Advanced search
1 file | 1.51 MB

Sputter deposition of MgxAlyOz thin films in a dual-magnetron device: a multi-species Monte Carlo model

Author
Organization
Abstract
A multi-species Monte Carlo (MC) model, combined with an analytical surface model, has been developed in order to investigate the general plasma processes occurring during the sputter deposition of complex oxide films in a dual-magnetron sputter deposition system. The important plasma species, such as electrons, Ar+ ions, fast Ar atoms and sputtered metal atoms (i.e. Mg and Al atoms) are described with the so-called multi-species MC model, whereas the deposition of MgxAlyOz films is treated by an analytical surface model. Target-substrate distances for both magnetrons in the dual-magnetron setup are varied for the purpose of growing stoichiometric complex oxide thin films. The metal atoms are sputtered from pure metallic targets, whereas the oxygen flux is only directed toward the substrate and is high enough to obtain fully oxidized thin films but low enough to avoid target poisoning. The calculations correspond to typical experimental conditions applied to grow these complex oxide films. In this paper, some calculation results are shown, such as the densities of various plasma species, their fluxes toward the targets and substrate, the deposition rates, as well as the film stoichiometry. Moreover, some results of the combined model are compared with experimental observations. Note that this is the first complete model, which can be applied for large and complicated magnetron reactor geometries, such as dual-magnetron configurations. With this model, we are able to describe all important plasma species as well as the deposition process. It can also be used to predict film stoichiometries of complex oxide films on the substrate.
Keywords
EPITAXIAL-GROWTH, DC PLANAR MAGNETRON, DISCHARGE, BEHAVIOR, MGAL2O4, PLASMA

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.51 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Yusupov, M, Marta Martins Saraiva, Diederik Depla, and A Bogaerts. 2012. “Sputter Deposition of MgxAlyOz Thin Films in a Dual-magnetron Device: a Multi-species Monte Carlo Model.” New Journal of Physics 14.
APA
Yusupov, M., Martins Saraiva, M., Depla, D., & Bogaerts, A. (2012). Sputter deposition of MgxAlyOz thin films in a dual-magnetron device: a multi-species Monte Carlo model. NEW JOURNAL OF PHYSICS, 14.
Vancouver
1.
Yusupov M, Martins Saraiva M, Depla D, Bogaerts A. Sputter deposition of MgxAlyOz thin films in a dual-magnetron device: a multi-species Monte Carlo model. NEW JOURNAL OF PHYSICS. 2012;14.
MLA
Yusupov, M, Marta Martins Saraiva, Diederik Depla, et al. “Sputter Deposition of MgxAlyOz Thin Films in a Dual-magnetron Device: a Multi-species Monte Carlo Model.” NEW JOURNAL OF PHYSICS 14 (2012): n. pag. Print.
@article{2995937,
  abstract     = {A multi-species Monte Carlo (MC) model, combined with an analytical surface model, has been developed in order to investigate the general plasma processes occurring during the sputter deposition of complex oxide films in a dual-magnetron sputter deposition system. The important plasma species, such as electrons, Ar+ ions, fast Ar atoms and sputtered metal atoms (i.e. Mg and Al atoms) are described with the so-called multi-species MC model, whereas the deposition of MgxAlyOz films is treated by an analytical surface model. Target-substrate distances for both magnetrons in the dual-magnetron setup are varied for the purpose of growing stoichiometric complex oxide thin films. The metal atoms are sputtered from pure metallic targets, whereas the oxygen flux is only directed toward the substrate and is high enough to obtain fully oxidized thin films but low enough to avoid target poisoning. The calculations correspond to typical experimental conditions applied to grow these complex oxide films. In this paper, some calculation results are shown, such as the densities of various plasma species, their fluxes toward the targets and substrate, the deposition rates, as well as the film stoichiometry. Moreover, some results of the combined model are compared with experimental observations. Note that this is the first complete model, which can be applied for large and complicated magnetron reactor geometries, such as dual-magnetron configurations. With this model, we are able to describe all important plasma species as well as the deposition process. It can also be used to predict film stoichiometries of complex oxide films on the substrate.},
  articleno    = {073043},
  author       = {Yusupov, M and Martins Saraiva, Marta and Depla, Diederik and Bogaerts, A},
  issn         = {1367-2630},
  journal      = {NEW JOURNAL OF PHYSICS},
  language     = {eng},
  pages        = {21},
  title        = {Sputter deposition of MgxAlyOz thin films in a dual-magnetron device: a multi-species Monte Carlo model},
  url          = {http://dx.doi.org/10.1088/1367-2630/14/7/073043},
  volume       = {14},
  year         = {2012},
}

Altmetric
View in Altmetric
Web of Science
Times cited: