
This document contains the accepted but unedited version of the following publication:
Feedback control by online learning an inverse model. Tim Waegeman, Francis wyffels and Benjamin Schrauwen.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, Vol. 23(10), pp. 1637-
1648 (2012)

The abstract can be found on the IEEE Xplore web site:
http://dx.doi.org/10.1109/TNNLS.2012.2208655

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 1

Feedback Control by Online Learning an Inverse Model
Tim Waegeman, Francis Wyffels, Benjamin Schrauwen*

Abstract—Often a model, predictor or error estimator is used
by a feedback controller to control a plant. Creating such a
model is difficult when the plant exhibits nonlinear behavior.
In this paper a novel online learning control framework is
proposed which does not require explicit knowledge about the
plant. This framework uses two learning modules, one for
creating an inverse model, and the other for actually controlling
the plant. Apart from their input, they are identical. The inverse
model is learning by the exploration performed by the not yet
fully trained controller, while the actual controller is based on
the currently learned model. The proposed framework allows
fast online learning of an accurate controller. The controller can
be applied on a broad range of tasks with different dynamical
characteristics. We validate this claim by applying our control
framework on several control tasks: the heating tank problem
(slow nonlinear dynamics), flight pitch control (slow linear
dynamics) and the balancing problem of a double inverted
pendulum (fast linear and nonlinear dynamics). The results
of these experiments show that fast learning and accurate
control are achieved. Furthermore, a comparison is made with
some classical control approaches and observations concerning
convergence and stability are made.

Index Terms—Adaptive control, feedback control, neural
network (NN), Reservoir Computing (RC), heating tank, pitch
control, inverted pendulum.

I. INTRODUCTION

DYNAMICAL systems (DS) are everywhere: in organ-
isms, cyclic natural phenomena but also in man-made

systems like thermostats, planes, robotics, ... Man-made
systems are often referred to as plants and are modeled as
having an output and an input. As shown in Fig. 1, feedback
controllers, such as the one proposed in this work, use the
feedback of the dynamical system (plant-output), compared
with a desired plant-output, to control the plant-input. For
instance, the cruise control of a car uses a feedback controller
to keep the velocity constant. However, when the car is
driving downhill the car will go faster because of gravitation.
The controller observes this increase in velocity and reduces
the throttle to ultimately converge to the desired velocity.
Several standard control algorithms use pre-acquired

knowledge about a system to accomplish the desired be-
havior. The control of linear systems has been extensively
studied [1], [2]. However, more complex and nonlinear
systems are hard to model correctly. One approach to solve
this problem is to use a learning approach such as using a
Neural Network (NN) [3]. In [4], a NN was used to change
the motor commands by predicting the possible errors of a
movement. Since the publication of [5], the use of NNs for

*Department of Electronics and Information Systems,
Ghent University, Ghent Belgium.
Tim.Waegeman@UGent.be, Francis.Wyffels@UGent.be and Ben-

jamin.Schrauwen@UGent.be

identification and control of nonlinear systems has gained a
lot of interest. For instance, Nguyen and Widrow [6] used
a NN to control the truck backer-upper problem. In [7] and
[8] NNs are used in combination with a classical Sliding
Mode Control approach. Other approaches such as [9] and
[10] use a NN to train a predictor which is used to construct
output feedback control. In these works, NNs are used as
static function approximators or, when their input is a tapped
delay line, to model a finite memory functional dependence.
A more natural and richer alternative to using tapped

delay lines is by allowing recurrent connections in the the
NN, then called Recurrent NNs (RNNs). These have very
successfully been used to control nonlinear dynamic systems
[11], [12], [13]. In recent work [14], Prokhorov superbly
demonstrates the very rich modeling capabilities of RNNs
in a neurocontroller for the electric throttle of a hybrid
vehicle. Although several neurocontrollers incorporate some
prior knowledge, some approaches achieve control without
any prior information about the plant. For instance in [15]
and [16], an adaptive neural controller is used to embed the
unknown system dynamics of a control process. In [17],
two RNNs are used: one for approximately modeling the
nonlinear plant, the other to control towards the desired
system response. However, RNNs are notoriously difficult to
train due to the problem of fading gradients calculated with
Backpropagation Through Time and the regular bifurcation
encountered during training using stochastic gradient descent
[18], [19], [20].
A solution to the problem of training RNNs is proposed

by the Reservoir Computing (RC) paradigm, which unifies
a set of similar techniques to efficiently train RNNs. The
core idea is that only the output weights of the network
are trained, and that the internal, recurrent connections are
randomly initialized such that the dynamics of the network
are at the edge of stability [21].
To avoid the need of prior knowledge, we propose an

online feedback control framework which learns to control
a plant by online leaning an inverse plant model based on
real-time controlled plant-input output pairs. In parallel, this
preliminary model is used to actually control the system.
Because the initial controller is not optimal, small mistakes
are made which can be seen as exploration that allows the
system to learn a better plant model, leading to a better
controller. Experiments demonstrate the ability to learn the
control of plants, with a wide variate of dynamics, both
online and quickly. As a result, our control framework can
be applied on a wide variety of applications.
In this work, we will use RC networks as basic learning

modules, but the framework itself is general. Any machine
learning technique which is able to model temporal function-

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 2

!"#$%&'$()*"+,-%).!*/)
01)2($#,30#,10((-1

!-+&1-4)
2($#,506,76,

8--49$':)01)2($#,506,76,

2($#,5L,

ŷ(t) x(t) y(t)

Fig. 1. Illustration of a simple feedback controller and a dynamical system
(DS) or plant, accompanied by the used terminology. y(t) and ŷ(t) represent
the actual and desired plant output respectively. The output of the controller
is denoted by x(t).

!"#$%

&'($)*+,-.

y(t − δ)

y(t)

random x(t)

x(t − δ)z-δ

z-δ

Training

(a)

!"#$%

&'($)*+,-.

y(t)

Testing

x(t)
ŷ(t + δ)

(b)

Fig. 2. Illustration of a controller method described in the work of Herbert
Jaeger [23]. During training, random x(t) values are used to train the output
weights of the network based on the plant response y(t) on these values.
Afterwards, during testing, the trained network is used to control the plant
according to to the desired plant-ouptput ŷ(t+)

als online could be used: tapped-delay line models with non-
linear regression or neural networks, regular RNNs, Long
Short Term Memory RNNs [22], etc.
The remainder of this paper is structured as follows:

first, in Section II, we describe the design of our control
framework. To demonstrate the abilities of this framework
we use a RNN at the core of this framework by applying it
according to the Reservoir Computing approach. Therefore,
in Section III we give a short introduction on Reservoir
Computing and explain the training algorithm in more de-
tail. Next, we analyze the stability and convergence of the
obtained controller in Section IV. Afterwards, the controller’s
performance is evaluated by applying it to different control
problems: the heating tank problem, flight pitch control and
the rotational double inverted pendulum. In Section V we
discuss these experiment in more detail. Finally, we draw
our conclusions in Section VI.

II. DESIGN OF THE CONTROL FRAMEWORK
Classical approaches of feedback controllers can be

grouped by techniques that do or do not use prior knowledge
of the plant. The latter, such as PID controllers, use no
direct information of the plant dynamics. Other non-prior-
knowledge-based techniques use a model exploration strategy
where the produced observation of a random action are used
by the controller to adjust its control. In the work by Jaeger

!"#$%

!$&'()*+,#

"-.-%/0

!

(&123',
435*162

y(t − δ)

y(t)

z-δ

y(t)

z-δ

$&'()*+,7
ŷ(t + δ)

x(t)

x̃(t)

x̃(t − δ)

Fig. 3. Schematic representation of the proposed controller. The dashed
arrows represent the output weights w which are trained. These are the
same for both networks (weight sharing). The optional limiter limits the
values x(t) to a desired range which, for example, represent imposed motor
characteristics. Afterwards, the limited values x̃(t) excite the plant. The
values x̃(t −) are used as desired network A output, which are used to
train the weights w. The resulting weights are used for network B as well.

[23], such a strategy is taken. Here a Reservoir Computing
(RC) network is used which is trained offline by using
random values as training output and the plant response to
these values as training input. In this example, the feedback
information y(t) excites the RC-network in 2 versions: the
current feedback y(t) and a delayed version y(t−). During
training, also the desired output, which are the random plant-
input values x(t), are delayed time steps before being used
as training data of the RC-network.
The main reason for this delayed network input is to

allow afterwards a desired plant-output and the current plant
feedback as network input. After training the output weights
(dashed lines in Fig. 2(a)), the desired plant-output ŷ(t+)
is given to the input which was connected to y(t) during
training. The actual plant-output on the other hand, is given
to the input of the network which was connected with y(t−)
during training. As illustrated in Fig. 2(b), the resulting
network output x(t) drives the plant-input.
The idea here is to model the progress in plant-input

x(t −) given the past and current plant-output (y(t −)
and y(t)). This model is afterwards used to determine the
plant-input given the current and future plant-output (y(t)
and ŷ(t+)) where the model is expected to generalize the
trained behavior.
It should be noted that the choice of a good is essential

to find such a model. and thus the sample rate, determines
the amount of time that the used network has to reach the
desired plant-output. However, in this work, we assume the
used sample rate to be predetermined. Therefore, the effect
of depends on the dynamics of the plant. A smaller is
used for a plant with fast dynamics and a larger one for a
plant with slower dynamics.

A. Proposed Feedback Control Framework
In order to allow online control in which no prior knowl-

edge (model) is necessary we propose the control framework
shown in Fig. 3. Here, a similar network to the one described

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 3

above (Fig. 2(a)) is used. This network, called network A, is
trained online in a supervised manner by using Recursive
Least Squares (RLS). Below network A, we have a duplicate
network, network B, with the same input, network and output
weights (weight-sharing). This network is connected to the
plant in a similar manner as the network in Fig. 2(b). The
output of this network is not only connected to the plant
but is also used (delayed with time steps) as desired
output ŷ(t +) for the training of the output weights. The
network states are initially the same for both networks and
are randomly chosen according to a normal distribution
(N (0,1)). This random initialization is necessary to initiate
the plant with random values. Without these values the
amount of information necessary to train the internal model
will be insufficient to generalize well. Because the inputs
for both networks are not the same, the corresponding states
will evolve differently. However, as network A is converging
to a more accurate model, the inputs of both networks will
converge to each other with a difference of time steps.
Because of the desired plant output and the current plant
feedback as input, network B starts generating values which
are given to the plant. For some plants it might be necessary
to limit these values to a certain range. For instance, when
controlling an actuator, the amount of torque that it can
deliver is bounded. In Fig. 3 this bounding is represented
by a limiter which converts x(t) values to x̃(t). These values,
delayed with time steps, are used as desired output of
network A. With each iteration, the resulting output weights
are used for network B. Finding a which corresponds to
the plant dynamics, is essential in our control framework and
is its main difficulty.
By applying this topology, network A is learning the

controller solely on the seen plant-input and output during
actual control. Network B on the contrary, uses the trained
parameters to improve the control of the plant based on both
the desired and actual plant response.
As mentioned before, any dynamical system with a high

dimensional state representation can be used in our discussed
control framework. However, to validate this framework on
several tasks, we will use a Reservoir Computing network. In
general, such a network can at least be applied to all tasks
that can be represented by a Volterra series if the pool of
network states is rich enough [24], [25] (i.e. the network is
large enough). Next, we explain Reservoir Computing and
the used Recursive Least Square algorithm. In Section V
we evaluate our control framework on plants with different
dynamical properties. These dynamics can range from linear
to non-linear and from slow to fast.

III. RESERVOIR COMPUTING
The RC-network model used in this paper follows the Echo

State Network (ESN) approach [26]. An ESN is composed of
a discrete-time recurrent neural network (i.e., the reservoir)
and a linear readout layer which maps the reservoir states to
the desired output. A schematic overview of this is given in
Fig. 4. For many applications, the dynamics of the reservoir

!"#"$%&'$

()*+)*

,,, ,,,
u[k] o[k]

Wr
r Wo

rWr
i

a[k]

-'.#

Wr
b

/0+)*

Fig. 4. Description of a Reservoir Computing network. Dashed arrows
are the connections which can be trained. Solid arrows are fixed. W∗ is
a matrix representing the connections from ∗ to , where r, i,o,b denote
reservoir, input,out put, and bias, respectively. u[k], o[k] and a[k] represent
the input, output and reservoir states, respectively.

need to be slowed down to match the intrinsic time scale
of the input data. The system’s dynamics can effectively be
tuned by using leaky integrator neurons [26]. Their states
and the readout output are updated as follows:

a[k+1] = (1−)a[k]+
tanh(Wr

ra[k]+Wr
iu[k]+Wr

b) (1)
o[k+1] = Wo

r a[k+1], (2)

where u[k] denotes the input at time k, a[k] represents the
reservoir state and o[k] is the output. The weight matrices
W∗ represent the connections from ∗ to between the nodes
of the network (where r, i,o,b denote reservoir, input,out put,
and bias, respectively). All weight matrices to the reservoir
(denoted as Wr

∗) are initialized randomly, while all connec-
tions to the output (denoted asWo

∗) are trained using standard
linear regression techniques. As nonlinearity a hyperbolic
tangent function is used. After initialization, the matrixW r

r is
normalized by dividing it with its largest absolute eigenvalue
, called the spectral radius. For linear neurons (no tanh-
function) the spectral radius should be close, but smaller
than one. Thus, operating at the edge of stability [26]. For
nonlinear neurons a spectral radius around 1 can be used as
an heuristic. In [27], a more analytical explanation can be
found. In Equation (1) a fraction of the the previous state
a[k] is taken into account. This operation is equivalent to a
first order low-pass filter where the term is called the leak
rate. Further investigation about time scales in reservoirs and
leaky integrator neurons can be found in [28], [29]. Due to
the used network model (Equation (1)) the current network
output depends on a finite time window of past network
inputs. Such fading memory can be related to the unique
steady-state property for dynamical systems [30]. As we are
using such a network to model a dynamical system, we can
argue that only a dynamical system with a unique equilibrium
can be controlled.
In this work all the weight matricesW∗ are randomly ini-

tialized according to a standard normal distribution N (0,1).
However, Wr

i and Wr
b are scaled with the factors f ri and f rb ,

respectively. The number of neurons or reservoir size (de-
noted by Nres) determines the size of the connection matrix
Wr

r. The connection fraction or sparseness of this connection

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 4

matrix is described by the parameter . For choosing the
number of neurons, a trade-off between execution speed and
performance has to be made.
Training is performed by linear regression using the reservoir
states as variables. For this, the reservoir is driven by an
input sequence (the gathered plant feedback) which yields a
sequence of neuron states using Equation (1) and a sequence
of outputs (the input signals for the plant) using equation
(2). Next, the output connections Wo

r are trained such that
the generated output signals correspond to the desired output
signals. The training can be performed offline on a fixed
dataset, where desired input-output pairs are known, or
online, training as more data is provided.
For online learning we use Recursive Least Squares (RLS).

With each iteration the output weights are adjusted so that
the network converges to the desired output:

Wo
r [k] =Wo

r [k−1]− e[k]P[k]a[k] (3)

P[0] = I (4)

P[k] =
P[k−1] − P[k−1]a[k]aT [k]P[k−1]

(+aT [k]P[k−1]a[k]) , (5)

with a[k] the current states, the forgetting factor and
an initially chosen value. P[k] is a running estimate of

the Moore-Penroose pseudo inverse (aTa+ I)−1, with a
regularization parameter [31]. P[0] denotes the initial value of
P. The used error during training is defined as the difference
between the generated output and the desired output d[k]:

e[k] =Wo
r [k−1]a[k]−d[k]. (6)

When using RLS these output weights are rapidly and
effectively modified. For this reason, RLS is also used
in the FORCE approach of Sussillo and Abbott [32]. As
stated before, if we want to use this learning algorithm
we need to have a desired output d[k], which is unknown
at first. However, as described in the previous section, by
initially using random values for d[k] and the corresponding
plant response, an inverse plant model can be trained. Each
iteration the model improves resulting in a more accurate
prediction of the control output.

IV. CONVERGENCE AND STABILITY ANALYSIS
The convergence of the error e[k] in Equation (6) can be

analyzed by rewriting this Equation as:

Wo
r [k−1] =

e[k]+d[k]
a[k] . (7)

As in [32], we substitute this into Equation (3) to achieve a
formulation of the error after the weight update:

Wo
r [k] =

e[k]+d[k]
a[k] − e[k]P[k]a[k] (8)

Wo
r [k]a[k] = e[k]+d[k]− e[k]aT [k]P[k]a[k] (9)

e[k] =
Wo
r[k]a[k]−d[k]

1−aT [k]P[k]a[k] (10)

e+[k] = e[k](1−aT [k]P[k]a[k]). (11)

As mentioned before P can be written as:

P= (
k
a[k]aT [k]+ I)−1. (12)

Due to the used tanh-nonlinearity in Equation (1) and the
initialization of a[k] we know that |a[k]| ≤ 1. As a results,
aT [k]P[k]a[k] in Equation (11) will change from a value
close to 1 to a value that asymptotically converges to 0.
Consequently, e+[k] will become small and will eventually
converge to e[k]. At this point w[k]−w[k−1] becomes 0.
As mentioned before, a RNN is a dynamical system which

is infamously difficult to analyze. Despite the efforts made
in [33] and [34], no further progress has been achieved in
the quest for rigorous performance and stability guarantees.
In this work however we can do the following observations
concerning stability:
1) BIBO-stability: Bounded-input-bounded-output stabil-

ity is guaranteed. The non-linearity in Equation (1) (e.g.
tanh(·)) and the introduced limiter depicted in Fig. 3 ensures
that the network output is bounded for all inputs.
2) Local stability: Under certain conditions, local stability

at the origin can be guaranteed. We use the NLq-framework
presented in [35] to derive conditions for local stability of
the control system. Before we can apply this framework,
we assume that = 1 in Equation (1). We also assume that
learning has converged because a constant change in output
weights would make it hard to analyze stability. Under these
assumptions we only need to take Network B into account.
Furthermore, we need to make sure that the applied non-
linearity y= f (x) fulfills the condition that for each x there
exists an h ∈ [0,1] such that f (x) = hx. The applied tanh(·)
satisfies this condition.
In this work we use the NLq framework with q= 2 layers

where the plant is represented by a neural network interacting
in a closed loop with the controller (also a neural network).
By preserving the notation used in [35] we define the plant
and control network as M1 and C2, respectively. According
to a discrete version of the notation used in Fig. 1 and Fig. 4
both networks can be described by their neural state space
models:

M1 :
{
b[k+1] = tanh(Ŵr

rb[k]+Ŵr
i x[k]+ Ŵr

b)
y[k] = Ŵo

rb[k]+Ŵo
b

C2 :
{
a[k+1] = tanh(Wr

ra[k]+Wr
i y[k]+Wr

i2ŷ[k]+Wr
b)

x[k] = tanh(Wo
ra[k]+Wo

b)

where the network weights and states ofM1 are represented
by Ŵ∗ and b[k], respectively. The output weights Ŵo

r are
trained with RLS, the other weights are randomly initialized.
ŷ[k] denotes the desired plant output. Notice that for x[k]
in C2 the limiter in Fig. 3 is represented by the tanh(·)-
function. After augmenting the states with [k+1] = x[k+1]
and substituting the output/input ofM1 with the input/output
of C2, we can write the state space model of the entire control
loop as:

pk+1 = 1(V1 2(V2pk +B2wk)+B1wk), (13)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 5

with pk+1 = [b[k+ 1],a[k+ 1], [k+ 1]]T , wk = [ŷ[k],0,1]T
and both 1 and 2 are matrix representations of the tanh(·)-
functions. Here we applied the same notations as in [35].
We investigate the autonomous case where no external input
(wk = 0) to the control loop is considered. Due to the used
state space model representation, local stability at the origin
is guaranteed if:

(V1V2) < 1, (14)

with (·) the spectral radius and V1V2 given by:

V1V2 =

Ŵr
r 0 Ŵr

i
Wr
i Ŵo

r Wr
r 0

Wo
rWr

i Ŵo
r Wo

rWr
r 0

 . (15)

For instance, numerical evaluation of Equation (14) on
the pitch control task in Section V gives (V1V2) = 0.8925,
which implies that local stability at the origin of Equa-
tion (13) is guaranteed in this case. The size of the basin
of attraction in which the controller is locally stable can be
large. However as described in [36], the basin size in which
local stability is proven, is equal or smaller. This basin size
can be calculated by maximizing the volume of ellipsoids
defined by a quadratic Lyapunov function with respect to
pk. The corresponding matrix inequalities which constrains
this sequential quadratic programming problem can be found
in [36]. Due to the plant dependence, the attraction basin
in which local asymptotic stability is proven, needs to be
calculated for each control task at hand, which is beyond the
scope of this work. We refer to [36], for a more extensive
description on how this can be calculated.

V. COMPUTER SIMULATIONS AND EXPERIMENTAL
RESULTS

To validate the designed controller we will address three
tasks, each with different interesting properties. Applying
a model based controller to all these tasks with differ-
ent dynamical properties is impossible. In the following
experiments we demonstrate that our control strategy can
control different plants with different dynamics even without
a predefined internal model. When a control value is used as
plant-input this value is constant during the integration time.
When the integration time expires, the simulation is frozen
until, based on the previous plant response, a new control
value is calculated. However, the calculation time needed
to produce such a control value can be reduced such that
it becomes smaller than the integration time. This becomes
important when handling real-life and real-time applications.
Though, in this work only simulations are considered.

A. Heating tank
The first control task is a process with a variable dead-time

and has slow nonlinear dynamics. These control problems
appear in industrial processes where measurement sensors
that are used for feedback, are not integrated in the process
itself (e.g. solar collector field [37]). In this experiment, as
shown in Fig. 5, the system consists of a filled and constantly

TABLE I
SIMULATION PARAMETERS FOR THE HEATING TANK MODEL

Parameter Value Parameter Value
cp 4186 J/kgK Ktube 0.99

Vtank = LS 1.13 l Ts 4 s
Q 1100 J q(0) 0.0167 l/s

1 kg/l q(t) ∈ [0.005,0.03] l/s
Tin 15 ◦C

heated water tank with attached pipe of length L. If the output
temperature of the pipe is controlled by the throughput of
water that feeds the tank, this temperature depends not only
on the pipe length (L) but also on the throughput itself, which
is a control parameter. The fact that this parameter constantly
changes (having a variable death time) has a significant
impact on the performance of the control loop. Controlling
such a process is a challenging task, especially without an
instantaneous measurement of the process variables or with
control by a delayed pump (controlling the throughput) [38],
where the response on the feedback is delayed.
1) Model: The dynamics of the plant model illustrated in

Fig. 5 are described by the following nonlinear differential
equation:

cpVtank
dTtank(t)

dt
= Q+ cpq(t)(Tin−Ttank(t)), (16)

where cp denotes the specific heating capacity of water, Vtank
the volume of the tank, Ttank(t) the water temperature in the
tank, Tin the temperature of the added water, Q the added
heat, the density of water and q(t) the throughput of the
added water. The dynamics of the outlet pipe with length L
and area S are modeled by the following low-pass filter:

Ttube(s)
Ttank(s)

=
Ktube

Ttubes+1
, (17)

where Ktube is the fraction of temperature change from
tank to tube and Ttube an unmeasurable temperature with
temperature Tout that follows the equation:

Tout(t) = Ttube(t−d(t)). (18)

In the previous equation d(t) describes the variable dead-time
which equals:

d(t) = TsNd =
LS
q(t)

, (19)

where Ts represents the sampling period. Nd describes the
unknown dead-time. It is clear that by knowing L, S and q(t)
the variable dead-time can be calculated. In our simulation
we used the parameters given in Table I. For simulation we
use the Dormand-Prince method [39], also known as Runga-
Kutta (4,5), with an integration time step of 4 s.
2) Controller: To control this plant we use a Reservoir

Computing network in the proposed control framework de-
scribed in Section II-A. The limiter bounds the throughput
x(t) = q(t) to the allowed values for q(t) shown in Table I.
Next, we train the output connections of network A with
the values x̃(t −). The feedback values y(t) = Tout(t)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 6

!

"#$%&%'

(&%'
")*

(&%'
"%+*,&%'

-

Fig. 5. Illustration of the heating tank process. A tank filled with water is
constantly heated with heat flow Q. Water with temperature Tin is pumped
in and exits the tank with a throughput q(t). The water that is leaking
from the tank has a certain amount of time to cool down in a pipe with
length L before measurement of temperature Tout . To insure homogeneous
heating, the water in the tank is stirred. The control task: How to change
the throughput q(t) to get a desired temperature Tout?

TABLE II
NETWORK PARAMETERS OF HEATING TANK TASK

Parameter Value Parameter Value
Nres 500 neurons f ri 0.1

1 f rb 0.5
50 % 0.5
30

from the plant are given to the networks in a normalized
form (subtracted with the mean an divided by its standard
deviation). The used parameters of both networks, shown
in Table II, were optimized by performing grid search on a
validation set (target temperatures forming a staircase signal).
The introduced RLS-parameters defined in Section III are

set to = 1−10−6 and = 10. The initial output weights
w(0) are normalized random values (N (0,1)).
3) Results: For our simulation we have applied the con-

troller to the described simulation model for 12000 time steps
or 13.33 hours real time. The desired response of the plant
consists of different phases where we try, in the first phase,
to control the plant to have a y(t) that changes relatively
quickly. In this phase, we use red noise by feeding white
noise through a low-pass filter. Afterwards, this noise is
scaled to represent realistic temperature values. The second
phase consists of a staircase signal. Both phases are randomly
generated for each experiment. The first 6000 time steps
of the experiment are shown in Fig. 6. One can see, by
looking at the average quadratic change in output weights,
that the proposed controller is learning to control the plant
within the first 2000 time steps. In Fig. 7 the transition to
a staircase signal is shown. Here the controller is able to
adapt by changing its output weights according to the desired
plant output. As shown at the bottom of both Fig. 6 and
7, the generated throughput during this staircase signal, is
close to an optimal control signal. Indeed, a temperature
decrease is generated by setting the throughput very high
in the beginning and lowering it afterwards.
We compared the proposed controller with a model based

controller, called the Nonlinear Predictive Control Strategy
(NEPSAC), that out-preforms more classical approaches

0 1000 2000 3000 4000 5000 6000
20

40

60

80

Time k [Time steps]

De
gr

ee
 C

el
si

us

Desired Output
Plant Output

0 1000 2000 3000 4000 5000 6000

10 10

10 5

102

Time k [Time steps]

E[
(d

w
(k

)/d
k)

2]

0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

Time k [Time steps]

Pl
an

t I
np

ut
 q

(k
)

Fig. 6. Overview of the first 6000 time steps of the simulation. Here,
the desired output is an always changing temperature. Above, the actual
plant-output (shifted over) together with the desired one are shown. In the
middle, the average quadratic weight adaptation is illustrated. At the bottom,
the actual plant-input, which is generated by the controller is shown.

6000 7000 8000 9000 10000 11000 12000
20

30

40

50

Time k [Time steps]

De
gr

ee
 C

el
si

us

Desired Output
Plant Output

6000 7000 8000 9000 10000 11000 12000
10 11

10 5

10 1

Time k [Time steps]

E[
(d

w
(k

)/d
k)

2]

6000 7000 8000 9000 10000 11000 12000
0

0.01

0.02

0.03

Time k [Time steps]

Pl
an

t I
np

ut
 q

(k
)

Fig. 7. Overview of the last 6000 simulation time steps. Here, the
desired output is a constantly variating temperature which eventually shifts
to a desired temperature profile according to a staircase. The middle plot
illustrates the average quadratic weight adaptation of the output weights.
The bottom plot shows the generated control signal.

(such as PID) on this task [40], [41]. For comparison, a
staircase signal is used as desired plant output which, after
2000 time steps of initialization, is shown in Fig. 10.
We notice that both our implementation of the NEPSAC

and the proposed controller have some trouble in the be-
ginning due to the transition between the faster variation in
output temperature and the staircase signal. Afterwards, both
are able to follow the desired temperature. Taking a closer
look at the staircase in Fig. 11 between time steps 5000 and
5800 reveals that, after a temperature change, the proposed
controller is able to reach the desired temperature faster than
NEPSAC. The time to reach the desired output temperature

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 7

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Convergence time [h]

O
ve

rs
ho

ot
 [o C]

NEPSAC
Proposed controller

Fig. 8. This plot shows the Pareto front for both the proposed and the
NEPSAC controller. When the overshoot is allowed to be equal or larger
than 0.016◦C, the proposed controller is preferred. For a smaller overshoot
but a larger convergence time NEPSAC is better in the comparison.

is called converging time.
We evaluate the convergence time as the time needed to

approach the set point after which it stays within a predefined
margin around this set point. In the following experiments
for this control task we have set this margin to 0.01◦C. The
overshoot is measured as being the largest difference between
the desired set point and the produced plant output after the
set point has changed.
For NEPSAC the balance between overshoot and conver-

gence time is regulated by its prediction horizon ∈ [5, . . . ,50]
which is illustrated by its Pareto front [42] in Fig. 8. The
larger its prediction horizon the smaller the overshoot but
with the disadvantage that the convergence time increases.
As mentioned before, defines a time window with which

the dynamics of the plant are observed. If is small, the
learned model is more sensitive to fast dynamical changes,
and vice versa. The used leak rate on the other hand,
basically implements a low-pass filter on the state changes.
As a results, the overshoot/convergence-time balance for the
proposed controller is depending on both the value of the
delay and the leak rate . In Fig. 8 the Pareto front for the
optimal = 29 and averaged over 5 reservoirs is given. This
means that the defined balance in this front is controlled
by its leak rate and input scaling. For a defined input
scaling, increasing the leak rate will lower the overshoot and
increases the convergence time. However, experiments show
that the choice of the delay influences the resulting Pareto
front as well. Not only is depending on the rate at which
relevant samples are presented to the network but also on
the memory capacity of the network itself. This is shown in
Fig. 9. For different delays the optimal/lowest and average1
overshoot is shown. One can notice the improvement in

1Average over all experiments with the same but with different leak
rates and input scaling.

00.10.20.30.40.5
0

10

20

30

40

50

60

Overshoot [oC]

De
la

y
 [T

im
e

st
ep

s]

Optimal overshoot
Average overshoot

Fig. 9. Illustration of the effect of the delay on the optimal and average
overshoot of the proposed controller. The average overshoot is calculated
over all experiments with the same delay but with different leak rates and
input scaling. Increasing will improve the convergence time until the delay
becomes larger than the memory capacity of the RC-network. The memory
capacity of an RC-network with 500 neurons starts to decrease around 30
time steps after which it will decrease dramatically.

overshoot by increasing the delay until the delay becomes
larger than the memory capacity2 of the network (around 30
time steps for a reservoir with 500 neurons). Increasing the
delay further will lead to a larger overshoot.
Now, if we compare both Pareto fronts we can conclude

that the proposed controller is more suitable for tasks where
fast convergence is needed and the overshoot is allowed to
be larger than 0.016◦C. For slower control where the desired
overshoot is lower and a convergence time of 0.15 hours or
larger is allowed, NEPSAC is the optimal choice.

B. Pitch Control
The second task we consider is taken from a set of control

examples [43]. The purpose of this task is to control the
pitch of a simplified aircraft model by changing the elevator
deflection angle. However, changing this deflection angle
causes the pitch angle to move slowly. The time needed
to reach the desired angle depends on the distance between
the previous and current pitch angle which makes this task
nontrivial.
1) Model: The pitch control problem is simplified by

assuming a steady cruise of the aircraft at constant velocity
V and altitude. Under these conditions the control problem
can be formulated as:

d
dt

= −0.313 +56.7q+0.232

dq
dt

= −0.0139 −0.426q+0.0203

2The number of time steps, traces of past inputs are reflected in the current
states (length of short-term memory).

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 8

2000 2500 3000 3500 4000 4500 5000 5500 6000
20

30

40

50

60

Time k [Time steps]

De
gr

ee
 C

el
si

us

Desired Output
Proposed controller
NEPSAC

2000 2500 3000 3500 4000 4500 5000 5500 6000
10 10

10 5

102

Time k [Time steps]

E[
(d

w
(k

)/d
k)

2]

Fig. 10. The actual plant output is shown for the proposed controller
(shifted over) and for the NEPSAC-controller. This gives, together with
the desired plant output, a good representation of the control performance.

4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

28

30

32

34

36

38

40

42

Time k [Time steps]

De
gr

ee
 C

el
si

us

Desired Output
Proposed controller
NEPSAC

Fig. 11. This plots shows a more detailed view of the overshoot and
convergence time of both controllers.

!

"

η

Fig. 12. The representation of the aircraft which is used in simulation. V
represents the velocity vector and X denotes the center axis of the plain. ,
and on the other hand represent the pitch, attack and elevator deflection

angle, respectively. The control task: How to control to achieve a desired
pitch angle ?

d
dt

= 56.7q.

As shown in Fig. 12, is describing the angle of attack, q

TABLE III
NETWORK PARAMETERS OF PITCH CONTROL TASK

Parameter Value Parameter Value
Nres 500 neurons f ri 0.2

0.7 f rb 1
100 % 1
10

the pitch rate, the elevator deflection angle and the pitch
angle. For simulation we again use the Runga-Kutta (4,5)
method with an integration time step of 50 ms.
2) Controller: The dynamics of the simplified control task

are linear. However, they present some interesting challenges
for the proposed learning algorithm. Changing the elevator
angle causes the angle of attack to change slowly
until it settles. When is changed again before has
settled, the current angle of attack is partially depending
on its previous angle. As mentioned before the pitch of
the aircraft is controlled by changing the elevator deflection
angle. Therefore, the proposed controller, shown in Fig. 3,
has an input and output which is defined as y = and
x= , respectively. In Table III the network parameters for
both network A and B are shown. All these parameters were
determined by performing a grid search on a validation set.
3) Results: For the evaluation of the controller we con-

ducted experiments where a desired pitch angle is set. After
keeping the target pitch angle constant for 300 time steps,
the target pitch angle is changed to another value. These
values are randomly chosen according to a standard normal
distribution: ŷ(t) ∈ N (0,0.35) rad. Each experiment takes
10000 time steps. To evaluate the control performance we
compare it with a controlled method called Linear Quadratic
Regulator (LQR) [1], [44]. This method allows us to find
(tuning a weighting factor p) an optimal control matrixK that
results in a appropriate state-feedback controller = −K
(represents the controller state [,q,]T). In [43] and LQR
controller design is presented which we will use and which
results in a gain vector K = [−0.6435,169.6950,7.0711]with
a weighting factor p= 50.
As shown in Fig. 13, the proposed controller’s perfor-

mance improves as the experiment progresses. The learned
controller is changing the deflector angle x = fast after a
set point adjustment. Afterwards, as the pitch angle y =
converges, the generated output converges to 0 rad. In Fig. 14
a more detailed section of such an experiment is shown
(= 3 and = 0.95). Here, the difference between both
controllers and the desired plant output is clearly visible.
The learned controller causes the pitch angle to change rather
fast before approaching the desired set point. After almost
no overshoot, the resulting pitch angle will converge. This
small overshoot is clearly less than the overshoot of the LQR
approach. However, as in most control tasks, a trade-off
between overshoot and convergence time has to be made.
To insure a good comparison of both metrics the design
requirements used to design the LQR-controller should be the
same as the ones used for the proposed controller. However,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 9

4000 4500 5000 5500 6000 6500 7000

0.5

0.4

0.3

0.2

0.1

0

0.1

Time k [Time steps]

Pi
tc

h
An

gl
e

 [r
ad

]

Desired Output
Proposed controller
LQR

4000 4500 5000 5500 6000 6500 7000
0.5

0

0.5

Time k [Time steps]

Pl
an

t I
np

ut
 x

(k
) [

ra
d]

Fig. 13. The top plot shows a part of a pitch control experiment where
the desired pitch angle is compared with the ones acquired by using
the proposed controller and the Linear Quadratic Regulator approach. It
demonstrates an improvement in the convergence of the proposed controller
as the experiments progresses. The bottom plot shows the corresponding
plant input (elevator angle) produced by the proposed controller.

by creating a Pareto front of both approaches we can evaluate
and compare the control performance more thoroughly.
As in the previous task we calculate the overshoot but use

a margin of 0.0005 rad to determine the convergence time.
The overshoot and convergence time of the proposed

controller was calculated for different parameters values of
∈ [0.6, . . . ,1] and ∈ [2, . . . ,12]. A large results in

a smaller overshoot than a smaller . Consequently, the
convergence time will be larger with a large than with
a small . Similarly as for the proposed controller, we
calculated both the overshoot and convergence time of the
LQR approach for multiple weighting factors p∈ [3, . . . ,150].
These experiments result in the Pareto front shown in Fig. 15.
The Pareto front illustrates that the proposed controller is

performing worse than LQR when a small convergence time
is needed (< 6.5 s). However, when a larger convergence time
is allowed the resulting overshoot of our controller is much
smaller (Fig. 14). Therefore, under these conditions, our
controller is more appropriate for use than the LQR approach.
As the LQR approach is fully deterministic the results of
the conducted parameter sweep (changing weighting factor
p) are all located near the Pareto front. With LQR a small
overshoot and a lower convergence time is possible for
smaller weighting factors (p< 100). The Pareto front of the
proposed controller is calculated by averaging results over 6
RC-networks.

C. Double inverted pendulum
The balancing task of a double inverted pendulum is a well

known task in control theory and presents some interesting
control challenges. Here, 2 rods connected with a joint need
to be balanced in a upright position by only controlling
the angle of one of the rods. In a small region around

1.02 1.04 1.06 1.08 1.1 1.12 1.14
x 104

0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time k [Time steps]

Pi
tc

h
An

gl
e

 [r
ad

]

Desired Output
Proposed controller
LQR

Fig. 14. This plot gives a detailed view of the proposed controller’s
performance at the end of an experiment. Furthermore, the plant-output
under influence of the LQR approach is shown which illustrates the
difference in convergence time and overshoot between both approaches.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6
x 10 3

Convergence time [s]

O
ve

rs
ho

ot
 [r

ad
]

LQR
Proposed Controller

Fig. 15. This plot shows the Pareto front of both the proposed controller
and the LQR-approach, given the predefined margin conditions (error <
0.0005 rad). It illustrates that the LQR-controller performs better as long as
a convergence time of less than 6.5 s is required. As soon as a the pitch angle
is allowed to converge slower, the proposed controller is recommendable.
Furthermore, most of the results of the LQR approach converge fast. Only
when the weighting factor p becomes large, the convergence time increases
drastically.

this desired position the dynamics are approximately linear.
However, outside this region the dynamics of the pendulum
are strongly nonlinear. In this work we only consider the
pendulum stabilization and not the swing-up.
1) Model: The double inverted pendulum is modeled as

illustrated in Fig. 16. In this model the weight of the rods
is neglected and each end of the rod is modeled as a point
mass. The Cartesian coordinates of these point masses are

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 10

!

!!

"!

!"

""

"

Fig. 16. The representation of the double pendulum which is used as
simulation model. The control task: How to drive the torque of the motor
to achieve balancing of the double inverted pendulum?

TABLE IV
SIMULATION PARAMETERS FOR THE DOUBLE PENDULUM

Parameter Value Parameter Value
m1 1 kg 1 ∈ [2 , 32]
m2 1 kg 2 ∈ [2 , 32]
l1 1 m max 50 N
l2 1 m Time step 50 ms

given by (x1,y1) for m1 and (x2,y2) for m2, with:

x1 = l1 sin(1)
y1 = −l1 cos(1)
x2 = l1 sin(1)+ l2 sin(2)
y2 = −l1 cos(1)− l2 cos(2).

(20)

Using these equations the potential energy V and kinetic
energy T can be derived:

V = m1gy1+m2gy2

T =
1
2
m1v21+

1
2
m2v22,

(21)

where vi = dxi
dt + dyi

dt . To validate the model one can compute
the total energy E =V +T , which should be a constant over
time when the applied torque is zero.
Next, we use the Lagrangian transformation with L =

T −V and define the applied torque by using the Euler-
Lagrange differential equation:

L
i
− d
dt

(
L
i̇
) = i, (22)

with = 1 and 2 = 0 because we only apply torque on
the first rod. By writing this equation in function of i and
d i
dt for i = 1,2 one can solve this system with respect to
d i
dt , which leads to the equations of motion for the double
pendulum (Fig. 16). Similar as in the previous tasks we use
the Runga-Kutta (4,5) method with an integration time step
op 50 ms.
2) Controller: This control task is different from the other

tasks in the sense that the proposed controller in this task
is limited in the number of examples and the amount of

TABLE V
NETWORK PARAMETERS OF DOUBLE INVERTED PENDULUM TASK

Parameter Value Parameter Value
Nres 300 neurons f ri 1

1 f rb 0.5
100 % 1
1

time given to learn. In most cases an initial control effort
does not succeed in balancing which causes the rods to fall
down quite easily. The amount of information that can be
used for learning is therefore limited. Learning can easily
lead to an unbalanceable position of the rods. As a result,
balancing the pendulum means that the range of a possible
solution is restricted for 1 and 2 (shown in Table IV).
This region consists of both a linear and nonlinear dynamic
region of the pendulum. We assume that the controller is
unable to control the pendulum when the pendulum exceeds
the restricted range and, when this happens the simulation is
reset. Each balancing trial until a simulation reset, we call
an episode. A simulation reset implies randomly initializing
both rod positions within the regions for 1 and 2, holding
this initial position for time steps and reinitializing the
network states to their original values.
For this task the proposed controller, shown in Fig. 3,

has an input and output which are defined as y(t) = [1, 2]
and x(t) = , respectively. The angle 2 of the second rod
is scaled up with an experimentally determined value of 10
by applying grid search. A small change of 2 will have a
larger influence on the network than a small change of 1.
As a result the network will first prioritize the stabilization
of 2 before stabilizing 1 to the desired angle. The output
of network B x(t) is limited by a limiter to x̃(t) by insuring
|x(t)|< max. The network parameters used for both networks
are shown in Table V. All parameters were optimized by
applying a grid search. The introduced RLS-parameters are
set to = 1− 10−6 and = 1. The initial output weights
w(0) are normalized random values (N (0,1)).
3) Results: Each conducted experiment takes 50000 time

steps or 41.7 minutes. For each episode, both rods are
randomly initialized to a value in [−0.15, +0.15].
Fig. 17 shows such an experiment where balancing to

the desired upright position was achieved after 8 episodes.
The end of an episode is indicated by a vertical dotted
line. We notice an increase in episode duration due to the
learning progress of the proposed controller. In the 9th and
final episode balancing is achieved. However, this does not
imply that the acquired controller will be able to balance
the pendulum given any initial position of the rods. As the
desired set point for both angles is constant, the acquired
data points used for training are restricted to the amount of
episodes needed to achieve stabilization. In its final episode
the controller only learns how to keep the pendulum in the
upright position which eventually converges to one constant
action-observation pair. This pair will not further improve the
internal model representation of the pendulum. The learned

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 11

17 31 54 73 107 161 258 388
2

2.5

3

3.5

4

4.5

Time k [Time steps]

An
gl

e
[ra

d]

1

2

1000 2000 3000 4000 5000 6000 7000 8000
2.5

3

3.5

Time k [Time steps]

An
gl

e
[ra

d]

1

2

Fig. 17. Both plots illustrate the learning progress of the controller in the
double inverted pendulum task. The top plot shows the first efforts of trying
to balance the pendulum. Each vertical dotted line marks the beginning of
a new episode at which the pendulum states are reset. In this experiment
8 episodes are necessary to successfully balance the pendulum in the 9th
episode. The continuation of this last episode is shown in the bottom plot.

internal model is sufficient to balance the pendulum given
the initial conditions of the episode. Comparing the acquired
control with another model based controller is thus, due to
the nature of the proposed controller and the task, not useful.
Although no convergence is achieved is some episodes,

they can take a long time because of the good balancing
efforts of the controller. As a result, some experiments finish
before actual convergence to the upright position emerged.
In our evaluation of the controller we assumed convergence
when the errors on both angles clearly become smaller in
the last episode. The number of episodes needed to achieve
balancing averaged over 40 experiments is 13.75 episodes.
Furthermore, one can notice, due to the chosen input scal-

ing, that the pendulum is indeed balanced by first prioritizing
the convergence of 2 and afterwards 1.

VI. CONCLUSIONS
In this work we presented an novel feedback control

framework. The core of this framework is a dynamical sys-
tem, referred to as network A or B, which state representation
is sufficiently rich (e.g. recurrent neural network) to hold
an inverse model of the plant. The excitation of network
B is used to generate a plant-input and eventually a plant-
response. Afterwards, this pair is used to train the output
weights of a network A. These weights in turn are used
as the output weights of network B (weight sharing). Each
iteration network A improves its representation of an inverse
model of the dynamical system (plant). As both networks are
identical (except for their input), the controlling performance
of network B, which has the desired plant-output as network
input, will improve. By applying this framework, accurate
control on a wide variety of plants is achieved fast and

online without the need for a pre-acquired plant model.
Furthermore, we analyzed the convergence of the training
algorithm and presented a method which allows the stability
analysis under which local asymptotic stability is guaranteed.
The proposed control framework was validated on several

challenging control tasks with different dynamics by using
Reservoir Computing networks as learning modules: the
heating tank (slow nonlinear dynamics), flight pitch control
(slow linear dynamics) and the double inverted pendulum
(fast linear and nonlinear dynamics). In the conducted experi-
ments, we compared the proposed controller to other standard
control techniques.
The results of the heating tank experiments show that

the proposed controller is able to react relatively quickly to
changes in the desired plant-output. The tracking of different
kinds of output signals (red noise signal and staircase signal)
was demonstrated. Although such a varying desired output
improves plant exploration, a constant desired plant output
can be handled as well. The performance was compared
with an existing state-of-the-art model-based control method,
NEPSAC. In this comparison we have shown that the pro-
posed controller converges faster, when a moderate overshoot
is allowed.The disadvantage of using NEPSAC is its slower
control and, as a results, its longer convergence time. The
introduced delay depends on the rate at which relevant
samples are presented to the network. Slow dynamics need
a larger , fast dynamics need a smaller delay. Furthermore,
we have found that in this task the improvement in overshoot
by increasing the introduced delay is also limited by the
memory capacity of the used network. This observation can
be argued by the fact that the modeling power of the relation
between (y(t −),y(t) and x̃(t −)) is lost when the RC-
network is unable to “remember” it time steps later.
During the flight pitch control experiments the controller

needs to switch between different desired pitch angles by
controlling the elevator deflection. Due to the online learning
nature of the controller, the acquired model representation
of the plant improves as more samples are presented. As a
result, the controller’s performance increases as the experi-
ment progresses. Furthermore, we compared the controller’s
performance with a classical LQR-controller. As for the
previous task, the proposed controller is the most accurate if
moderate convergence times are allowed.
The double inverted pendulum balancing task is different

from the two other tasks, because the pendulum can be
controlled outside of its controllable region. Due to the online
learning nature of the proposed controller, this needs to be
appropriately managed. By reinitializing the network states
and the double pendulum, the resulting control was shown
to be successful.
Currently we are applying this framework on real-life

systems such as a quadruped robot. However, this is research
in progress and beyond the scope of this work. Other future
work could evaluate the importance of the learning module
by comparing to other approaches than RC. Furthermore, an
automated selection of the parameter is desirable.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 10, 12

ACKNOWLEDGMENT
This work was partially funded by a Ph.D. grant of the

Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT-Vlaanderen) and the FP7
funded AMARSi EU project under grant agreement FP7-
248311.

REFERENCES
[1] H. Kwakernaak and R. Sivan, Linear optimal control systems. Wiley-

Interscience New York, 1972, vol. 188.
[2] F. Lewis, D. Vrabie, and V. Syrmos, Optimal control. Wiley, 2012.
[3] B. Cessac, “A view of neural networks as dynamical systems,” Arxiv

preprint arXiv:0901.2203, 2009.
[4] M. Kawato, K. Furukawa, and R. Suzuki, “A hierarchical neural-

network model for control and learning of voluntary movement,”
Biological Cybernetics, vol. 57, no. 3, pp. 169–185, 1987.

[5] K. Narendra and K. Parthasarathy, “Adaptive identification and control
of dynamical systems using neural networks,” in Proceedings of the
28th IEEE Conference on Decision and Control, 1989, pp. 1737–1738.

[6] D. Nguyen and B. Widrow, “The truck backer-upper: an example of
self-learning in neuralnetworks,” in International Joint Conference on
Neural Networks (IJCNN), 1989, pp. 357–363.

[7] L. Hung and H. Chung, “Decoupled control using neural network-
based sliding-mode controller for nonlinear systems,” Expert Systems
with Applications, vol. 32, no. 4, pp. 1168–1182, 2007.

[8] J. Spooner and K. Passino, “Stable adaptive control using fuzzy
systems and neural networks,” IEEE Trans. Fuzzy Syst., vol. 4, no. 3,
pp. 339–359, 1996.

[9] S. Ge, C. Yang, and T. Lee, “Adaptive predictive control using neural
network for a class of pure-feedback systems in discrete time,” IEEE
Trans. Neural Netw., vol. 19, no. 9, pp. 1599–1614, 2008.

[10] C. Yang, S. Ge, C. Xiang, T. Chai, and T. Lee, “Output feedback NN
control for two classes of discrete-time systems with unknown control
directions in a unified approach,” IEEE Trans. Neural Netw., vol. 19,
no. 11, pp. 1873–1886, 2008.

[11] A. Levin and K. Narendra, “Control of nonlinear dynamical systems
using neural networks. ii. observability, identification, and control,”
IEEE Trans. Neural Netw., vol. 7, no. 1, pp. 30–42, 1996.

[12] H. Su and T. McAvoy, “Artificial neural network for nonlinear process
identification and control,” in Nonlinear process control. Prentice-
Hall, Inc., 1997, pp. 371–428.

[13] Y. Pan and J. Wang, “Model predictive control of unknown nonlinear
dynamical systems based on recurrent neural networks,” IEEE Trans.
Ind. Electron., no. 99, pp. 1–1, 2011.

[14] D. Prokhorov, “Training recurrent neurocontrollers for real-time ap-
plications,” IEEE Trans. Neural Netw., vol. 18, no. 4, pp. 1003–1015,
2007.

[15] C. Wang and D. Hill, “Learning from neural control,” IEEE Trans.
Neural Netw., vol. 17, no. 1, pp. 130–146, 2006.

[16] ——, “Deterministic learning and rapid dynamical pattern recogni-
tion,” IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 617–630, 2007.

[17] T. Chow and Y. Fang, “A recurrent neural-network-based real-time
learning control strategy applying to nonlinear systems with unknown
dynamics,” IEEE Trans. Ind. Electron., vol. 45, no. 1, pp. 151–161,
1998.

[18] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term depen-
dencies with gradient descent is difficult,” IEEE Trans. Neural Netw.,
vol. 5, no. 2, pp. 157–166, 1994.

[19] B. Pearlmutter, “Gradient calculations for dynamic recurrent neural
networks: A survey,” IEEE Trans. Neural Netw., vol. 6, no. 5, pp.
1212–1228, 1995.

[20] J. Suykens, B. D. Moor, and J. Vandewalle, “Toward optical signal pro-
cessing using photonic reservoir computing,” Optics Express, vol. 16,
no. 15, pp. 11 182–11 192, 2008.

[21] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, p. 78, 2004.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] H. Jaeger, “A method for supervised teaching of a recurrent artificial
neural network,” WO Patent Application WO 2002/031 764 A2, 04 18,
2002.

[24] W. Maass, “Liquid state machines: Motivation, theory, and applica-
tions,” in Computability in Context: Computation and Logic in the
Real World, B. Cooper and A. Sorbi, Eds. Imperial College Press,
2010, pp. 275–296.

[25] S. Boyd and L. Chua, “Fading memory and the problem of approxi-
mating nonlinear operators with volterra series,” IEEE Trans. Circuits
Syst., vol. 32, no. 11, pp. 1150–1161, 1985.

[26] H. Jaeger, “The echo state approach to analysing and training recurrent
neural networks,” Technical Report GMD Report 148, German Na-
tional Research Center for Information Technology, Tech. Rep., 2001.

[27] B. Zhang, D. Miller, and Y. Wang, “Nonlinear system modeling with
random matrices: Echo state networks revisited,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 23, no. 1, pp. 175–
182, 2012.

[28] H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert, “Optimiza-
tion and applications of echo state networks with leaky-integrator
neurons,” Neural Networks, vol. 20, no. 3, pp. 335–352, 2007.

[29] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview
of reservoir computing: theory, applications and implementations,” in
Proceedings of the 15th European Symposium on Artificial Neural
Networks. p. 471-482 2007, 2007, p. 471.

[30] L. Chua and D. Green, “A qualitative analysis of the behavior of
dynamic nonlinear networks: Steady-state solutions of nonautonomous
networks,” IEEE Trans. Circuits Syst., vol. 23, no. 9, pp. 530–550,
1976.

[31] R. Penrose, “A generalized inverse for matrices,” in Mathematical
proceedings of the Cambridge philosophical society, vol. 51, no. 03.
Cambridge University Press, 2008, pp. 406–413.

[32] D. Sussillo and L. Abbott, “Generating coherent patterns of activity
from chaotic neural networks,” Neuron, vol. 63, no. 4, pp. 544–557,
2009.

[33] I. Tyukin, D. Prokhorov, and V. Terekhov, “Adaptive control with
nonconvex parameterization,” IEEE Trans. Autom. Control, vol. 48,
no. 4, pp. 554–567, 2003.

[34] N. Barabanov and D. Prokhorov, “A new method for stability analysis
of nonlinear discrete-time systems,” IEEE Trans. Autom. Control,
vol. 48, no. 12, pp. 2250–2255, 2003.

[35] J. Suykens, J. Vandewalle, and B. De Moor, “Nlq theory: checking
and imposing stability of recurrent neural networks for nonlinear
modeling,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2682–
2691, 1997.

[36] J. Suykens, B. De Moor, and J. Vandewalle, “Robust local stability
of multilayer recurrent neural networks,” IEEE Trans. Neural Netw.,
vol. 11, no. 1, pp. 222–229, 2000.

[37] B. Torrico, L. Roca, J. Normey-Rico, J. Guzman, and L. Yebra, “Ro-
bust Nonlinear Predictive Control Applied to a Solar Collector Field
in a Solar Desalination Plant,” IEEE Trans. Control Syst. Technol.,
no. 99, pp. 1–10, 2010.

[38] J. Richard, “Time-delay systems: an overview of some recent advances
and open problems,” Automatica, vol. 39, no. 10, pp. 1667–1694, 2003.

[39] J. Dormand and P. Prince, “A family of embedded runge-kutta for-
mulae,” Journal of Computational and Applied Mathematics, vol. 6,
no. 1, pp. 19–26, 1980.

[40] M. Gálvez-Carrillo, R. De Keyser, and C. Ionescu, “Nonlinear predic-
tive control with dead-time compensator: Application to a solar power
plant,” Solar Energy, vol. 83, no. 5, pp. 743–752, 2009.

[41] R. De Keyser, “Model Based Predictive Control, Invited Chapter in
UNESCO Encyclopaedia of Life Support Systems (EoLSS),” 2003.

[42] J. Horn, N. Nafpliotis, and D. Goldberg, “A niched pareto genetic
algorithm for multiobjective optimization,” in Proc. of the First IEEE
Conference on Evolutionary Computation, 1994. IEEEWorld Congress
on Computational Intelligence. IEEE, 1994, pp. 82–87.

[43] B. Messner and D. Tilbury, “Digital Control Tutorial by University of
Michigan and Carnegie Mellon,” 1996.

[44] E. Sontag, Mathematical control theory: deterministic finite dimen-
sional systems. Springer-Verlag, 1998, vol. 6.

