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Abstract

Activation-induced cytidine deaminase (AID) is expressed in B cells within germinal centers and is critically involved in class
switch recombination and somatic hypermutation of immunoglobulin loci. Functionally active AID can additionally be
detected within ectopic follicular structures developed at sites of chronic inflammation. Furthermore, AID may target non-Ig
genes in B- and non-B-cell background. Therefore, AID-associated effects are of increasing interest in disease areas such as
allergy, inflammation, autoimmunity, and cancer. Pathway- or disease-relevant multigene signatures have attracted
substantial attention for therapeutic target proposal, diagnostic tools, and monitoring of therapy response. To delineate the
impact of AID in etiology of multifactorial diseases, we designed the AID-associated 25-gene signature. Chronic
rhinosinusitis with nasal polyps was used as an inflammation-driven airway disease model; high levels of IgE have been
previously shown to be present within polyp tissue. Expression levels of 16 genes were found to be modulated in polyps
including AID, IgG and IgE mature transcripts which reflect AID activity; clustering algorithm revealed an AID-specific gene
signature for the disease state with nasal polyp. Complementary, AID-positive ectopic lymphoid structures were detected
within polyp tissues by in situ immunostaining. Our data demonstrate the class switch recombination and somatic
hypermutation events likely taking place locally in the airways and in addition to the previously highlighted markers and/or
targets as IL5 and IgE suggest novel candidate genes to be considered for treatment of nasal polyposis including among
others IL13 and CD23. Thus, the algorithm presented herein including the multigene signature approach, analysis of co-
regularities and creation of AID-associated functional network gives an integrated view of biological processes and might
be further applied to assess role of altered AID expression in etiology of other diseases, in particular, aberrant immunity and
cancer.
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Introduction

Adaptive immunity mechanisms ensure specificity for foreign

antigens with virtually unlimited diversity during differentiation of T

and B lymphocytes. In contrast to T cells, B lymphocytes have

developed two additional independent steps to further diversify their

receptors after antigen collision: somatic hypermutation (SHM) and

class-switch recombination (CSR). Both SHM and CSR critically

depend on the expression of activation-induced cytidine deaminase

(AID) [1,2]. AID is a member of the APOBEC family of cytidine

deaminases, which acts via introduction of single-strand breaks into

target DNA through deamination of cytosine for conversion to

uracil. AID is currently considered as the only B-cell-specific factor

required to trigger both SHM and CSR, when DNA breaks are

specifically introduced into the variable or switch regions of Ig

genes, respectively [3,4]. In germinal centers (GCs) the AID

expression is transient and is initiated in early centroblasts, is

maximal in full-blown centroblasts, significantly decreases in

centrocytes and is downregulated in plasma cells [5]. Additionally,

AID-positive cells could be detected outside the GCs; a major

fraction of this type of AID-positive cells resides within the subset of

interfollicular large B lymphocytes [6,7].

Clearly, such a potent mutagenic and recombinogenic enzyme

needs to be tightly regulated at different levels to minimize the risk

of unwanted DNA damage. A number of mechanisms restricting

AID expression/activity to distinct cell types, time frames and

target loci were identified [8–13]. Nevertheless, recent findings

indicate that the presence of ectopic lymphoid structures can be

detected in chronically inflamed tissues in several autoimmune

disorders [14]; in synovium of rheumatoid arthritis the AID-

positive follicular structures are directly implemented in promoting

the production of pathogenic autoantibodies [15]. Local expres-

sion of AID and class switch recombination to IgE was shown in

the bronchial mucosa of atopic and nonatopic patients with

asthma [16] and within the oesophageal mucosa of patients with

chronic oesophagitis [17].
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Furthermore, breaches within the regulatory network seem to

allow AID to target non-Ig genes within genomic DNA [18–21].

Thus, aberrantly expressed and/or aberrantly regulated AID may

function as a general, genome-wide mutator [22] being involved in

disease development of different etiology. AID as a node gene and

the subsequent AID-associated events therefore receive increasing

attention in disease areas such as inflammation, autoimmunity and

cancer.

The phenotypic heterogeneity of human diseases presents a

major challenge to advancing our in-depth understanding of

disease mechanisms. However, there is good evidence to believe

that establishment and validation of gene-, pathway-, or disease-

relevant signatures provide tools for understanding the functional

relevance of gene alterations in human diseases – not only for basic

research but also for therapeutic target proposal, diagnostic tools,

and monitoring of therapy response [23–26]. Different methods

may be applied to address the role of a functional gene module in

the etiology of a multifactorial disease at the level of gene

alterations: (i) the in silico data-driven approach is based on the

analysis of available microarray datasets and dissects gene-

associated pathways into meaningful modules; the data analysis

offer the advantage of a transcriptome-wide screening procedure

but often lack the sensitivity for genes expressed at a low levels; (ii)

a knowledge-driven approach uses a self-designed gene signature.

In this case, a core set of interacting genes is assembled based on

mining the scientific literature and/or with the help of bioinfor-

matics, and is subsequently applied for the real-time PCR-based

gene expression profiling. This methodology offers the detailed

characterization of the input of one particular pathway while

keeping limited amount of genes at the beginning of the study.

Important advantage, on the other side, is the high sensitivity and

reproducibility allowing quantitative profiling even of low-copy

genes which are below the detection limits of microarray

platforms. In the current study, we used the knowledge-driven

approach to create an AID-associated 25-gene signature. This

signature was evaluated in a disease model of benign, chronically

inflamed tissue, namely in nasal polyposis. Chronic rhinosinusitis

without nasal polyps, characterized by a modest inflammatory

reaction, was used for immunopathological comparison as control

tissue [27]. Nasal polyps are considered to be a model for

persistent severe airway disease and do share the Th2-bias and the

polyclonal IgE production with asthma, as recently shown [28].

Th2-cytokines and IgE also link nasal polyps to comorbid asthma,

as demonstrated by the analysis of factors within the polyp tissue,

which are associated with asthma [29]. The immunopathological

mechanisms underlying the nasal polyp formation are not

completely resolved. Whereas the focus of investigations was on

T-cells and their subpopulations [30–32], the impact of B-cells has

scarcely been analysed. B lymphocyte infiltrations – diffuse

accumulations and those organized to follicles [33], B cell

attractant chemokines [34] and high levels of IgE type antibodies

were shown to be present within polyp tissue [35,36]. Thus,

expression of functional AID within nasal polyp tissue has been

presumed but never conclusively demonstrated. The approach

presented herein allows assessing the role of AID-associated events

in the molecular mechanisms underlying the initiation and/or

progression of an inflammation-driven disease.

Methods

Profile of study patients
A panel of 33 specimens of nasal mucosal tissues from patients

with chronic rhinosinusitis without nasal polyps (CRS; n = 15) and

with nasal polyps (NP; n = 18) was obtained from the Department

of Oto-Rhino-Laryngology of the University Hospital of Ghent,

Belgium. All samples were obtained during routine endonasal

sinus surgery in consecutive patients scheduled for surgery

unrelated to the study. The diagnosis of sinus disease was based

on history, clinical examination, nasal endoscopy and CT-scan of

the sinuses according to the EP3OS guidelines [37] None of the

subjects used oral or nasal corticosteroids four weeks before

surgery or antibiotics within the last two weeks. All patients

provided written informed consent, and the ethics committee of

the Ghent University Hospital approved the study. Clinical

parameters including history of atopy, asthma, aspirin hypersen-

sitivity (ASA), total IgE antibody levels, IgE specific to Staphylo-

coccus aureus enterotoxins (SAE-IgE), levels of eosinophil cationic

protein (ECP) and IL5 in tissue homogenates are summarized in

Table S1. Samples processing and measurement procedures were

performed as described [33]. Each sample was separated to

proceed with protein and total RNA isolation as described [33].

Primer design, real-time PCR analysis, data visualization,
pathway analysis, statistics

Gene expression profiling was performed by real-time PCR on

ABI PRISM 7900HT (Applied Biosystems) in 96-well plates using

the SYBR Green detection system as described [38]. Primers were

designed using ‘‘Primer Express 2.0’’ software and validated using

a normal tissue panel (Takara, Clontech). Algorithm for detection

of IgM, IgG, and IgE mature transcripts and results of BLAST

analysis of IgG forward and reverse primers are available as

Table S2. Sequence for CD23b was reconstructed based on the

comparison of virtually translated nucleotide sequence of intron 2

of CD23 gene and previously published N-terminal amino acid

sequence of CD23b variant [39]. For relative quantification, data

were analyzed by DDCT method using SDS 2.3. (Applied

Biosystems) and normalized to the average of housekeeping genes

(HKG) as elongation factor (EF1A), beta 2 microglobulin (b2M),

actin b (ACTB), and ubiquitin C (UBC). For the absolute gene

quantification, plasmid overexpressing gene of interest was used as

external standard [40,41]. Plasmids expressing the full-length AID

(pUHD10S-Flag-AID-fl) and the naturally occurring splice variant

with the truncated C-terminus (pUHD10S-Flag-AID-dE4) were

kindly provided by Prof. Xiaosheng Wu [13]; plasmid encoding

full-length human ACTB was from Invitrogen. Cluster 3.0 and

TreeView programs (http://bonsai.hgc.jp/,mdehoon/software/

cluster/manual/index.html) were used for computational analysis

and graphical representation of datasets. The data-driven, AID-

associated gene network was created using the Ingenuity Pathway

Analysis Software (http://www.ingenuity.com). Statistical analyses

were performed using GraphPad Prism 5.0 and SYSTAT 12

programs. Differences between diseased groups and alignments

with clinical parameters were analyzed using log2 values of

variances. For Student t tests, 2-way analysis of variance, p values

of 0.05 or less were considered significant.

AID-associated 25-gene signature
Based on the knowledge-driven approach of B cell biology and

NP data mining, a signature of AID-associated genes was

assembled. The 25-gene ‘‘AID signature’’ includes the full-length

AID-FL and the alternative AID splice variant AID-Dex4;

activators and suppressors in AID regulation such as PAX5,

IRF8, ID2, ID3, EGR1/2/3 [42–44]; immune cell markers as

CD19, CD3, CD14, CD86, CD21L [15,45]; Th2 cytokines as

IL5, IL13 (IL4 was excluded based on the trace levels of expression

in both diseased groups); low and high affinity IgE receptors as

CD23 (variant a and b), FceRI alpha, beta and gamma subunits;

IgM, IgG, IgE mature transcripts. Tables with NCBI accession

AID-Associated Multigene Signature
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numbers, gene symbols and synonyms, primer sequences and short

functional gene descriptions are available as supplementary files

(Table S3, Table S4). In summary, the composition of the

signature created around AID as a node gene allows to assess AID

expression and AID activity as proven by the class switch

recombination-based formation of IgG and IgE mature tran-

scripts; the presence of tissue infiltrating immune cells such as B

cells, T cells, monocytes, and follicular dendritic cells being

indicative for various stages of lymphoid organization; the

expression pattern of low- and high-affinity IgE receptors

mediating numerous IgE-related immune responses; and Th2

polarization.

Immunostaining on paraffin-embedded tissue sections
and AID-positive Raji cell line

Raji, lymphoblastoid cells derived from a Burkitt lymphoma,

were obtained from ATCC (Manassas, VA). Cytospins of Raji cells

were fixed with methanol/acetone solution (1:1 v:v) for 12 min at

220 Cu. Immunofluorescence with Raji cells was generally

performed as described [38]. Paraffin blocks of disease specimens

were prepared using the complete isolated tissue; these disease

specimens do not overlap with patient population taken for gene

expression profiling. Paraffin-embedded 5 mm-thick sections

underwent routine staining with haematoxilin and eosin. Sections

of NP specimens with lymphoid aggregates displaying a radial cell

number greater than 10 cells (n = 5) and sections of CRS patients

(n = 4) were taken for CD20 and AID staining. To detect AID, two

different antibodies were used: clone ZA001 mouse IgG1-kappa

(Invitrogen) and clone EK2-5G9 rat IgG2b (Cell Signaling). ; anti-

AID antibodies were previously shown to be functional in

immunostaining of cells transfected with the plasmid encoding

AID [12] and of AID-positive cells in paraffin-embedded tissue

sections [46,47]. For immunohistochemistry method, DAKO

EnVision+, Peroxidase system (DAKO, Glostrup, Denmark) was

used. Sections were counterstained with haematoxylin for nuclear

visualization. Alternatively, a fluorescent staining with biotinylated

rabbit anti-rat Ig or anti-mouse Ig secondary antibodies (Invitro-

gen, Paisley, UK) followed by streptavidin conjugated to Alexa

dyes was used (Invitrogen, Paisley, UK). Nuclear counterstaining

was performed with DAPI (Roche, Mannheim, Germany). In our

experimental settings, both anti-AID antibodies showed identical

results (data not shown); immunohistochemistry method was

preferable to immunofluorescence for AID staining within NP

tissues. CD138 (clone BA38, from AbD Seroteck, Oxford, UK)

was used as a marker for plasma cells [48]; CD20 (clone L26, from

Thermo Scientific, Cheshire WA7 1PR, UK) was used as general

B cell marker. Polyclonal Rabbit Anti-Human IgE was from

DAKO (Glostrup, Denmark). TissueFAXS (TissueGnostics,

Vienna, Austria), a fully automated multi-channel immunofluo-

rescence tissue analysis system was used for the acquisition of

diseased specimen/paraffin-embedded tissues as well as of Raji

cells. For acquisition the 20x/0.5 or the 40x/1.3-oil objectives

were used (EC Plan_NeoFluar, Zeiss). Filter sets were from

Chroma TechnologyCorp (DAPI 350/460 nm; FITC/Cy2 470/

525 nm; TxRed/Cy5 620/700 nm). Images were processed using

Adobe Photoshop CS2 software.

Results

Expression profiling of functional AID in specimens from
patients with chronic rhinosinusitis without or with nasal
polyps

We designed primer pairs to detect AID mRNA of human

origin and performed expression profiling in normal tissues

(multiple tissue panels, Clontech) (Text S1 and Figure S1).

Furthermore, we established a real-time PCR-based approach to

detect IgM, IgG (total), and IgE mature transcripts within the

same specimen. This highly sensitive and quantitative method can

be routinely used for detection of Ig transcripts within the tissues

from large cohort of samples. Detection of IgG or IgE mature

transcripts was used to assess AID activity as the ability to produce

different isotypes of antibodies is a functional consequence of the

active AID molecule. We next analyzed the AID expression

pattern in specimens from patients with chronic rhinosinusitis

without nasal polyps (CRS) in comparison to the one with nasal

polyps (NP). Within the pilot experiment, six CRS samples and

nine NP samples were profiled. As shown on Figure 1, CRS

samples were characterized by non-detectable or trace AID

mRNA levels, whereas strongly elevated expression levels of AID

indicative for initiation of class switch recombination were

detected in 3 out of 9 NP samples. Marked inter-patient variability

of AID mRNA levels within the NP group might be explained by

the transient nature of AID expression and/or various stages of B

cell response for each individual. IgG total mRNA levels were

significantly increased in the NP group in comparison to the CRS

patients (p,0.01). IgE were detected at trace amounts in CRS,

while being strongly elevated in the NP group (p,0.001). In

contrast, IgM mature transcripts were detected in both CRS and

NP groups characterizing the presence of B cells in both diseased

groups. Of note, strongly enhanced AID expression detected in

NP2, NP6, and NP9 was associated with elevated expression of

either IgE and/or IgG mature transcripts. Furthermore, subpop-

ulation within the NP group, characterized by the moderate AID

expression, showed increased IgE and/or IgG expression levels. In

line, absence of AID expression in the CRS group was

accompanied by non-detectable or low IgE and IgG transcription,

while levels of AID-independent IgM transcription were compa-

rable to those of the NP group. Partially overlapping expression

patterns of AID and IgG/IgE mature transcripts within the NP

group might be explained by the transient nature of both AID and

IgG/IgE transcription and the time-shift in kinetics between these

two events - the preceding AID expression followed by the AID-

mediated CSR resulting in the production of Ig isotype switched

mature transcripts [49]. Of particular importance, a strong

positive correlation (r = 0.747; p,0.001) was found between IgE

mature transcript levels estimated by real-time PCR technique and

total IgE protein levels determined in supernatants after tissue

homogenization (Table S1). These data suggest (i) the AID-

positive B cells to be present within NP tissue; (ii) at least part of

detectable IgE protein within NP is based on AID-driven CSR.

Comparative profiling of AID-FL and the splice variant
Alternative splicing may be a potential mechanism that controls

AID action under physiological conditions. The naturally

occurring splice variant lacking exon 4, AID-Dex4 (AY536517),

encodes a C-terminally truncated product, which is characterized

by the complete lack of CSR activity, while showing hyper-SHM

activity [13]. Herein, we compared mRNA levels of the full-length

AID transcript, AID-FL, and of the splice variant AID-Dex4

within the same tissue. The panel under investigation was

composed from normal human tissues which were found to be

AID-positive on the mRNA level (data are available as Figure S1

and detailed in Text S1) and NP specimens; lymph node (total

RNA, Ambion) was included as a positive control. The ratio

between AID-FL and AID-Dex4 was characterized by a strong

inter-tissue variability (Table 1). Thus, in salivary gland, thymus,

thyroid gland, lymph node, NP2, and NP6 the AID-FL mRNA

levels exceeded those of the AID-Dex4 variant, while in the tissues

AID-Associated Multigene Signature
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with moderate levels of total AID, mRNA expression of AID-Dex4

was comparable to or higher than the full-length transcript (e.g.

NP4, NP5). The results indicate occurrence of alternative splicing

in vivo.

AID-positive ectopic lymphoid structures within nasal
polyp tissues assayed by in situ immunostaining

Enhanced AID expression in NP tissues detected by real-time

PCR may be based on increased migration of activated B cells

and/or ectopic expression. Therefore, to estimate ectopic

lymphoid structure formation and presence of AID-positive cells,

in situ immunostaining analysis of NP specimens was performed.

Tonsils (a secondary lymphoid organ with fully organized

functional GC structures) and the Raji cell line were used as

reference tissue/cell type for AID expression. As expected,

immunofluorescent staining of tonsils for CD20 revealed strong

expression in the GCs of lymphoid follicles (Figure 2, A, a). CD20

immunostaining analysis of NP specimens revealed that lympho-

cytic infiltrates are able to evolve into follicular structures

(Figure 2, A, c, d); the data are in line with previously published

observations [33]. Lymphoid follicles developed within NP tissues

differed from those in tonsils in morphology; thus, the mantel zone

characteristic for active GCs within tonsils (Figure 2, B, merged,

a; DAPI, d; CD20, g) was not fully established in NP-derived

follicular structures (Figure 2, B, merged, b; DAPI, e; CD20, h)

likely suggesting their transient nature. Different patterns of B cell

accumulations were found to coexist within the same specimen; in

addition to CD20-positive follicles, B cell aggregates around the

glandular structures, the subepithelial mucosal glands contributing

to the secretion of mucus, composed of more than fifty CD20-

positive cells could be detected (Figure 2, B, merged, c; DAPI, f;

CD20, i).

To visualize the AID protein expression, immunofluorescent or

immunohistochemical staining protocols were established as

demonstrated for Raji cells on Figure S2; however, immunohis-

tochemistry was superior to AID staining for NP tissues.

Immunohistochemical staining of tonsils revealed strong AID

expression in the GC; in fully developed GC, AID staining was

predominantly seen in the dark zone (Figure 2, C, a). Consistent

Figure 1. Expression profiles of AID and Ig transcripts in individual samples of patients with chronic rhinosinusitis without (CRS) or
with nasal polyps (NP) assayed by real-time PCR. Expression profiles were analyzed using the DDCT method for relative quantification.
Expression levels of full-length AID (AID-FL), mature transcripts of IgM, IgG total, and IgE mRNAs were normalized to the average of HKGs and shown
relative to CRS1. Results are shown as mean values in one experiment 6 SD and are representative of two independent runs.
doi:10.1371/journal.pone.0025611.g001

Table 1. Comparative analysis of AID-FL and AID-Dex4 mRNA
levels.

tissue AID-FL AID-Dex4 ratio

AID-FL:AID-Dex4

bone marrow 12.1963.3 8.1663.1 1.49

kidney 15.4663.1 39.4663.4 0.39

salivary gland 180.85641.9 53.2864.6 3.39

thymus 539.11657.2 62.5668.2 8.62

thyroid gland 168.17643.9 50.65611.2 3.32

lymph node 1658.69693.3 209.39611.9 7.92

NP2 284.85665.6 60.33613.4 4.72

NP3 40.93612.0 35.1366.4 1.17

NP4 13.5864.4 38.67611.0 0.35

NP5 44.41613.5 75.5619.6 0.59

NP6 264.70637.9 41.98611.7 6.31

An absolute quantification was performed using recombinant DNA-based
external standards (Standard Curve Assay Getting Started Guide, Applied
Biosystems). Efficiency and linearity of the standard curve (R2) for AID-FL, AID-
Dex4, and ACTB were EAID-FL = 1.99, R2

AID-FL = 0.999; EAID-Dex4 = 2.03, R2
AID-Dex4

= 0.998; EAID-FL = 1.99, R2
AID-FL = 0.999; EActin = 2.01, R2

Actin = 0.999. Results are
expressed as absolute cDNA copy number of target gene per 106 copy numbers
of ACTB as HKG. Shown are mean values from three independent experiments
each performed in duplicate 6 SEM.
doi:10.1371/journal.pone.0025611.t001
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with a previous report [6], extrafollicular AID-positive cells were

as well readily detected (Figure 2, C, b). Within NP tissues, AID-

positive B cells were predominantly localized within the follicular

structures (Figure 2, C, c). Of note, CD20-positive lymphocytic

aggregates around the glandular structures, which were not

organized into follicles, were found to be negative for AID

expression (Figure S3). In contrast to NP tissues, no CD20-positive

follicular structures were detected within CRS specimens; similarly

to NP, lymphocytic non-follicular aggregates were AID-negative

(data not shown).

In addition, within NP tissues the CD138-positive plasma cells

were found to be localized outside the follicular structures

(Figure 2, D), which is in line with the knowledge that plasma

cells do not express the CD20 marker [6]. Additional areas

showing accumulation of CD138-positive cells were found in the

close proximity to the boarder of the polyp tissue body (Figure 2,
D) and to the glandular structures. IgE-positive cells of different

intensities were readily detected within the same areas as CD138-

positive cells and in addition within follicular structures (Figure 2,
E). Double staining for IgE and CD138 confirmed the presence of

an IgE-positive B-cell subset (Figure 2, F); single stained IgE-

positive cells might be attributed to an effector cell population

based on the bi-lobed form of the nuclei (e.g. eosinophils,

basophils; Figure S4).

In summary, detection of AID and mature IgE transcripts by

real-time PCR analysis accompanied by immunostaining data

suggest that the nasal polyp tissue might contain functionally

active, AID-positive ectopic follicular structures. Thus, the data

indicate that nasal polyposis is a relevant disease model to study

AID-associated responses with a presence of ongoing class switch

recombination in benign, chronically inflamed tissues.

AID-associated gene expression signature: linking gene
expression data with a functional network

A panel of 33 clinically characterized samples with chronic

rhinosinusitis without nasal polyps (CRS; n = 15) and with nasal

polyps (NP; n = 18) was profiled with primer sets from the 25-gene

‘‘AID signature’’ specified in Methods and Tables S2–S4. Genes

significantly affected in NP in comparison to CRS (p,0.05 –

p,0.0001) were identified: upregulated AID, IL13, IL5, CD23

Figure 2. AID expression in nasal polyp tissues assessed by in
situ immunostaining. (A) CD20 staining in fully developed GCs in
tonsil tissue (CD20, a; isotype control, b) and two representative NP
specimens (c, d); scale bar: 500 mm. (B) CD20 staining: higher power
views of GC in tonsil (a) and of two types of B cell infiltrates in NP as
prominent follicles (b) and accumulations around the glandular
structures (c) are shown. In addition to the merged images (a, b, c;
red channel for CD20 and blue channel for DAPI), pictures of individual
channels are included (d, e, f for DAPI; g, h, i for CD20); the presence of
the mantel zone in fully established GC within tonsil tissues is indicated
by a white dotted line. Scale bar: 50 mm. In Figure 2, the individual
channels are shown in black/white, whereas merged images are shown
in color. (C) AID-positive GCs in tonsil tissue (a, the low-power view; b,
the higher-power view) and follicular structures within NP with AID-
positive cells (c) are shown; Scale bar for a is 1000 mm; scale bar for b, c
is 50 mm. (D) Two areas representative for accumulation of CD138-
positive cells within NP tissues are shown: around follicular structures
(merged, a; DAPI, c; CD138,e) and in the close proximity to the boarder
of NP body (merged, b; DAPI, d; CD138, f). Scale bar: 50 mm. (E)
Representative pictures of IgE-positive cells detected within follicular
structures and their surrounding cell populations and within B cell
aggregates around the glandular structures (merged a, b; DAPI, c, d; IgE,
e, f). Scale bar: 50 mm. (F) Double staining of IgE (green) and CD138
(red) within NP (merged a; DAPI, b; IgE, c; CD138, d); insert: example of
double positive B cell is shown. Scale bar: 50 mm.
doi:10.1371/journal.pone.0025611.g002
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total and CD23a, CD23b isoforms, FceRIa, FceRIb, and FceRIg

subunits, IgG and IgE mature transcripts, CD14, CD19, CD86,

PAX5 (tendency; p = 0.06), IRF8; downregulated ID3 (Figure 3).

Next, we performed an alignment of expression datasets with the

patient’s clinical parameters (summarized in Table S1) such as

sex, history of atopy, asthma, and aspirin hypersensitivity (ASA).

Data analysis revealed significant associations between (i) atopy

and CD23/CD23b, IL13, IL5, CD19, CD86, CD14, IgG, IgE,

FceRIa, FceRIg, and ID3; (ii) asthma and CD23/CD23a/CD23b,

IL13, IL5, CD19, CD14, IgG, FceRIg, AID (tendency, p = 0.051),

and IgE (tendency, p = 0.052) (Table S5). No associations with sex

or ASA were found.

Hierarchical cluster analysis was used for further data interpre-

tation and visualization. This algorithm arranges the data into a tree

structure providing information about the relationship between the

samples and between the genes [50]. The samples fall into two main

clusters, separating majorities of CRS and NP samples with only few

samples forming a mixed population (Figure 4, A). Furthermore,

two gene sub-signatures emerged. Sub-signature 1 can be

designated as AID-associated (n = 11 genes). Within this sub-

signature, the AID-positive cluster contained a higher number of

NP samples, while the AID-negative cluster contained the majority

of CRS specimens. Hierarchical clustering revealed close associa-

tions between subset of genes IL13–IL5–CD23b–CD23–IgE–

CD23a–FceRIb, which are further linked to AID–CD19–IgG–

PAX5. Estimated coefficients of correlation were found to be .0.6,

p,0.0001 for IL5–CD23/CD23b, IL13–IL5, IL13–IgE, IL13–

CD23/CD23a/CD23b (for all genes, Pearson correlation matrix

and matrix of probabilities, matrix of Bonferroni corrected

probabilities are available as Table S6). Of importance, AID was

Figure 3. Differential expression of AID-associated genes in specimens with nasal polyps (NP) in comparison to the one without
nasal polyps (CRS). (A) Box-plot analysis of gene expression profiling dataset of CRS (n = 15) and NP (n = 18) specimens. The box represents the
distribution of values; a line across the box represents the median; the box stretches from the lower hinge (the 25th percentile) to the upper hinge
(the 75th percentile). p value is shown for each gene (t test for log2 values of variances). All modulated genes with the significant difference between
two diseased groups, including AID, passed the Holm-Bonferroni correction for multiple testing.
doi:10.1371/journal.pone.0025611.g003
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found to have a positive correlation (correlation coefficient.0.6,

p,0.0001) with IL13, IL5, CD19, CD23, CD23a, and PAX5. AID

showed less stringent positive correlation with IgG mature

transcripts (correlation coefficient = 0.471, p = 0.005) and IgE

(correlation coefficient = 0.417, p = 0.014). Partially overlapping

time-courses and transient nature of both AID and IgG/IgE

transcription might explain these results [42]. No significant

correlation was found between AID expression and expression

pattern of CD21L, an isoform specifically expressed by follicular

dendritic cells [15,45]. No significant correlation was revealed

between AID full-length transcript and AID-Dex4. Sub-signature 2

(n = 11) was formed around the transcriptional repressors ID2/ID3;

splice variant AID-Dex4 was included in this gene cluster. Inverse to

the sub-signature 1, higher expression values were characteristic for

CRS specimens and the CRS/NP mixed population, while the NP

group presented with lower values.

Patient-orientated gene expression pattern
Arrangement of datasets for each specimen across all genes is

able to provide the gene expression pattern characteristic for each

individual sample and therefore being patient-orientated. Scatter

plots of three patients from the CRS group (CRS2, CRS9,

CRS11) and three patients from the NP group (NP6, NP9, NP18)

are shown on Figure 4, B. The patients were selected from two

main sample clusters separating CRS and NP groups and

therefore are representative for each group. As expected, the

disease-group-characteristic gene distribution patterns are evi-

dent; however, the patient-specific differences within gene

expression signature are apparent as well. Of importance, scatter

plots of CRS specimens from the clustering-based mixed

population (CRS8, CRS10 and CRS12) differed from both

CRS-specific and NP-specific patterns showing rather the

intermediate stage.

Figure 4. Hierarchical clustering of expression datasets and scatter plots of patient-orientated profile. (A) The subset of 25 genes was
analyzed against a dataset derived from the real-time PCR-based profiling of a panel of 33 specimens from patients with chronic rhinosinusitis with
nasal polyps (NP; n = 18) in comparison to the one without nasal polyps (CRS; n = 15); Pearson uncentered hierarchical clustering was applied. Shown
is a result of a clustering run representing a pair of trees, one for genes and one for arrays/samples (Cluster/TreeView programs). Sub-signatures 1 and
2 orchestrated around AID and IDs/AID-Dex4 (AIDdelEx4 here), respectively, are indicated. Color code: red indicates induction and green - repression;
according to Cluster/TreeView [50], color hue does not reflect the exact magnitude of gene alteration. (B) log transformation plots represent the
patient-orientated gene expression ‘‘fingerprint’’; the figure depicts the relative expression level of each gene between CRS or NP specimens (y-axis)
and CRS3 specimen (x-axis); axis – log scale. Representative scatter plots of three patients from the CRS group (CRS2, CRS9, CRS11) and three patients
from the NP group (NP6, NP9, NP18) are shown. These specimens were selected from two main clusters, separating CRS and NP samples (Figure 4, A).
Scatter plots of three CRS specimens (CRS8, CRS10, CRS12) from a mixed population are shown in addition.
doi:10.1371/journal.pone.0025611.g004
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Discussion

Disease-relevant multigene signatures have attracted substantial

attention for therapeutic target proposal, diagnostic tools, and

monitoring of therapy response [23,24,26]. Development of

diagnostic and/or prognostic signatures considered to be an

important step towards personalized medicine. To assess the role

of B cell-driven responses associated with altered AID expression,

we used a self-created gene signature to perform a comparative

analysis of the transcriptional programs characteristic for chronic

rhinosinusitis with or without nasal polyps. The composition of the

25-gene signature allows to estimate (i) the presence of tissue

infiltrating immune cells such as B cells, T cells, monocytes, and

follicular dendritic cells, (ii) AID expression (the full length and

AID-Dex4), (iii) AID activity proven by the class switch

recombination-based formation of IgG and IgE mature tran-

scripts, (iv) various stages of lymphoid organization, (v) the

expression pattern of low- and high-affinity IgE receptors

mediating numerous IgE-related immune responses. This core

set of genes, which is of particular relevance for inflammatory and

allergic disorders, may be further extended with additional

candidate genes using bioinformatics approaches to fulfil the

criteria for other disorders.

Chronic rhinosinusitis was used as an inflammation-driven

disease model. Disease development of chronic rhinosinusitis

might take different directions; despite ongoing progress in

research [27,29,32,51,52], it is yet unclear what mechanisms

drive the disease towards the nasal polyp formation. In this study

we provide, to our knowledge, the first demonstration that AID

(the full-length transcript and the splice variant) is expressed within

the nasal polyp tissue. Profiling of B cell markers (e.g. IgM

transcripts, PAX5, CD23a, CD19) is indicative for the presence of

infiltrating B cells in tissues of both diseased groups; yet

comparison of gene expression patterns using a 25-gene signature

confirmed an AID-associated signature for the disease state with

NP (summary Figure 5). AID indicates initiation of CSR. Mature

IgE transcripts, resulting from DNA excision and ligation of the

V(D)J sequences to the constant epsilon region, indicate the

presence of IgE-switched B cells. The expression profiling data are

supported by immunostaining which demonstrate the existence of

AID-positive ectopic follicular structures and IgE-switched B cells

within nasal polyp tissue, suggesting class switch recombination

and somatic hypermutation events to take place locally in the

airways – at least for the sub-group within NP population.

Complementary to local maturation and priming for class

switching, increased migration of activated B cells into NP tissue

and accumulation of long-lived plasma cells producing high levels

of IgE antibodies cannot be excluded as an additional mechanism

as suggested in recent study of Patadja et al [34]. The biological

responses initiated within ectopic follicular structures may have

various regulatory functions influencing the disease pathogenesis

and/or disease resolution. Given the focus of the current study to

the multigene signature approach, an open question remains

whether a number of AID-positive follicles developed within polyp

tissue correlate with clinical parameters.

Here, we report the results of comparative profiling of the AID-

FL and the splice variant AID-Dex4 encoding a C-terminally

truncated product; the latter was demonstrated to have strictly

different enzymatic activity compared to the full-length transcript

[13]. Furthermore, the C-terminus contains a determinant for

AID cytoplasmic retention, which hampers diffusion to the

nucleus, competes with nuclear import and is crucial for

maintaining the predominantly cytoplasmic localization of AID

[12]. Therefore, the analysis and quantification of AID-Dex4

mRNA, predicted and confirmed ([53] and DM, unpublished) to

give rise to a C-terminally truncated AID protein with increased

resident time in the nucleus, is of particular interest. It is essential

to note that both AID-FL and AID-Dex4 mRNAs can be detected

in NP specimens and in some normal non-lymphatic tissues as well

(Table 1). One example of AID-positive tissue is thymus. The fact

of AID expression in the thymic medulla at the mRNA as well as

functional protein level was noted previously [7]; however, the

biological relevance of AID expression within a B cell subset in the

thymus of adults under physiological conditions is still poorly

understood. For the majority of tissues under investigation the

AID-FL mRNA levels exceeded those of the AID-Dex4 variant;

keeping in mind constant nuclear localization of AID-Dex4 protein

transcript, even low expression levels might have significant

functional consequences. The method applied in the current study

does not allow to determine whether AID-FL and AID-Dex4 are

both expressed within the same cell or in different cells in a ‘‘one

variant per cell’’ pattern as discussed recently by Wu et al [13].

During normal, physiological responses the sequential expression

of AID variants may occur. Initial B-cell activation may trigger

full-length AID expression, which drives predominantly the Ig

class switch recombination processes; while at a later phase, the

Figure 5. AID-associated gene network. Multigene signature-
based network displaying AID as a key gene was created using the
Ingenuity Pathway Analysis Software (IPA; http://www.ingenuity.com).
The color code of transcripts indicates up- (red) and down-regulation
(green) of genes in the NP disease group in comparison to rhinosinusitis
without polyps. Solid lines in grey display the IPA-identified direct
associations between transcripts; solid lines in red or in blue reflect the
IPA-identified associations overlapping with the 25-gene-identified
molecular interactions. The multigene approach including the analysis
of co-regularities can be extended to find not-yet-identified functional
links between the genes under investigation; statistically significant,
study-based biological associations (SYSTAT program; Table S6) are
displayed by dashed lines; color code: red for correlation coefficient
$0.6, p,0.0001; blue for correlation coefficient ,0.6, p,0.05.
doi:10.1371/journal.pone.0025611.g005

AID-Associated Multigene Signature

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e25611



alternative splicing occurs and the AID-Dex4 truncated variant,

characterized by a strong hyper-mutational potential, additionally

modulates the affinity of the available antibody repertoire. The

AID-Dex4 truncated transcript may be stored in memory and/or

plasma cells; preferential expression of AID-Dex4 in plasma cells

was indeed demonstrated [13]. Despite we did not find any specific

expression pattern of AID-Dex4 in nasal polyps, the established

algorithm can be further applied to test the hypothesis whether the

ratio [AID-FL: AID-Dex4] might have a prognostic value for

certain diseased conditions including chronic inflammation,

autoimmunity, and cancer and/or might correlate with an

increased potential for AID off-target effects.

It is of importance, that the multigene signature approach

applied in the current study allows to differentiate the state of

development/organization of lymphoid structures occurring at

sites of chronic inflammation and/or recurrent antigenic stimu-

lation; this is based on the analysis of associations between AID

and the follicular dendritic cell marker CD21L [15,45]. Thus, the

study of Humby and colleagues [15] provided strong evidence that

ectopic lymphoid structures formed within the synovial membrane

of patients with rheumatoid arthritis were characterized by the

presence of both AID-positive B cells and CD21L-positive

follicular dendritic cells; moreover, a significant positive correla-

tion was found between expression patterns of AID and CD21L

mRNA. Therefore, these lymphoid aggregates were attributed to

follicular structures resembling GCs. In the case of NP tissues, we

could not detect significantly increased CD21L mRNA levels in

patients with polyps; furthermore, no correlation was found

between AID and CD21L expression patterns. Thus, organization

and possibly functionality of lymphoid aggregates seem to be

different to those described in chronically inflamed tissues in

patients with rheumatoid arthritis. Follicular structures within NP

tissue were found to be functionally active but not entirely

organized as GCs. The data are in agreement with ongoing

discussions that the forces driving B cells to form unique classes of

active follicular structures with specialized functions are diverse

and robust [54].

PAX5 - the unique transcription factor of B cell identity, which

is necessary and sufficient for B cell development from the pro-B

cell to the mature B cell stage [55–57] was detected in both

diseased groups, however, with tendency for enhanced expression

in NP. PAX5 functions both as a transcriptional repressor and as

an activator on different target genes. Thus, among others, it

represses Notch1 [57] and FLT3 [58] and it activates CD19 [59],

BLNK [60], and AID [61]. Furthermore, the unexpected close

correlation between AID and CD23 shown in the present study

suggests a common transcriptional network in the regulation of

these genes. Given that CD23 and particularly CD23a, showed a

positive correlation to PAX5, one would predict that PAX5 is a

candidate transcription factor involved in the upregulation of both

AID and CD23 in B cells. Indeed, functional PAX5 binding site(s)

were previously identified within the CD23a promoter [62].

Thus, some of the identified regularities in gene distribution

patterns have already been proven by other groups in cell-based

assays. Therefore, the multigene approach presented herein

including the analysis of co-regularities can be further extended

to find not-yet-identified functional links between the genes under

investigation (Figure 5). Of interest, expression of FceRIg mRNA

(signaling subunit of the high affinity IgE receptor) was

upregulated in the NP group. Furthermore, the expression pattern

of FceRIg was found to correlate positively with those of CD14,

CD86, FceRIa as well as with AID, CD19, CD23, IgE and IgG

transcripts, IRF8 and PAX5. Correlation with B cell identity

markers suggests that FceRIg transcription could be triggered in B

cells at a certain stage of their activation. Of note, FceRIa – the

functional extracellular subunit of the FceRI receptor complex –

did not reveal the list of regularities described above. Thus, the

FceRI receptor complex might be regulated via the signaling

gamma chain whereas the alpha chain is constitutively ‘‘ready’’.

Alternatively, the FceRIg chain might build up a signaling

complex with other activating receptors besides FceRIa. Indeed,

such examples were previously described for other cell types: when

expressed by plasmacytoid dendritic cells, FceRIg was found to

cooperate with BDCA2 [63]; on a subset of Treg cells, FceRIg

chain functions within the TCR complex [64]. For B cells, a

functional cooperation partner for FceRIg besides FceRIa has not

yet been demonstrated to our knowledge.

Remarkable data suggest that EGR (early growth response)

family members might also be involved in AID-associated

biological responses [42,65] including the fact that Egr-1 null

mice showed increased levels of serum IgE [43]. Thus, according

to our working hypothesis this transcription factor may be a

regulatory player in the AID-associated network. However,

expression profiling revealed only a tendency for reduced

expression of EGR-1 mRNA in NP in comparison to the levels

in rhinosinusitis without polyps, possibly ‘‘masked’’ by those cell

types in NP tissue with steady or increased EGR-1 expression.

Nevertheless, clustering and correlation analysis revealed clear

associations of EGR family members with the transcriptional

repressors ID2/ID3 jointly forming the AID-Dex4-included sub-

signature 2. Thus, our data suggest a repressor function of the

EGR-1 transcription factor in functionally active follicular

structures.

IL5 was included as a positive control gene in the current study.

The specific knowledge on the role of IL5 in CRS with NP as

discovered previously [66] and the possibility of IL5 antagonism in

vitro [67] led to the clinical application of humanized anti-IL5

antibodies for the treatment of nasal polyposis [68,69]. However,

only a subgroup of patients responded to this treatment pointing to

the heterogeneity of the disease etiology on the one side, and of the

patient population on the other side. Additionally, the data

indicated that further target gene(s) might be considered for

treatment of disease in single therapy or combined therapy with

anti-IL5 agents. Gene profiling data of the current study revealed

(i) a significant increase of IL13 mRNA levels in NP tissues, (ii)

significant associations with the clinical parameters such as atopy

and asthma, and (iii) a strong positive correlation between

expression levels of IL13 and IL5. In line, elevated protein levels

of IL13 were shown previously in a subgroup of CRS patients with

polyposis [70], and IL13 is spontaneously released from NP tissue

[71]. Furthermore, IL13 is considered to be a critical regulator of

inflammatory and allergic responses [72] and, at the same time, as

shown in mouse models, the IL13-triggered signaling cascades and

downstream gene expression patterns are only partially overlap-

ping with those induced by other Th2 cytokines [73]. Thus, our

results suggest that IL13 is a candidate target for treatment of nasal

polyposis.

Another potential candidate target gene strongly associated with

AID and IgE molecules is CD23 (Figure 5). CD23, the low-

affinity IgE receptor, is expressed on a variety of hematopoietic cell

types [74–76]. CD23 has been shown to play a role in modulating

the production of IgE by B cells [74,77]. CD23 mediates

numerous IgE-related immune responses (including antigen

focusing) by enhancing IgE antigen complex presentation,

regulating IgE synthesis, influencing cell differentiation and

growth of both B and T cells, and stimulating the production of

pro-inflammatory mediators from monocytes/macrophages, eo-

sinophils, and even some types of stromal cells [76]. There are two
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splice forms of CD23 that can be expressed on the cell membrane;

CD23a and CD23b differ at the N-terminus and display different

patterns of expression and sensitivities to exogenous stimuli [78].

Thus, expression of CD23a is largely restricted to B cells, while

CD23b synthesis is inducible in a variety of cells upon exogenous

stimulation. The tools developed in the current study allowed us to

perform comparative profiling of individual transcripts as well as

the total CD23 molecule content within the same tissue. Given the

significant increase of CD23 mRNA levels including the individual

variants in polyp tissues, significant associations with patient’s

clinical parameters such as atopy and asthma, and the positive

correlations between IL5–CD23/CD23b, IL13–CD23, CD23a–

PAX5, and AID–CD23/CD23a it might therefore be of interest to

further investigate whether CD23 might serve as drug target for

the local treatment of polyposis. Currently, Lumiliximab – a

chimeric macaque and human anti-CD23 monoclonal antibody –

is considered as immunomodulator and is in clinical trials for the

treatment of patients with chronic lymphocytic leukemia [79].

Besides leukemia, an anti-CD23 strategy has previously been

considered for the treatment of asthma, allergic inflammation, and

atopic dermatitis [80].

A final observation is based on the arrangement of datasets for

each specimen across all genes. This approach provides the

patient-specific gene expression ‘‘fingerprint’’. Of particular

interest are the patterns of specimens from the CRS group, which

cluster within the mixed population. These specimens are

distinguished based on the elevated levels of subset of genes

characteristic for the NP group (e.g. IL5, CD23, IL13). The data

suggest the described approach to be supportive for the patient-

orientated therapeutic targeting and for the definition of new

predictive factors in clinical monitoring.

Taken together, we have developed a multigene signature

covering one particular disease-associated module using AID as

the key gene. We further explored associations between AID and

other molecules involved in the etiology of human inflammation-

driven disease such as nasal polyposis: in addition to the previously

highlighted biomarkers/targets [35,70], novel players were

suggested including among others IL13 and CD23 as well as

genes of B cell identity. Thus, the algorithm presented herein

based on the multigene signature approach, analysis of co-

regularities and creation of AID-associated functional network

gives an integrated view of biological processes and might be

further applied to clarify role of altered AID expression in etiology

of other diseases including autoimmune and malignant disorders.

Supporting Information

Figure S1 Expression profiles of AID in mouse and
human tissues assayed by real-time PCR. Expression levels

of AID genes were normalized to the average of HKGs and shown

relative (A) to salivary gland for mouse tissues and (B) to adrenal

gland for human tissues. Results are shown as mean values from

triplicates in one experiment 6 SD and are representative of two

independent experiments.

(EPS)

Figure S2 AID expression in Raji cells assessed by
immunostaining. Cytospin preparations from Raji cells. AID

expression was detected using either immunofluorescence or

immunohistochemistry protocols (AID, a, b; isotype control, c, d).

(a) 89.5% of cells (2532 analysed cells) were calculated to be AID-

positive (TissueQuest software; TissueGnostics, Vienna, Austria);

(b) 80.9% of cells (2647 analysed cells) were calculated to be AID-

positive (HistoQuest software; TissueGnostics, Vienna, Austria).

(EPS)

Figure S3 AID expression in nasal polyp tissues assess-
ed by in situ immunostaining. AID-positive cells were not

detected within B cell population around the glandular structures.

Scale bar: 50 mm.

(EPS)

Figure S4 Single stained IgE-positive cells within NP.
Representative examples of single stained IgE-positive/CD138-

negative cells are indicated by asterisks. The individual channels

for DAPI, IgE and CD138 are shown as black/white and the

merged images are in color.

(EPS)

Table S1 Profile of study patients. Clinical parameters

including history of atopy, asthma, aspirin hypersensitivity (ASA),

total IgE antibody levels, IgE specific to Staphylococcus aureus

enterotoxins (SAE-IgE), levels of eosinophil cationic protein (ECP)

and IL5 are indicated. BDL, below detection limit; ND, not

determined.

(DOC)

Table S2 BLAST analysis of IgG forward and reverse
primers. Gene symbol, NCBI GeneID, results of BLAST search

are provided. Forward primer sequence (indicated in the Table as

‘‘Query’’) was subjected to NCBI BLAST analysis. Results showed

100% homology to the IGHJ1/4/5 transcripts (indicated in the

table as ‘‘Sbjct’’. Tm of forward primer is 64uC and therefore this

is allows to bind to the template with mismatch. IGH is an

abbreviation for immunoglobulin heavy join, thereby confirmed

the ability to detect IGH classes. Reverse primer sequence

(indicated in the Table as ‘‘Query’’) was subjected to NCBI

BLAST analysis. Results showed 100% homology to the IGHG1/

2/3/4 transcripts (indicated in the table as ‘‘Sbjct’’; IGHG is an

abbreviation for immunoglobulin heavy constant gamma), thereby

confirmed the ability to detect all IgG isotypes.

(DOC)

Table S3 Real-time PCR primers. Gene symbol and

synonyms, NCBI accession number, sequences of forward (F)

and reverse (R) primers.

(DOC)

Table S4 A panel of human genes. Gene symbol and

synonyms, NCBI accession number, short functional gene

description from Gene/NCBI are provided.

(DOC)

Table S5 Alignment of expression profiling dataset with
the clinical parameters. Comparisons between gene expres-

sion datasets (log2-transformed values) and patient’s clinical

parameters such as sex, history of atopy, asthma, and aspirin

hypersensitivity (ASA) (from Table S1) are summarized. Analysis

was done across both diseased groups. p value color code: red,

statistically significant; blue, tendency; bold, passed the Holm-

Bonferroni correction method for multiple comparisons.

(DOC)

Table S6 Correlation analysis (SYSTAT program).
Pearson correlation matrix and the corresponding matrix of

probabilities as well as matrix of Bonferroni probabilities are shown.

The analysis was performed across all samples of two disease groups.

Lines for protein transcripts are highlighted in grey. Color code for

statistically significant co-regularities: red for correlation coeffi-

cient$0.6, p,0.0001; blue for correlation coefficient,0.6, p,0.05.

(PDF)

Text S1 Results.

(DOC)
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