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Abstract

In this paper we will present two proofs of the monogenic Fischer decomposition in
two vector variables. The first one is based on the so-called “Harmonic Separation of
Variables Theorem” while the second one relies on some simple dimension arguments.
We also show that these decomposition are still valid under milder assumptions than the
usual stable range condition. In the process, we derive explicit formula for the summands
in the monogenic Fischer decomposition of harmonics.

1 Introduction

The so-called Separation of Variables Theorem is closely connected with the invariant theory
of the classical groups. Roughly speaking, this theorem can be explained as follows (see [19]).
Let G be a reductive algebraic group acting on a vector space W and extend this action to
the algebra of polynomials P(W ) on W . Denote the algebra of G-invariants in P(W ) as
P(W )G and the algebra of G-invariant constant-coefficient partial differential operators on
W as D(W )G. Let KerG(W ) := {P ∈ P(W ) : DP = 0 for all D ∈ D(W )G} be the space of
G-harmonic polynomials. The Separation of Variables Theorem states that

P(W ) ' P(W )G ⊗KerG(W )

within a certain stable range. In the framework of Clifford analysis, this theorem is usually
referred to as the Fischer decomposition. In this paper we give two alternative proofs of the
monogenic Fischer decomposition for polynomials of several vector variables in the easiest
non-trivial case of two vector variables. This corresponds to the case where G = Spin(m)
acts by the L-representation and W = R2×m. A more precise statement of the theorem will
be postponed untill the necessary background has been treated in the introductory part.
Our approach aims to elucidate the interplay between different ingredients: the L-action of
the group Spin(m), the orthosymplectic Lie (super) algebra osp(1|2k) (both acting on Clifford
algebra-valued polynomials of several vector variables) and monogenic polynomials of several
vector variables. The study of this type of polynomials has its origins in the work [9] by
D. Constales. We will discuss all this in detail for the case of two vector variables (k = 2).
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We would like to point out that some of the results we present here were already known and
proved elsewhere. Our contribution rather lies in the fact that we provide alternative proofs
and that we present our results as part of the general scheme of invariant theory as mentioned
before. In particular, the well known results for the rotation group SO(m) are extended to its
double cover Spin(m), thus offering the possibily to incorporate also the half-integer weight
representations of Spin(m) into this picture. This is exactly where tools of Clifford analysis
and in particular Dirac operators, turn out to be quite useful.
The monogenic (and harmonic) Fischer decomposition in several variables plays a fundamental
role in recent work involving the representation theory of Spin(m), the Howe dual pairs
(osp(1|2k), Spin(m)) (see e.g. [23, 31]), syzygies and resolutions occurring in algebraic analysis
of several Dirac operators (see e.g. [8, 22]) , the study of higher spin (Stein-Weiss) and Rarita-
Schwinger operators (see e.g. [3, 4, 5, 6, 7, 13, 30]).
The paper is organized as follows. In a preliminary section, we collect some basic notions about
Clifford analysis and the invariant theory of SO(m) and Spin(m). Next, we recall some facts
concerning the harmonic Fischer decomposition. A basic problem in Clifford analysis is the
decomposition of harmonic polynomials into monogenics. We will determine the structure
of this decomposition and show how the summands can be computed in an explicit way.
Together with the harmonic Fischer decomposition, these are the key ingredients of our first
proof of the monogenic Fischer decomposition in two vector variables (in a certain stable
range). The advantage of this proof lies in the fact that it can generalized to the k-vector
variable case. It also makes clear that monogenic polynomials of several vector variables
are not a straightforward refinement of harmonic polynomials. Our second proof and the
method used in [28] based on a dimension formula proved in [9], seem to be more restricted
to the two-vector variable case. However, also this proof has its merits because it shows
that the usual stable range conditions can be slightly weakened. Finally, we discuss so-called
counterexamples to either the harmonic or monogenic Fischer decomposition in the non-stable
range m = 2. These examples can also be generalized to the k-vector variable case. To the
best of our knowledge, such examples are usually missing in the literature.

1.1 Clifford analysis

In this section we collect some basic material concerning Clifford analysis. More detailed
information on this subject can be found e.g. in [2],[12],[14],[16].
Let (e1, . . . , em) be an orthonormal basis of Euclidean space Rm endowed with the inner
product 〈x, y〉 =

∑m
i=1 xiyi, x, y ∈ Rm. By R0,m we denote the real 2m-dimensional Clifford

algebra over Rm generated by the relations

eiej + ejei = −2δij .

If there is no confusion possible we use the shorter notation Rm := R0,m. An element of Rm
is of the form a =

∑
A⊂M aAeA, aA ∈ R, M = {1, . . . ,m} where A is an ordered subset of M

and eφ = e0 = 1. The k-vector part of a is given by [a]k =
∑
|A|=k aAeA and a =

∑m
k=0[a]k

with [a]k ∈ Rkm. Vectors x ∈ Rm are identified with 1-vectors x =
∑m

j=1 xjej ∈ R1
m. The

Clifford product of two vectors x and y splits into minus the inner product and the wedge
product of x and u:

xu = −〈x, u〉+ x ∧ u .
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The complex Clifford algebra Cm is the complexification of Rm. The following (anti-)involutions
are of importance. They are defined by their action on the basis elements ei ∈ R1

m and ex-
tended by linearity to Rm:

• main involution a 7→ a′; (ac)′ = a′c′ , e′i = −ei ,

• conjugation a 7→ ā; ac = c̄ā , ēi = −ei .

The main involution ′ defines a Z2-grading on Rm. The eigenspaces R±m of the main involution
′ are the so-called even and odd part of the Clifford algebra. Conjugation on Cm is the anti-
involution on Cm given by ā =

∑
A⊂M āAēA.

The subset of Rm consisting of products of an even number of unit vectors in Rm (identified
with R1

m) forms a group under Clifford multiplication, this is the Spin group Spin(m) :=
Spin(0,m). The action of s ∈ Spin(m) on vectors x ∈ Rm is the (twisted) adjoint vector
representation χ(s)x := s′xs−1 = sxs−1 . The map χ : Spin(m)→ SO(m), s 7→ χ(s) defines
a double covering of the orthogonal group SO(m). A spinor space S ⊂ Cm is an irreducible
representation of Spin(m) under the action s 7→ sa, a ∈ Cm and can be realized as a minimal
left ideal in Cm using a primitive idempotent.
The Dirac operator on Rm is given by ∂x =

∑m
j=1 ej∂xj . Let V be a Clifford module

(typically Rm, Cm or a spinor space S). A V -valued function f(x) is called monogenic if it
satisfies the equation ∂xf = 0. Since ∂2x = −4x, monogenic functions are a refinement of
harmonic functions. The space of V -valued polynomials on Rm is denoted by P(Rm, V ) and

H(Rm, V ) = {P ∈ P(Rm, V ) : 4xP (x) = 0}
M(Rm, V ) = {P ∈ P(Rm, V ) : ∂xP (x) = 0} .

The corresponding subspaces of k-homogeneous polynomials are denoted by an extra subscript
k. The spaces Mk(Rm, V ) and Hk(Rm, V ) are known as the spaces of (inner) spherical
monogenics and harmonics of order k . Further information on spherical monogenics can be
found in e.g. [2, 12, 16] .
The Fischer decomposition is a useful property which is particularly well known in the one
variable case. It describes how polynomials on Rm can be decomposed in a unique way into
basic building blocks of harmonic or monogenic polynomials:

P(Rm,C) =
⊕
s≥0
|x|2sH(Rm,C) , P(Rm,Cm) =

⊕
s≥0

xsM(Rm,Cm) . (1)

The group action behind these decompositions is either the h- or L-action of Spin(m). One
can also consider other actions: e.g. the H-action on Cm-valued polynomials (cf. infra). The
decomposition of P(Rm,Cm) under this action has recently been studied in the paper [11]. In
this case, the basic building blocks are the spaces of homogeneous solutions to the Hodge-de
Rham system.

1.2 Invariants for the SO(m)- and Spin(m)-action

Denote by P(Rm×2, V ) the space of V -valued polynomials on Rm×2 where V is a Clifford
module. Introduce the vector variables

x =
m∑
i=1

xiei , u =
m∑
i=1

uiei .
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Polynomials P (x, u) = P (x1, . . . , xm, u1, . . . , um) ∈ P(Rm×2, V ) correspond to polynomials of
two vector variables (x, u) ∈ Rm ⊕ Rm ' Rm×2. Let s ∈ Spin(m). Consider the following
representations of Spin(m) on P(Rm×2, V ) :

(h(s)P )(x, u) = P (s−1xs, s−1us) = P (s̄xs, s̄us) (V = C)

(H(s)P )(x, u) = sP (s−1xs, s−1us)s−1 = sP (s̄us, s̄us)s̄ (V = Cm)

(L(s)P )(x, u) = sP (s−1xs, s−1us) = sP (s̄us, s̄us) (V = Cm or S) .

Remark that h and H are also SO(m)-representations. Define the spaces of polynomial
invariants:

I(SO(m), 2) := {P ∈ P(Rm×2,C) : h(s)P = P, s ∈ SO(m)}
I(Spin(m), 2) := {P ∈ P(Rm×2,Cm) : H(s)P = P, s ∈ Spin(m)} .

The extra number 2 in the notation for the polynomial invariants I emphasizes that we
consider polynomial invariants of two vector variables. The First Fundamental Theorem of
Invariant Theory (FFT) for SO(m) goes back to H. Weyl, [32] and describes a set of basic
generators for the invariants of the action of SO(m):

I(SO(m), 2) '
{
P(|x|2, |u|2, 〈x, u〉)⊕ (x1u2 − x2u1)P(|x|2, |u|2, 〈x, u〉), m = 2
P(|x|2, |u|2, 〈x, u〉), m ≥ 3 .

The case m = 2 is rather special because the determinant yields an extra invariant polynomial
x1u2 − x2u1 satisfying (x1u2 − x2u1)2 = |x|2|u|2 − 〈x, u〉2 .
The algebra I(Spin(m), 2) is more complicated. Let Alg(S) be the (unital) algebra over C
generated by the elements in a set S. The algebra of Spin(m)-invariant Cm-valued polynomials
is generated by the vector variables x, u and the pseudoscalar eM = e12...m (see [27]):

I(Spin(m), 2) ' Alg(x, u, eM), m ≥ 2 .

The generators of this algebra satisfy certain algebraic relations: the vectors x and u commute
with the anti-commutator of two vectors and the pseudoscalar e12...m commutes (m odd) or
anti-commutes (m even) with the vector variables x and u . In contrast with the h-action,
the algebra Alg(x, u, eM) does not behave like the symmetric algebra in the basic invariants
and another type of algebra is needed. In fact, the subalgebra Alg{x, u} is a realization of
the so-called radial algebra in two vector variables.
In case of k vector variables, this algebra is defined as follows. Let S = {X1, . . . , Xk} be a set
of symbols, called abstract vector variables. Consider the free algebra A(S) over C generated
by the set S. Let I be the two-sided ideal in A(S) generated by the elements [Xi, {Xj , Xl}]
where (i, j, l) is any triple chosen from the set {1, . . . , k}. The radial algebra of k vector
variables introduced in [25], is defined as

R(S) = R(X1, . . . , Xk) := A(S)/I .

Consider the vector variables xj =
∑m

s=1 xjses, j = 1, . . . , k. Let Alg(x1, . . . , xk) be the
C-algebra generated by these vector variables. The map Xj 7→ xj extends to an algebra
isomorphism R(X1, . . . , Xk)→ Alg(x1, . . . , xk) iff m ≥ k (see [25]). In this paper, k = 2 and
m ≥ 2. Hence, the algebra generated by the vector variables x and u is a realization of the
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radial algebra in two vector variables and we will often use the notation R(x, u) . We will
also use the gradings

I(SO(m)) =
⊕
l≥0
I2l(SO(m)) , R(x, u) =

⊕
l≥0
Rl(x, u) .

where the subscript j refers to the subspace of polynomials which are eigenfunctions of Ex+Eu
with eigenvalue j.
The radial algebra R(x, u) admits a multivector structure which can be described as follows.
Let ∧f− be the Grassmann algebra over the basic Spin(m)-invariant vector variables x and u:

∧f− ' C⊕ Cx⊕ Cu⊕ C (x ∧ u) .

One has the grading: ∧0f− ' C, ∧1f− = f− = span{x, u}, ∧2f− ' C (x ∧ u) corresponding to
scalars, vectors and bivectors. The map a 7→ [a]k, a ∈ Cm is H-invariant. Therefore one can
also look for k-vector-valued Spin(m)-invariant polynomials. As a consequence:

Lemma 1 The radial algebra (as a vector space) has the following multivector structure :

R(x, u) ' I(SO(m))⊗ ∧f−
' P(|x|2, 〈x, u〉, |u|2)⊗ ∧f− . (2)

1.3 The Lie (super)algebras sp(4) and osp(1|4)

Let P,Q ∈ P(Rm×2,Cm). The Fischer inner product on P(Rm×2,Cm) is the positive definite
Hermitean inner product defined as

〈P,Q〉 := [P̄ (∂x, ∂u)Q(x, u)]0|x=0,u=0 ,

where P (∂x, ∂u) stands for the constant coefficient partial differential operator obtained by
replacing the coordinates xi, ui by the corresponding derivatives ∂xi , ∂ui . The adjoint of
A ∈ End(P(Rm×2,Cm)) relative to the Fischer inner product is denoted by A∗. The coor-
dinate variables xi, ui and the derivatives ∂xi , ∂ui are each others Fischer-adjoint while the
generators ei of the Clifford algebra Cm are skew-adjoint. Therefore the Fischer-adjoints
of the basis invariants |x|2, |u|2, 〈x, u〉, x, u are given by the differential operators 4x, 4u,
〈∂x, ∂u〉, −∂x, −∂u. The Fischer-adjoint ∗ defines an involution between the algebra of
SO(m)- or Spin(m)-invariant polynomials (symbols) and the algebra of corresponding in-
variant constant-coefficient partial differential operators. Let Ex = 〈x, ∂x〉 and Eu = 〈u, ∂u〉
be the usual Euler operators. Define

p+ = span{4x,4u, 〈∂x, ∂u〉} , p− = span{|x|2, |u|2, 〈x, u〉} ,
f+ = span{∂x, ∂u} , f− = span{x, u} ,
t = span{2Ex +m, 2Eu +m, 〈x, ∂u〉, 〈u, ∂x〉} .

Then sp(4) = p−⊕ t⊕p+ and osp(1|4) = f−⊕ f+⊕ sp(4) = f−⊕p−⊕ t⊕p+⊕ f+ . Here f−⊕ f+
stands for the odd (fermionic) part of the orthosymplectic Lie superalgebra osp(1|4) while
the symplectic Lie algebra sp(4) is the even (bosonic) part. Lie superalgebras are Z2-graded
algebras endowed with a non-associative operation defined by the Lie super-bracket. The Lie
super-bracket of X and Y is defined as XY − (−1)|Y ||X|Y X, where the grade of |X| = 0 or 1
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if X is even or odd. Commutators are denoted by [X,Y ] = XY −Y X and anti-commutators
by {X,Y } = XY + Y X . The (anti-)commutation relations imply

[p+, p−] = t , [t, p±] = p± , {f+, f−} = t , [t, f±] = f± ,

{f+, f+} = p+ , {f−, f−} = p− , [p+, f−] = f+ , [p−, f+] = f− ,

[p+, p+] = [p−, p−] = [p+, f+] = [p−, f−] = 0 .

These relations can also be expressed in the universal enveloping algebra U(osp(1|4)) as:
p+p− ⊂ p−p+ + t , f+f− ⊂ f−f+ + t . By induction:

p+(p−)j ⊂ (p−)jp+ + (p−)j−1(t + 1) , f+(f−)j ⊂ (f−)jf+ + (f−)j−1(t + 1) . (3)

2 The harmonic Fischer decomposition

Define the spaces of harmonic and monogenic polynomials in two vector variables:

H(Rm×2,C) = {f ∈ P(Rm×2,C) : 4xf = 4uf = 〈∂x, ∂u〉f = 0 or p+f = 0} ,
M(Rm×2, V ) = {f ∈ P(Rm×2, V ) : ∂xf = ∂uf = 0 or f+f = 0} .

These spaces can alternatively be defined as the polynomials annihilated by all SO(m)- or
Spin(m)-invariant constant-coefficient differential operators of which the symbol vanishes in 0.
We have the following propositions. First of all, we formulate the so-called primitive Fischer
decomposition which is valid in a wider range for m than the usual Fischer decomposition.
The former provides less detailed information and is easy to prove. Because of its similarity
with the harmonic case, we mention here already the monogenic version as well.

Lemma 2 (Primitive harmonic and monogenic Fischer decomposition). Let m ≥ 2. Then
we have the orthogonal direct sum :

P(Rm×2, V ) = H(Rm×2, V )⊕ p−P(Rm×2, V )

=
⊕
l≥0

(p−)lH(Rm×2, V )

P(Rm×2, V ) = M(Rm×2, V )⊕ (xP(Rm×2, V ) + uP(Rm×2, V )) (4)

= M(Rm×2, V )⊕ f−P(Rm×2, V )

=
⊕
l≥0

(f−)lM(Rm×2, V ) . (5)

Proof.
To illustrate the idea, we only proof the monogenic version (5). The direct sum (4) is an

immediate consequence of the fact that x an u are (up to a sign) the Fischer duals of ∂x and
∂u. Repeated application of (4) shows that

P(Rm×2, V ) =
∑
l≥0

(f−)lM(Rm×2, V ) . (6)

Summands corresponding to different l are Fischer orthogonal; this follows from the relations
(3) in U(osp(1|4)). Therefore the sum (6) is direct.

The structure of the vector spaces (p−)lH(Rm×2, V ), l ∈ N follows from the standard Fischer
decomposition which is only valid in a more restricted range for m. The following decompo-
sition is precisely of the type as mentioned in the introduction.
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Theorem 3 (Harmonic Fischer decomposition in two vector variables) Let m ≥ 4. Then:

P(Rm×2,C) ' I(SO(m), 2)⊗H(Rm×2,C) (7)

' P(|x|2, |u|2, 〈x, u〉)⊗H(Rm×2,C) (8)

JH ← J ⊗H .

More information about this theorem and its assumptions on the number of (vector) variables
and the dimension m can be found in [15, 19]. According to their results, the so-called stable
range is the condition

[
m
2

]
≥ 2 (= number of vector variables) or m ≥ 4. In this case, the map

J ⊗H 7→ JH (the product of the polynomials J and H) is injective. Therefore P(Rm×2,C)
can be regarded as a free module over I(SO(m), 2). The harmonic Fischer decomposition is
in [19] also referred to as “Harmonic Separation of Variables Theorem”. We would like to
mention that the stable range condition can be relaxed to m ≥ 3. We will return to this in
the second proof of the monogenic Fischer decomposition (theorem 13).
The harmonic Fischer decomposition can be further refined by decomposing the harmonics
into irreducible pieces for the h-action. These are harmonics which satisfy additional SO(m)-
invariant PDE coming from the t-subalgebra of sp(4). We state here some definitions and
results which will be used in the sequel. For convenience, we consider here also simplicial
monogenics.

Definition 1 The spaces of simplicial harmonics [15, 19] and monogenics [23, 31] are :

SH(R2×m, V ) := {H ∈ H(R2×m, V ) : 〈x, ∂u〉H = 0}
SM(R2×m, V ) := {M ∈M(R2×m, V ) : 〈x, ∂u〉M = 0} .

Consider the action of the Lie algebra sl(2) ' span{〈x, ∂u〉, 〈u, ∂x〉, Ex −Eu} on H(R2×m, V )
or M(R2×m, V ) expressed by the commutation relations:

[〈x, ∂u〉, 〈u, ∂x〉] = Ex − Eu
[Ex − Eu, 〈x, ∂u〉] = 2〈x, ∂u〉
[Ex − Eu, 〈u, ∂x〉] = −2〈u, ∂x〉 . (9)

Under this action, harmonic (monogenic) polynomials can be further decomposed into sim-
plicial harmonic (monogenic) polynomials. Notice that the operators 〈x, ∂u〉 and 〈u, ∂x〉 are
each others Fischer-adjoint. This leads immediately to the direct sums:

H(R2×m, V ) =
⊕
j≥0
〈u, ∂x〉jSH(R2×m, V ) , M(R2×m, V ) =

⊕
j≥0
〈u, ∂x〉jSM(R2×m, V ) . (10)

The Casimir operator C(sl(2)) for this action is defined by:

C(sl(2)) := 2(〈x, ∂u〉 〈u, ∂x〉+ 〈u, ∂x〉 〈x, ∂u〉) + (Ex − Eu)2

= 4〈u, ∂x〉 〈x, ∂u〉+ (Ex − Eu)(Ex − Eu + 2) . (11)

Lemma 4 Define the operator G := −4〈u, ∂x〉〈x, ∂u〉+ (2Ex +m)(2Eu +m− 2). Then :

1. G = (Ex +Eu +m− 1)2 − C(sl(2))− 1, hence G belongs to the center of the universal
enveloping algebra of gl(2) ' sl(2)⊕ R(Ex + Eu)

2. G defines an invertible endomorphism on harmonics and, in particular on monogenics

3. (∂x ∧ ∂u) ((x ∧ u)P ) = −(G+ Ex + Eu +m)P , P ∈M(R2×m, V ) .
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Proof.
(i) Follows from the definition of G and expression (11).

(ii) First of all, 〈u, ∂x〉, 〈x, ∂x〉, Ex, Eu define endomorphisms on either M(R2×m, V ) or
H(R2×m, V ). To prove the invertibility, let Sk,l ∈ SH(R2×m, V ) be homogeneous of bidegree
(k, l). Then C(sl(2))Sk,l = (k − l)(k − l + 2)Sk,l and

GSk,l = (2k +m)(2l +m− 2)Sk,l .

This shows that G is invertible on the space SH(R2×m, V ). By (i), G commutes with each
power 〈u, ∂x〉j in the decomposition (10). The smallest eigenvalue of G (as an operator on
H(R2×m, V )) is m(m+ 2), therefore G is invertible on H(R2×m, V ).
(iii) Consider the fundamental identity (see [24]):

2{Γx,Γu}+ {x ∧ ∂u, u ∧ ∂x}+ {x ∧ u, ∂x ∧ ∂u}
+64LB,x,u − 2(m− 2)(Γx + Γu) +m(m− 1) = 0

where 4LB,x,u :=
∑

i<j Lx,ijLu,ij = 〈x, u〉〈∂x, ∂u〉−〈u, ∂x〉〈x, ∂u〉+Eu (see [31]). In particular

for P ∈M(R2×m, V ):

4LB,x,uP = (−〈u, ∂x〉〈x, ∂u〉+ Eu)P ,

{x ∧ ∂u, u ∧ ∂x}P = (〈x, ∂u〉〈u, ∂x〉+ 〈u, ∂x〉〈x, ∂u〉)P
= (2〈u, ∂x〉〈x, ∂u〉+ Ex − Eu)P ,

{Γx,Γu}P = 2ExEuP ,

(Γx + Γu)P = −(Ex + Eu)P .

We thus obtain (∂x ∧ ∂u)((x ∧ u)P ) = −(G+ Ex + Eu +m)P .

3 The monogenic decomposition of harmonics

In this section we determine the structure of the decomposition of harmonics into monogenics.
In particular, we want to know how the space M(Rm×2, V ) can be embedded in a Spin(m)-
invariant way in H(Rm×2, V ) . In the one-variable case this is quite simple:

(1⊕ f−)M(Rm, V ) =M(Rm, V )⊕ xM(Rm, V ) = H(Rm, V ) .

Only in this case, p+ = (f+)2. This fails to be true in the two-vector variable case because
now p+ is not the full (f+)2 but rather the “symmetric or scalar part” of it. As a result, the
monogenic Fischer decomposition in two vector variables is not a straightforward refinement
of the harmonic Fischer decomposition. This property is also responsible for the fact that
(although M(Rm×2, V ) is a subspace of H(Rm×2, V )) the monogenic decomposition of a
harmonic polynomial will not be so simple. The following notion, based on the primitive
Fischer decomposition, will play an important role:

Definition 2 The harmonic projection PH : P(Rm×2,C)→ H(Rm×2,C) is the projection on
the first summand of the following orthogonal decomposition :

P(Rm×2,C) = H(Rm×2,C)⊕ p−P(Rm×2,C) .

We call PH [F ] the harmonic part of F .
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In case of two (or more) vector variables one has to consider the harmonic projection PH
acting on ∧f−M(Rm×2, V ) . Clearly, (1⊕ f−)M(Rm×2, V ) is a strict subspace of H(Rm×2, V ).
Finding the harmonic part of (x∧u)M(Rm×2, V ) is less straightforward. The following lemma
provides an explicit formula.

Lemma 5 Let m ≥ 2. Define T1,1 := |x|2〈u, ∂x〉 − |u|2〈x, ∂u〉+ (Eu − Ex)〈x, u〉. Then :

1. T1,1 commutes with the sl(2)-action defined by the relations (9 )

2. The harmonic projection of (x ∧ u)M , M ∈M(Rm×2, V ) is given by :

PH [(x ∧ u)M ] =

(
x ∧ u+

1

Ex + Eu +m− 4
T1,1

)
M

3. (∂x ∧ ∂u)(T1,1M) = C(sl2)M , M ∈M(Rm×2, V ) .

Proof.
(i) Follows from standard computations in sp(4).

(ii) Let M := Mk,l ∈ M(Rm×2, V ) be homogeneous of bidegree (k, l) . Then (x ∧ u)Mk,l is
biharmonic, i.e. (x ∧ u)Mk,l is annihilated by the ideal generated by p2+ where

p2+ = span{42
x,42

u,4x4u,4x〈∂x, ∂u〉,4u〈∂x, ∂u〉, 〈∂x, ∂u〉2} .

consists of all fourth-order SO(m)-invariant constant coefficient differential operators. For
m ≥ 2 we have the N-graded direct sum of lemma 2:

P(Rm×2, V ) =

∞⊕
l=0

(p−)lH(Rm×2, V ) . (12)

If p2+f = 0, then f must be Fischer orthogonal to p2−P(Rm×2, V ). Hence (x∧u)M(Rm×2, V ) ⊂
H(Rm×2, V )⊕ p−H(Rm×2, V ). Therefore we can take as Ansatz the following expression:

H := Hk+1,l+1 =
(
x ∧ u+ a|x|2〈u, ∂x〉+ b|u|2〈x, ∂u〉+ c〈x, u〉

)
Mk,l

and we will determine a, b, c ∈ R such that H ∈ H(Rm×2, V ). Remark that both 〈u, ∂x〉Mk,l,
〈x, ∂u〉Mk,l belong to M(Rm×2, V ) because t stabilizes M(Rm×2, V ). The action of 4x, 4u,
〈∂x, ∂u〉 on H yields a system of 3 equations in a, b, c :

4xH = −2〈u, ∂x〉M + 2a(2Ex +m)〈u, ∂x〉M + 2c〈u, ∂x〉M
= 2(c− 1 + (2k +m− 2)a)〈u, ∂x〉M = 0

4uH = 2〈x, ∂u〉M + 2b(2Eu +m)〈x, ∂u〉M + 2c〈x, ∂u〉M
= 2(c+ 1 + (2l +m− 2)b)〈x, ∂u〉M = 0

〈∂u, ∂x〉H = 2(a〈x, ∂u〉〈u, ∂x〉+ b〈u, ∂x〉〈x, ∂u〉)M
+(Ex − Eu + c(m+ Ex + Eu))M = 0 .

The solution of this system is given by

a =
1

k + l +m− 2
, b = −a , c =

l − k
k + l +m− 2

.
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(iii) Next, since [∂x ∧ ∂u), |x|2] = 2x ∧ ∂u and [∂x ∧ ∂u, 〈u, x〉] = Γx − Γu:

(∂x ∧ ∂u)|x|2〈u, ∂x〉M = 2〈x, ∂u〉〈u, ∂x〉M ,

(∂x ∧ ∂u)|u|2〈x, ∂u〉M = −2〈u, ∂x〉〈x, ∂u〉M ,

(∂x ∧ ∂u)(Eu − Ex)〈x, u〉M = −(Eu − Ex)(Γu − Γx)M = (Ex − Eu)2M .

Combining all pieces yields

(∂x ∧ ∂u)(T1,1M) = (4〈u, ∂x〉〈x, ∂u〉+ (Ex − Eu)(Ex − Eu + 2))M = C(sl2)M .

The structure of the decomposition of harmonic polynomials into monogenic polynomials
follows from:

Theorem 6 Suppose that m ≥ 3 (weaker stable range).

1. Let M ∈M(Rm×2, V ), then : PH [(x ∧ u)M ] = 0 iff M = 0

2. H(Rm×2) =M(Rm×2)⊕⊥
(
xM(Rm×2)⊕ uM(Rm×2)

)
⊕⊥ PH

[
(x ∧ u)M(Rm×2)

]
where the subscript ⊥ means orthogonal for the Fischer inner product.

Proof.
(i) Invoking the explicit form of the harmonic projection in lemma 5, PH [(x ∧ u)M ] = 0 if

(Ex + Eu +m− 2)(x ∧ u)M + T1,1M = 0 .

Applying the operator (∂x ∧ ∂u) to this identity and using part (iii) of lemma 4 and 5 yields

(Ex + Eu +m− 1)(− (Ex + Eu +m)(Ex + Eu +m− 2) + C(sl2))M = 0 . (13)

Recall the decomposition of monogenics into simplicial monogenics (expression (10)). If we
take M = 〈u, ∂x〉sSk,l, Sk,l ∈ SM(Rm×2) in (13), we obtain

−(k + l +m− 1)(2k +m)(2l +m− 2)〈u, ∂x〉sSk,l = 0 .

This is only possible if both m = 2 and l = 0 or M = 0. This explains the condition m ≥ 3.
Remark that the counterexample (21) at the end of the paper is precisely an example where
m = 2 and l = 1. We may thus conclude that for m ≥ 3 the map M 7→ PH [(x ∧ u)M ],
M(Rm×2, V )→ H(Rm×2, V ) defines a Spin(m)-invariant embedding.
(ii) The summands in the primitive Fischer decomposition (5):

P(Rm×2) =
⊕
l≥0

(f−)lM(Rm×2)

are Fischer orthogonal to each other. Since PH
[
(x ∧ u)M(Rm×2)

]
∈ f2−M(Rm×2):

H(Rm×2) = PH
[
P(Rm×2)

]
=M(Rm×2)⊕⊥ f−M(Rm×2)⊕⊥ PH

[
(x ∧ u)M(Rm×2)

]
.
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If m ≥ 3 and xP + uQ = 0 for some P,Q ∈ M(Rm×2), then |x|2P + xuQ = 0 which implies
PH [(x ∧ u)Q] = 0. By part (i), Q and hence also P must be zero. Therefore, the second
summand admits a direct sum decomposition:

f−M(Rm×2) = xM(Rm×2) + uM(Rm×2) ' xM(Rm×2)⊕ uM(Rm×2) .

For applications it is of some interest to have explicit formula to determine all pieces
in the monogenic Fischer decomposition of a harmonic polynomial. We will now show how
these monogenic summands can be computed in a systematic way. First of all we state some
definitions and results which will be used in the sequel.

Definition 3 Consider the following Spin(m)-invariant operators :

I−1,0 := 2〈u, ∂x〉∂u − (2Eu +m− 2)∂x ,

I0,−1 := 2〈x, ∂u〉∂x − (2Ex +m− 2)∂u .

In the following lemma we collect some useful results concerning these operators.

Lemma 7 Let m ≥ 2.

1. The operators I−1,0 and I0,−1 satisfy the anti-commutation relations :

{x, I0,−1} = 2x ∂u , {u, I0,−1} = −2x ∂x +G ,

{u, I−1,0} = 2u ∂x , {x, I−1,0} = −2u ∂u +G

and they map the kernel of (f+)2 to M(R2×m, V ) . In fact :

I−1,0(M
0,0 + uM0,1 + xM1,0) = GM1,0 ,

I0,−1(M
0,0 + uM0,1 + xM1,0) = GM0,1 (14)

2. The operator ∂x ∧ ∂u has a trivial kernel on PH
[
(x ∧ u)M(R2×m, V )

]
.

Proof.
(i) Straightforward computations yield the anti-commutation relations (valid on P(R2×m, V )):

{x, 2〈x, ∂u〉∂x − (2Ex +m− 2)∂u} = 2x ∂u ,

{u, 2〈x, ∂u〉∂x − (2Ex +m− 2)∂u} = −2x ∂x +G

and the similar relations with x↔ u (G is invariant under x↔ u):

{u, 2〈u, ∂x〉∂u − (2Eu +m− 2)∂x} = 2u ∂x ,

{x, 2〈u, ∂x〉∂u − (2Eu +m− 2)∂x} = −2u ∂u +G .

The kernel of (f+)2 is M(R2×m) ⊕ (uM(R2×m) + xM(R2×m)); the identities (14) follow
immediately from the afore-mentioned anti-commutation relations .
(ii) Using part (iii) of lemma 4, 5 and the explicit form of PH [(x ∧ u)P ], we obtain

(∂x ∧ ∂u)PH [(x ∧ u)P ] = −G(Ex + Eu +m− 1)

Ex + Eu +m− 2
P (15)

where the coefficient of P is an invertible operator on M(R2×m, V ).
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Theorem 8 (Monogenic decomposition of harmonics)
The summands in the decomposition

H = M0,0 + xM1,0 + uM0,1 + PH
[
(x ∧ u)M1,1

]
, Ma,b ∈M(R2×m, V )

can be determined recursively by :

PH
[
(x ∧ u)M1,1

]
= BPH [(x ∧ u)(∂x ∧ ∂u)H] ,

M1,0 = G−1I−1,0 (H −BPH [(x ∧ u)(∂x ∧ ∂u)H]) ,

M0,1 = G−1I0,−1 (H −BPH [(x ∧ u)(∂x ∧ ∂u)H]) ,

M0,0 = H − xM1,0 − uM0,1 − PH
[
(x ∧ u)M1,1

]
.

where B := − Ex + Eu +m− 2

G(Ex + Eu +m− 1)
.

Proof.
Recall the decomposition from Theorem 6:

H = M0,0 + xM1,0 + uM0,1 + PH
[
(x ∧ u)M1,1

]
, Ma,b ∈M(R2×m, V ) . (16)

To determine all summands we will first determine M1,1 and work our way down to determine
the other ones by recursion. By the previous lemma and relation (15), the operator ∂x ∧ ∂u
annihilates the first three terms in (16), hence

(∂x ∧ ∂u)H = (∂x ∧ ∂u)PH
[
(x ∧ u)M1,1

]
=
G(Ex + Eu +m− 1)

Ex + Eu +m− 2
M1,1 = BM1,1 .

Like the operator G, B is also invertible on M(R2×m, V ). Hence

M1,1 = − Ex + Eu +m− 2

G(Ex + Eu +m− 1)
(∂x ∧ ∂u)H .

To determine M0,1 and M1,0 we replace H by H ′ = H − PH
[
(x ∧ u)M1,1

]
. By relation (14)

in the previous lemma: I−1,0H
′ = GM1,0 and I0,−1H

′ = GM0,1 . We thus obtain

M1,0 = G−1I−1,0H
′ ,

M0,1 = G−1I0,−1H
′ ,

M0,0 = H ′ − xM1,0 − uM0,1 .

4 Monogenic polynomials in two vector variables

Let V = Cm or S . Denote byMl,k(Rm×2, V ) the space of monogenic polynomials of bidegree
(k, l). We now want to calculate the dimension of the space Ml,k(Rm×2, V ). Our approach
is based on the isomorphism given by the Cauchy-Kovalevska extension, thus providing an
alternative approach to the one elaborated in [9]. In this section, we assume m ≥ 3.
Put Rm = Re1 ⊕ e⊥1 and identify e⊥1 with Rm−1, we then use the notation u = u1e1 + u[
and x = x1e1 + x[. Restrict P (x, u) ∈ M(Rm×2, V ) to the plane x1 = u1 = 0. This gives a
polynomial p(x[, u[) = P (0, x[, 0, u[) ∈ P(Rm−1×Rm−1, V ). In contrast with the one-variable
case, the polynomial p(x[, u[) must also satisfy an equation (see also [9]):
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Theorem 9 The restriction p(x[, u[) of P (x, u) ∈ M(Rm×2, V ) to the plane x1 = u1 = 0
satisfies the PDE : (∂x[ ∧ ∂u[)p(x[, u[) = 0 on Rm−1 × Rm−1 . Moreover, P (x, u) can be
recovered from the (double) CK-extension :

P (x, u) = exp(e1u1∂u[) exp(e1x1∂x[)p(x[, u[)

where the order of the operators defined by the exponentials is immaterial.

Definition 4 The Cauchy-Kovalevska extension CK for M(Rm×2, V ) is the isomorphism :

CK : Ker(∂x[ ∧ ∂u[) ∩ P(Rm−1 × Rm−1, V )→M(Rm×2, V )

p(x[, u[) 7→ P (x, u) = exp(e1x1∂x[ + e1u1∂u[)p(x[, u[) .

Here, the key property of the CK-extension is that the system ∂xP = ∂uP = 0 is replaced by
a single equation (∂x[ ∧ ∂u[)p(x[, u[) = 0. This is the main idea behind the following result:

Lemma 10 (Dimension of the space Ml,k(Rm×2, V ), m ≥ 3)

dimMl,k(Rm×2, V ) = dimPl,k(Rm−1 × Rm−1, V )− dimPl−1,k−1(Rm−1 × Rm−1, V )

=

(
k +m− 3
k − 1

)(
l +m− 3
l − 1

)
(k + l +m− 2)(m− 2)

kl
dimV .

Proof.
The Fischer dual of the operator ∂x[ ∧ ∂u[ is given by the multiplication operator u[ ∧ x[.

We thus have a (primitive) Fischer orthogonal decomposition of the form:

P(Rm−1 × Rm−1, V ) = Ker(∂x[ ∧ ∂u[)⊕ (x[ ∧ u[)P(Rm−1 × Rm−1, V ) .

The condition m ≥ 3 is needed because x[ ∧ u[ is identically zero for m = 2. We claim that
the multiplication operator u[ ∧ x[ is invertible on polynomials. Take a polynomial Q such
that (x[ ∧ u[)Q = 0. Then also (x[ ∧ u[)2Q = (〈x[, u[〉2 − |x[|2|u[|2)Q = 0, hence Q = 0 . The

dimension formula then follows from dimPk(Rm, V ) =

(
k +m− 1

k

)
dimV .

5 The monogenic Fischer decomposition

The main result we want to prove is the analogue of the “Harmonic Separation of Variables
Theorem” in the monogenic setting.

Theorem 11 (Monogenic Fischer decomposition in two vector variables)
Let m ≥ 4 and let V be the Clifford algebra Cm or a spinor space S . Then:

P(Rm×2, V ) ' R(x, u)⊗M(Rm×2, V ) .

The isomorphism is given by the map J ⊗M 7→ JM , the invariant J acting by left (Clifford)
multiplication on M . Just as in the harmonic case, the map J ⊗ M 7→ JM is injective,
meaning that P(Rm×2, V ) can be regarded as a free (left) module over the radial algebra
R(x, u) .
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Proof.
We use the following short notations: M := M(Rm×2, V ), H := H(Rm×2, V ), I2j :=
I2j(SO(m)), Ll := (f−)lM. We already know that

P(Rm×2, V ) =
⊕
l≥0

(f−)lM(Rm×2, V ) =
⊕
l≥0

Ll .

We will now provide a basis for each layer Ll, considered as a module over (f−)l.
First of all, L0 =M. Consider L1 = f−M. If xP + uQ = 0 for P,Q ∈ L0, then |x|2P = xuQ
and PH [xuQ] = PH [(x ∧ u)Q] = 0. By lemma 5, Q = 0 and P = 0, which shows that
L1 ' xL0 ⊕ uL0 is a direct sum.
Next, take l = 2 and let |x|2P + 〈x, u〉Q+ |u|2R+ (x∧u)S = 0 for P,Q,R, S ∈ L0. Obviously
PH [(x ∧ u)S] = 0 and thus S = 0; from the harmonic Fischer decomposition it then follows
that the remaining P,Q,R also have to be zero. Thus

L2 ' |x|2L0 ⊕ 〈x, u〉L0 ⊕ |u|2L0 ⊕ (x ∧ u)L0

For the general case l > 2, we distinguish between l odd or even. By the isomorphism (2):

R2j+1(x, u) ' I2j ⊗ (x⊕ u)

R2j(x, u) ' I2j ⊗ 1⊕ I2j−2 ⊗ (x ∧ u))

' I2j−2 ⊗ (|x|2 ⊕ 〈x, u〉 ⊕ |u|2 ⊕ (x ∧ u)) .

Take l odd, L2j+1 = f2j+1
− L0 ' R2j+1(x, u) · L0 ' I2j · L1. The condition f2+L1 = 0 implies

p+L1 = 0, hence L1 is a subspace of H. By the harmonic Fischer decomposition I2j · L1 '
I2j ⊗ L1. Since L1 ' (x⊕ u)⊗ L0 we have L2j+1 ' R2j+1(x, u)⊗ L0.

For l even, L2j = f2j−L0 ' R2j(x, u) · L0 ' I2j · L0 + I2j−2 · (x ∧ u)L0. Let {J2j,α, α ∈ A2j}
be a basis of I2j . and let {Mβ, β ∈ B} be a basis of M. Suppose∑

αβ

J2j,αMβ +
∑
λβ

J2j−2,λ(x ∧ u)Mβ = 0 . (17)

The second sum can be written as∑
λβ

J2j−2,λ(PH [(x ∧ u)Mβ] +Qβ) = 0

with Qβ ∈ p−H and thus
∑

λβ J2j−2,λQβ ∈ pj−H. Therefore the right hand side of (17) is of
the form

pj−H+
∑
λβ

J2j−2,λPH [(x ∧ u)Mβ] = 0 .

Since pj−1− H ⊥ pj−H, we have
∑

λβ J2j−2,λPH [(x ∧ u)Mβ] = 0. By construction, J2j−2,λ are
linearly independent invariants; thus by the harmonic Fischer decomposition PH [(x ∧ u)Mβ] =
0 or Mβ = 0 for all β. Hence R2j(x, u) · L0 ' R2j(x, u)⊗ L0.
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6 The Fischer decomposition in the non-stable range m = 3

We will now give an alternative easy proof of the monogenic Fischer decomposition which
is based on a dimension computation (cf. lemma 10). This argument provides some extra
information; it shows that the usual stable range m ≥ 4 can be replaced by the milder
condition m ≥ 3 . We will also show that theorem 6 and the harmonic Fischer decomposition
(theorem 3) remain valid if m = 3. Although we only need to prove the statements for
m = 3, we have chosen, for reasons of clarity, to reformulate this theorems under this new
assumption m ≥ 3. This is also motivated by our proofs in this section; all of them rely on
the global condition m ≥ 3. It turns out that this condition is now also sharp. This will be
demonstrated by constructing counterexamples to the Fischer decomposition for m = 2.

Theorem 12 (Monogenic Fischer decomposition : alternative proof )
Let m ≥ 3 and let V = Cm or S . Then:

P(Rm×2, V ) ' R(x, u)⊗M(Rm×2, V ) .

Proof.
We will prove the statement for the subspace Pk,l(Rm×2, V ) of bidegree (k, l). By (5) :

P(Rm×2, V ) = R(x, u) · M(Rm×2, V ) .

Let Ip,q(SO(m)) and Rp,q(x, u) be the subspaces of polynomial invariants of bidegree (p, q).
If we put Ip,q := Ip,q(SO(m)), we obtain by lemma 1:

Rp,q(x, u) = Ip,q ⊕ x ∧ u Ip−1,q−1 ⊕ x Ip−1,q ⊕ u Ip,q−1 .

Hence

Pk,l =
k∑
p=0

l∑
q=0

Ip,q · Mk−p,l−q + x ∧ u
k∑
p=1

l∑
q=1

Ip−1,q−1 · Mk−p,l−q (18)

+x

k∑
p=1

l∑
q=0

Ip−1,q · Mk−p,l−q + u

k∑
p=0

l∑
q=1

Ip,q−1 · Mk−p,l−q

= (I) + (II) + (III) + (IV) .

A basis for the vector space Ip,q follows from the isomorphism: I(SO(m)) ' P(|x|2, 〈x, u〉, |u|2) .
Put r = min(k − 2i, l − 2s). The summand (I) can be rewritten as

[ k
2
]∑

i=0

[ l
2
]∑

s=0

r∑
j=0

|x|2i|u|2s〈x, u〉jMk−2i−j,l−2s−j .

In this proof, primes in the notation for polynomial spaces mean polynomial spaces on Rm−1,
so e.g. P ′k := Pk(Rm−1, V ). According to the dimension formula of lemma 10:

dimMk,l = dimP ′k,l − dimP ′k−1,l−1 .

As a result, the following finite sum is telescoping and reduces to:

r∑
j=0

dim (〈x, u〉jMk−2i−j,l−2s−j) =

r∑
j=0

( dimP ′k−2i−j,l−2s−j − dimP ′k−1−2i−j,l−1−2s−j)

= dimP ′k−2i,l−2s .
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This yields for the sums of the dimensions of the spaces occurring in the four summands:

(I) :

[ k
2
]∑

i=0

[ l
2
]∑

s=0

dimP ′k−2i,l−2s (II) :

[ k−1
2

]∑
i=0

[ l−1
2

]∑
s=0

dimP ′k−1−2i,l−1−2s

(III) :

[ k−1
2

]∑
i=0

[ l
2
]∑

s=0

dimP ′k−1−2i,l−2s (IV) :

[ k
2
]∑

i=0

[ l−1
2

]∑
s=0

dimP ′k−2i,l−2s−1 .

The total sum of this four pieces can now be factorized as

( [ k
2
]∑

i=0

dimP ′k−2i +

[ k−1
2

]∑
i=0

dimP ′k−1−2i
)( [ l

2
]∑

s=0

dimP ′l−2s +

[ l−1
2

]∑
s=0

dimP ′l−1−2s
)

and equals dimPk dimPl = dimPk,l . Therefore, with respect to our choice of basis for
R(x, u), the expression (18) is necessarily a direct sum and:

R(x, u) · M(Rm×2, V ) ' R(x, u)⊗M(Rm×2, V ) .

We can now extend the harmonic Fischer decomposition in theorem 3 to m = 3.

Theorem 13 (Harmonic Fischer decomposition in two vector variables for m ≥ 3) :

P(Rm×2,C) ' I(SO(m), 2)⊗H(Rm×2,C) .

Proof.
By the primitive Fischer harmonic decomposition (which is in fact valid for m ≥ 2):

P(Rm×2, V ) =
⊕
j≥0

pj−H(Rm×2, V ) '
⊕
j≥0
I2j(SO(m)) · H(Rm×2, V ) . (19)

Let {J2j,α, α ∈ A2j} be a basis of I2j(SO(m)) and suppose that
∑

α J2j,αHα = 0, Hα ∈
H(Rm×2, V ) . Decompose the harmonics Hα in monogenics:

Hα = M0,0
α + (xM1,0

α + uM0,1
α ) + PH

[
(x ∧ u)M1,1

α

]
∈M⊕ f−M⊕ f2−M .

Notice that J2j,α acts as an element of f2j− , hence∑
α

J2j,αHα ∈ f2j−M⊕ f2j+1
− M⊕ f2j+2

− M

and the condition
∑

α J2j,αHα = 0 implies∑
α

J2j,αM
0,0
α =

∑
α

J2j,α(xM1,0
α + uM0,1

α ) =
∑
α

J2j,αPH
[
(x ∧ u)M1,1

α

]
= 0 .

Recall that by (2) the Spin(m)-invariant polynomials J2j,αx and J2j,αu, α ∈ A2j define a basis

of f2j+1
− . Applying the monogenic Fischer decomposition for m ≥ 3 (theorem 12), we obtain
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from the first two equalities that M0,0
α = M1,0

α = M0,1
α = 0, for all α. The third equality

shows that ∑
α

J2j,α

(
(x ∧ u)M1,1

α +
1

Ex + Eu +m− 4
T1,1M

1,1
α

)
must be zero. In this case the Spin(m)-invariant polynomials J2j,α|x|2, J2j,α|u|2, J2j,α〈x, u〉
and J2j,α x ∧ u, α ∈ A2j define a basis of f2j+2

− , hence M1,1
α = 0 and thus Hα = 0 for all α.

7 Counterexamples for m = 2

We now explain how to generate counterexamples to the monogenic and harmonic Fischer
decomposition in two vector variables ifm = 2. These examples illustrate that if the dimension
of the space Rm is too small (here m = 2), the space of polynomials P(R2×2, V ) is not a free
module over either the algebra of invariants R(x, u) or I2(SO(2)) .
Let x, u, τ ∈ C1

m. Consider the splitting of τ(x ∧ u) in its 1- and 3-vector part:

τ(x ∧ u) = 〈x, τ〉u− 〈u, τ〉x+ τ ∧ x ∧ u . (20)

Choose τ = e1 + ie2, then τ is a null vector: τ2 = 0 . Let moreover m = 2; then τ ∧x∧u = 0 .
Hence, after taking the reversed order of identity (20) in C2 we have:

(x ∧ u)τ = −u〈x, τ〉+ x〈u, τ〉

and after right multiplication with τ we obtain (because of τ2 = 0):

−u〈x, τ〉τ + x〈u, τ〉τ = 0 .

Clearly M1 = −〈u, τ〉τ , M2 = 〈x, τ〉τ belong toM(R2×2,C2), thus giving rise to a non-trivial
identity between Spin(2)-invariants and monogenics:

xM1 + uM2 = 0 . (21)

This identity shows thatR1(x, u)·M(R2×2,C2) is not isomorphic withR1(x, u)⊗M(R2×2,C2),
i.e. the map R1(x, u)⊗M(R2×2,C2)→ R1(x, u) · M(R2×2,C2): J ⊗M 7→ JM is not injec-
tive. For the harmonic case we proceed in the same way. Expressing (τ ∧ x ∧ u)2 in terms of
the determinant of the Gramian matrix of the vectors x, u, τ :

(τ ∧ x ∧ u)2 =

∣∣∣∣∣∣
〈x, x〉 〈x, u〉 〈x, τ〉
〈u, x〉 〈u, u〉 〈u, τ〉
〈τ , x〉 〈τ , u〉 〈τ , τ〉

∣∣∣∣∣∣
we obtain the following identity in P(R2×2,C):

2〈x, u〉〈x, τ〉〈u, τ〉 − |x|2〈u, τ〉2 − |u|2〈x, τ〉2 = 0 .

Here H1 = 2〈x, τ〉〈u, τ〉, H2 = −〈u, τ〉2 and H3 = −〈x, τ〉2 belong to H(R2×2,C), thus
providing examples of harmonic polynomials such that

〈x, u〉H1 + |x|2H2 + |u|2H3 = 0 .

This shows that I2(SO(2)) · H(R2×2, V ) is not isomorphic with I2(SO(2))⊗H(R2×2, V ).
The same idea can be used to construct counterexamples for the harmonic and monogenic
Fischer decomposition for k(> 2) vector variables in Rm where the number of vector variables
is too big: i.e. k >

[
m+1
2

]
.
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[9] D. Constales, The relative position of L2-domains in complex and Clifford analysis,
Ph. D. thesis, State Univ. Ghent, 1989-1990.

[10] O. Debarre, T. Ton-That, Representations of SO(k,C) on Harmonic Polynomials on a
Null cone, Proc. Am. Math. Soc., Vol. 112, No. 1, May 1991, 31-44.

[11] R. Delanghe, R. Lavicka, V. Soucek, The Fischer decomposition for Hodge-de Rham
systems in Euclidean spaces, arXiv:1012.4994v1.
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[16] K. Gürlebeck, W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engi-
neers, J. Wiley & Sons, Chichester, 1997.

18



[17] S. Helgason, Invariants and fundamental functions, Acta Math. 109, 1963, 241-258.

[18] R. Howe, Dual Pairs in Physics: Harmonic Oscillators, Photons, Electrons and Single-
tons, Lect. Appl. Math. 21, Am. Math. Soc., 1985.

[19] R. Howe, E-C. Tan, J. Willenbring, Reciprocity Algebras and Branching for Classical
Symmetric Pairs, Groups and analysis, London Math. Soc. Lecture Note Ser., 354, Cam-
bridge Univ. Press, Cambridge, 2008, 191-231.

[20] M. Kashiwara, M. Vergne, On the Segal-Shale-Weil representations and harmonic poly-
nomials, Inventiones Math. 44, 1978, 1-47.

[21] B. Kostant, Lie Group Representations on Polynomial Rings, Amer. J. Math., 85, 1963,
327-404.

[22] I. Sabadini, F. Sommen, D .C. Struppa, P. Van Lancker, Complexes of Dirac operators
in Clifford algebras, Math. Zeit., 239(2), 2002, 293-320.

[23] F. Sommen, Clifford analysis in two and several vector variables, Appl. Anal. 73, 1999,
225253.

[24] F. Sommen, Functions on the spin group, Advances in Applied Clifford algebras 6, No.1,
1996, 37-48.

[25] F. Sommen, An algebra of abstract vector variables, Portugal. Math. 54(3), 1997, 287-310.

[26] F. Sommen, N. Van Acker, SO(m)-invariant differential operators on Clifford algebra
valued functions, Found. Phys. 23(11), 1993, 1491-1519.

[27] F. Sommen, N. Van Acker, Monogenic differential operators, Results in Math. 22(3-4),
1992, 781-798.

[28] F. Sommen, N. Van Acker, Functions of two vector variables, Adv. Appl. Clifford Alge-
bras 4(1), 1994, 65-72.

[29] F. Sommen, N. Van Acker, Invariant differential operators on polynomial-valued func-
tions, In: Clifford Algebras and their Applications in Mathematical Physics, Fund. The-
ories Phys. 55, Kluwer Academic Publishers, Dordrecht, 1993, 203-212.

[30] E. W. Stein, G. Weiss, Generalization of the Cauchy-Riemann equations and represen-
tations of the rotation group, Amer. J. Math. 90, 1968, 163-196.

[31] P. Van Lancker, F. Sommen, D. Constales, Models for irreducible representations of
Spin(m), Advances in Applied Clifford Algebras, 11(S1), 2001, 271-289.

[32] H. Weyl, The classical groups, Their invariants and representations, Princeton Land-
marks in Mathematics, Princeton University Press, Princeton, NJ, 1997.

19


