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Description from Technical Annex 
 
Hierarchical Reservoir Computing can cope with dynamical concepts at 
several hierarchical timescales and levels of representation, which can be 
used for unified learning of motor con- trollers and their sequencing. This 
approach is complementary to an approach to learn hierar- chical classifiers 
with Reservoir Computing, in the EU project ORGANIC, where UGent and Jac 
participate, such that a combination can finally lead to a unified action-
perception archi- tecture. JAC will taylor its fundamental hierarchical RC 
learning architectures for unsuper- vised and supervised training of multiscale 
data toward motor behavior. All feature/concept units are temporal and some 
may have external (actuator-like) effects. UGent will contribute hierarchical 
Reservoir Computing networks, based on the combination with unsupervised 
learning rules such as slow feature analysis, deep belief networks, ... The goal 
is an architec- ture that can be driven by low-level sensory data and that is 
able to generate a downward flow of expectation. 
 



  
Abstract 
 
One approach for building architectures (of which an overview was given in D.6.1) in AMARSi 
is to use reservoir computing. Here, untrained (or unsupervised trained) recurrent neural 
networks are used for motion control by learning simple readouts on the dynamic 
representation generated by the dynamic RNN system. Although single reservoirs are able to 
generate rich and tunable control patterns (as demonstrated in D.4.1), to allow composition of 
motion or high-level control, these modules need to be built in an architecture.  
 
An active research area in reservoir computing is to build hierarchical reservoir systems. The 
main reason for this is that reservoirs basically are band-pass systems and can only 
represent information in a limited frequency band. If information at both fast and slow 
timescales needs to be integrated, a natural approach is to build a hierarchical system where 
each layer operates at a different time scale. The big challenge in these hierarchies is how to 
learn intermediate representations that link the various layers, and especially how bottom-up 
and top-down information flows need to be organized. 
 
We believe that these hierarchical reservoir computing systems are good candidates to build 
(at least part of) architectures required in AMARSi for rich motor control. 
 
In this short deliverable we give an overview of and references to current approaches in 
hierarchical reservoir computing, several of which have been investigated on speech and 
handwriting recognition problems in the sister EU project ORGANIC (http://reservoir-
computing.org/organic). Many of these hierarchical systems can be used to not only generate 
dynamical feature hierarchies, but are also able to learn a hierarchy of pattern controller, of 
special interest to the AMARSi project. 
 



Overview of hierarchical reservoir computing 
architectures in AMARSi 
 
In this overview section we discuss briefly a number of hierarchical reservoir computing 
based architectures which are developed and evaluated in the AMARSi project. Several of 
those have previously been proposed and used for speech and handwriting recognition in the 
ORGANIC project, but will be used as building block for motor control hierarchies in AMARSi. 
 
Hierarchical Echo State Networks (JAC) 
 
Although in biology hierarchical information processing is considered natural, in machine 
learning no system can be found that (1) can deal with high-dimensional temporal data, (2) is 
able to discover its own dynamical features and (3) uses a computationally efficient, online 
adaptive learning algorithm. In (Jaeger 2007) a hierarchical learning architecture was 
proposed that incorporates the three desired features mentioned above. This hierarchy can 
discover dynamical features in a high-dimensional stationary stochastic time series in such a 
way that each a feature itself is a time series, the dynamical features are organized 
hierarchically and the original time series can be reconstructed from all the dynamical 
features. 
 
In summary, on the lowest level a time series can be decomposed into a set of features and 
votes. The combination of features and votes should be such that the original signal can be 
reconstructed. The votes of the lowest level are obtained by the second layer and consists of 
the combination of second layer features and second layer votes. As previously, the second 
layer votes are derived by a third layer etc... A schematic overview of the proposed hierarchy 
can be seen in the figure on the next page. 
 
Learning within the hierarchy occurs by changing the output weights of the reservoir systems 
of each level. This is done on each time step by using stochastic gradient descent. Therefore 
the gradient is taken with respect to the squared prediction error (= difference between 
original external input and predicted input). 
 
A formal description of the hierarchy and its learning process can be found in (Jaeger 2007). 
A downside of this architecture is that it depends on backpropagation-based stochastic 
gradient descent through several layers of gating, which makes training the hierarchy in real 
world noisy datasets hard. 



 
 

Self-Organized Neural Hierarchies (JAC) 
 
A hierarchy of Recurrent Neural Networks (reservoirs) can be envisioned as a layered 
structure of reservoirs where the lowest level is driven by an external input, and each higher 
level is excited by the activation of its lower neighbouring layer: 
 



 

 
 

The internal reservoir weights are trained layer-wise in an unsupervised way by applying the 
recurrent self-organizing maps (recurrent SOMs) algorithm which is the classical SOM 
algorithm but generalized from the conventional static pattern domain to temporal patterns. 
For this, the reservoirs need to be constructed from radial basis function (RBF) units. The 
readout on the top layer of the hierarchy, is trained supervised by using linear regression.  
 
The idea behind this hierarchy is to achieve a sparse and localised representation of temporal 
invariances in the driving input at the readout layer. Thus making it easier to identify which 
representation is invariant. From bottom to top, the representation becomes gradually more 
sparse and localized. Tested configurations of this architecture can be found in (Lukosevicius 
2010 and Lukosevicius 2012) 
 
RC-SFA architecture for unsupervised learning of a spatial 
representation of a robot environment (UGent) 
 
Experiments with rats in open fields have shown the existence of hippocampal place cells. 
These cells form an implicit spatial representation of an animal’s environment (Moser et al., 
2008). Using a constrained environment for rats it is shown that hippocampal CA1 cells and 
entorhinal cortex cells code for spatial information on a way dependent on the rat’s path or 
behavior. This assumes that if the entorhinal cortex and the hippocampus are related to path 
planning, these structure should reflect where the animal intends to go (Frank et al., 2000). 
This can be mimicked by using a three level layered hierarchy which consists of a reservoir 
system, a slow feature analysis layer and an independent component analysis layer: 



 
 

Sensory information is mapped into a high-dimensional non-linear dynamical space. Because 
of the dynamical nature of the reservoir system, the entire hierarchy can rely on both current 
input changes as changes of the past. From the reservoir system slow varying signals are 
derived in an unsupervised way using Slow Feature Analysis (Wiskott and Sejnowski, 2002). 
This has the advantage that slow varying properties, such as environmental changes, can be 
tracked from (often) fast varying sensor information. From the obtained slow varying signals, 
a linear combination is taken using by the Independent Component Analysis layer. This 
learns in an unsupervised way a sparse coding of the slow varying signals, resulting in units 
that are activated only for a specific position in the environment. Or in other words, place cells 
can be derived from them. A more detailed description including results on robots can be 
found in (Antonelo and Schrauwen, 2012). This building block would allow to build 
hierarchical reservoir system by stacking these modules. 
 
Spatial SFA convolutional reservoir hierarchies (JAC) 
 
Signal processing of complex real world data is a difficult task for computational intelligence 
due to the many distorting variations in the data. In (Sakenas 2010) a method for learning 
temporal features which are invariant to the distortions in the input data was proposed. In the 
proposed approach a distorted signal together with its original example is first expanded by 
using a random non-linear dynamical system. Secondly the states are normalized by a 
whitening step such that all resulting signals has a unit variance in all directions. Thirdly, the 
difference between the whitened states obtained from the distorted signal and the original 
signal is taken. Finally, principal component analysis is applied on this whitened state 
difference The procedure is illustrated in the following Figure: 
 

 
 



The core idea of the proposed technique to find linear projections from a reservoir such that 
the reservoir states vary minimally when the same signal with a distortion is processed. The 
procedure is very comparable with Slow Feature Analysis (Berkes and Wiskott 2005), but 
instead of of finding the temporally slowest features, the features that are most invariant to 
spatial transformations are found. Examples on synthetic data and handwriting recognition 
can be found in (Sakenas 2010). 
 
Temporal Reservoir Machine (UGent) 
 
Guided by the advantageous and disadvantageous of previous approaches RBM-based 
approaches for time series modeling such as the CRBM and RTRBM, (Schrauwen and 
Busing, 2009) introduced a modification of these models called Temporal Reservoir Machine 
(TRM). The TRM is aimed at overcoming the limitations of a fixed model order (memory 
depth) of the CRBM and at the same time circumventing the problems associated with 
learning via BPTT which occur in the RTRBM, by using strategies from RC. 
 
The basic idea of the TRM is the following. In addition to the visible and hidden random 
variables we introduce bias variables for each time step. These determine the biases of the 
visible and hidden variables of the RBM via a linear mapping. Further, the biases are given by 
a deterministic function of the previous visible variables. Inspired by the ESN, we consider 
here the setup where the bias is given by the activation of a recurrent neural network that 
receives the previous visible variables as input. In the spirit of the ESN approach, the 
reservoir weight matrices are randomly generated and they remain untrained. Only the 
connections from the reservoir to the visible and hidden variables are adapted using 
contrastive divergence. Learning, sampling and inference in this model is tractable and 
efficient.  
 
Mimicking the hierarchical structure of a deep belief networks, TRMs can be stacked yielding 
a multi-layer model for sequential data analogous to the CRBM. Learning is performed layer-
wise (“greedy”), i. e. at each layer a full TRM is trained using the inferred distribution over the 
binary hidden variables of the next lower layer as real-valued input data. The rational behind 
this hierarchical structure is that higher levels are thought to be advantageous for 
representing more abstract features and statistical relationships on longer time scales. 
Sampling from the multi-layer model is then performed by sampling from the undirected TRM 
at the top layer and a down-pass using directed connections. 
 
In general, input is fed into an ESN via a randomly generated input matrix. This works well if 
the input dimension is reasonably low. If however the input dimension is high, especially if 
there is a lot of redundancy across input dimensions, such a random input mapping will 
drastically degrade the short-term memory of the ESN. Intuitively speaking, this is because 
redundant information is pushing the ESN dynamics in random directions, thereby destroying 
memory of past inputs. Therefore directly applying an ESN as the reservoir in higher layers of 
a TRM, where the visible layers often have a high dimension, will lead to a poor modeling 
performance because all memory of previous visibles is quickly lost. A straightforward 
solution for solving this problem is to apply standard dimensionality reduction techniques such 
as Principle Component Analysis to first significantly reduce the dimension of the visibles 
before feeding them into the ESN. The diagram below shows a single layer TRM 
representation as can be implemented in the ORGANIC Oger toolbox: 



 

 
 

This architecture has with success been used to process speech information in the 
associated ORGANIC project (see (Schrauwen and Busing, 2009)). In currently unpublished 
work, Schrauwen et al. has shown that the TRM model can also effectively be used to model 
motion capture data, outperforming CRBMs. In this mode, the model can not only be used to 
classify motion capture data, but can also be used as a generative model to generate motion 
patterns sampled from the distribution of motion patterns seen during training. This would 
allow to seamlessly switch between e.g. different walking styles if an additional variable would 
be introduced to identify the style. 
 
Neural Hierarchy of Timescales for Motor Control (UGent) 
 
All previous hierarchical reservoir computing approaches are homogeneous in nature, where 
each layer basically is using the same learning paradigm and set up. The following 
architecture is heterogeneous in nature and is more specific in nature. 
 
According to (Kiebel et al. 2008), many aspects of brain functions can be explained by a 
hierarchy of temporal scales at which representations of the environment evolve. The higher 
level encodes slower contextual changes in the environment or body while at the lower level 
faster variations due to sensory processing are encoded. 
 
Other biological research suggests that specialized neural circuits, so called central pattern 
generators (CPGs), located in the spinal cord are responsible for generating rhythmic 
activations needed for body function including the contractions of a heart or lungs and control 
of muscles for walking (Stein et al. 1999). Implying that some aspects of brain functions are 
offloaded to regions outside of the brain. Researchers discovered (Cohen et al. 1980) after 
extracting and isolating the spinal cord from the body, that the spinal cord, when excited with 
electrical stimulations, will produce fictive locomotion. This indicates that sensory information 
is not needed to generate such rhythmic patterns. However, it plays a crucial role in shaping 
the generated pattern to keep the coordination between the CPGs and the body. These 
findings suggest that locomotion can be represented by both a modular and hierarchical 
structure. More specifically, a hierarchy of modules which interact with each other on different 
timescales, simplifies high level control and at the same time allows fast action against 
perturbations.  
 
Sensory information propagates through this hierarchy and is handled in a multi-resolution 
manner. Slight irregularities in the terrain are compensated very fast by the morphology of the 
legs without the need of the brain to intervene. Larger irregularities are handled by a slower 
reflex motion of which the vertebra becomes finally conscious at the highest but slower 
contextual level.  



 
In this approach a multi-timescale control hierarchy is investigated and applied on a leg of the 
AMARSi Oncilla robot. Each of the layers in the proposed hierarchy uses a random dynamical 
system of which only the readout layer is trained (eg. Reservoir Computing systems 
(Verstraeten et al. 2007)). On the lowest level, the fastest timescale, the passive compliance 
of the leg interacts with the environment. The leg is driven by a pattern generator which 
generates learned rhythmic motor signals and gets feedback from the rotary encoders in the 
leg. On the highest level, we use a controller which reacts to slower contextual changes. This 
hierarchy separates the motor commands from the functional control which is done by the 
high level controller. This neural hierarchy of timescales can be illustrated as follows:  

 
 
 

Corresponding to the biological central pattern generator we use a recurrent neural network 
based pattern generator of which only the output weights are trained (according to the 
Reservoir Computing philosophy). Such pattern generator is shown in the following 
illustration: 

 

 
 

 
The dynamics of the network can be used to embed any imposed rhythmic pattern. Each 
neuron contains a bias term which can be controlled to achieve a desired modulation of the 
generated pattern. For instance, if the frequency or amplitude of the generated motion (not 
instantaneous but changes are slowly observed) needs to be controlled, this can be achieved 
by bias control. By determining which neurons are sensitive to such slow observables, a 
modulation vector can be calculated which is then controlled by a feedback controller. As 
shown in the following figure, this feedback controller includes two identical networks which 
are used to host an inverse model of the control problem. 



 
 

In this hierarchy this control problem can be formulated as how much of bias needs to be 
added to the pattern generator neurons to achieve the desired slow observable. Both 
networks are identical and initialized randomly. As a result, initially the model does not 
correspond to a model of the control problem. However, by controlling the pattern generator 
randomly both its control value and the corresponding response can be used to improve the 
model. Each iteration new control pairs are observed which improves the model and will 
eventually allow the controller to track the desired properties of the generated pattern. 
 
A detailed description and some preliminary experiments can be found in (Waegeman et al. 
2012) 
 
The mystery of top-down 
 
Research within ORGANIC has led to an acute awareness of the importance, but also of the 
elusive nature, of top-down processing pathways in hierarchical architectures. In this section 
we report on preliminary insights that were obtained at JAC concerning the theme of top-
down pathways. 
 
The closer one looks at top-down processing, the more elusive this phenomenon becomes. 
An extensive literature search in the areas of machine learning, the cognitive neurosciences 
and robotics revealed that a large variety of functionalities have been associated with top-
down processing: 
 

• In the original, influential subsumption architecture for robot control proposed by 
(Brooks, 1989), higher levels (of control) override the output of lower levels. 

• In some robot control architectures (Takahashi and Asada, 1999)(Jaeger and 
Christaller, 1998), higher levels of control activate in a graded fashion lower-level 
control modules. 

• In classical-engineering hierarchical control architectures, or many AI-planning 
architectures, the top-down influence is setting of target trajectories or subtasks (e.g. 
(Albus, 1993)). 

• In the Perceptual Control Theory (PCT) of (Powers, 1989), hierarchical control levels 
are paired with hierarchical perception levels; each level has an expectation about its 
perception and acts toward matching the perception with the expectation. What is 
passed down is perceptual expectations = targets for lower-level perceptual features. 

• Within the conceptual framework of the bi-directional theory of sensory-motor 
integration, Miyamoto et al have proposed a homogeneous modular architecture 
(Miyamoto et al., 1996) where the top-down information consists in the cascaded 
construction of an inverse kinematic model. The connections between levels here are 
not passive information channels but active transformations. 

• In the Bayesian approach to control by (Toussaint and Goerick, 2010) the layering 
does not refer to similar modules as in the other work listed here, but to a 
decomposition of a multiply-constrained motion task into a hierarchy of task and joint 
variables. Here, a "higher" level of variables passes down messages in the technical 



sense of message passing algorithms for approximate inference in Bayesian 
networks. 

• In some models of biological motor control (e.g. (Degallier et al. 2011)), higher levels 
pass down control parameters to lower-level motion pattern generators, which serve 
to modulate the dynamics of these generators, for instance adapting stepsize in gait 
production or target equilibrium positions in reaching motions. 

• An illuminating mix is found in a survey study of (Prescott et al., 1999). The authors 
set forth to argue that biological behavior organization (as revealed by neuroanatomy 
and ethological field studies) can be mapped to Brooks' subsumption architecture. 
However, in two classical animal studies (behavioral repertoire of the herring gull, and 
rat defense system) surveyed in that paper, quite different functionalities are 
assigned to the various levels of behavioral organization. A closer inspection of what 
type of information is passed downwards reveals a heterogeneous collection. 
According to the case studies, what is variously passed down is described as 
coordinating lower levels; substituting input; inhibiting; and gain control. Thus, in fact, 
heterogeneity is found where homogeneity was sought – although this is not 
acknowledged by the authors. 

• Today's mainstream approach for understanding top-down information passing, both 
in machine learning and theoretical neuroscience, is the Bayesian view of statistical 
information processing (Kiebel et al., 2008)(Tenenbaum et al. 2006). This view posits 
that higher levels pass down statistical priors (technically: hyperdistribution 
parameters, intuitively: context information). This is also the mathematical model 
underlying the (restricted and classical) Boltzmann machine models which are 
currently so popular in machine learning. 

• In the human brain, top-down mechanisms associated with goal-oriented attention 
have been investigated (Posner and Petersen, 1990). 

• Many researchers follow up on the general idea to understand cognition in terms of 
enabling the agent to make predictions in all situations of life (Hoffman, 1993)(Clark, 
2012). Often but not always related to Bayesian models of information processing, 
this view perceives the nature of top-down information as providing prediction error 
information, allowing the lower layer to recalibrate or change modes. 

 
The list illustrates the wide scope of functionalities that have been associated with top-down 
processing streams. Therefore, one fundamental challenge in architecture design is to reach 
a better understanding of the functions served by top-down processing. Several of the items 
listed above appear to be intuitively mutually related, and one could form groups of related 
functionalities, as a first step of bringing some order into that dazzling multitude: 
 

• The functionalities of prediction, statistical priors, perceptual expectations, prediction 
errors appear to have a similar "flavor" of the higher level maintaining, and sharing 
with the lower layer, a more abstract representation of the information that is being 
processed in the lower one. 

• The functionalities of overriding output, setting control parameters, setting of target 
trajectories or subtasks, and of gain control seem to share aspects of generic control 
hierarchies. 

 
Other functionalities are not easily merged and stand alone: inverse kinematic models serve 
the purpose of coordinate transformations between layers – which one could generalize to 
recoding of representations beyond the typical robotics transformations; the message passing 
in Bayesian control appears to be a technical-algorithmical feature; attention may be a 
fundamental category of its own standing which has just not yet received due attention in 
machine learning and robotics. 
 
Beyond this listing and tentative grouping we are at this time unable, like everybody else, to 
provide keys to a more integrated functional theory of top-down processing in hierarchies. 
However, we are able to provide another, albeit disturbing, insight. Regardless of the 
functionality that one might wish to realize by top-down interactions, there arise serious 
mathematical and algorithmical problems when one implements and runs multiscale learning 
architectures with bottom-up and top-down interactions between layers. These problems are 



generic consequences of establishing a complex dynamical system which operates on 
several timescales in different, bi-directionally interconnected layers. When such a system is 
trained, its parameters are gradually adapted, which necessarily leads to bifurcations if the 
ultimate system that one wishes to achieve is qualitatively different from the starting system. 
And of course, one wishes the ultimate system to be qualitatively different from the initial 
random guess from which one typically starts. 
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