkinetic modeling is often sufficient for

reactor optimization and design, first-principles microkinetic

modeling is not restricted to fitting of experimental data, but

allows identifying mechanistic errors and inconsistencies

and provides insights into kinetics not easily accessible other-

wise. With time, this essential contribution of first-principles

kinetic modeling in industrial heterogeneous catalytic reaction

engineering will inevitably grow in relevance, until it will

ultimately act as an equal partner to experiment and traditional

modeling in the quest towards a rational design of novel

catalysts with improved activity, selectivities and durability.
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