STUDY ON THE SYNTHESIS, REACTIVITY AND MELTING POINTS OF NOVEL 1H-ISOCHROMENO[3,4-d]IMIDAZOL-1-ONIUM SALTS

Bart I. Roman, Marie Guégan, Sebastiaan Wuyts, Christian V. Stevens

Research Group SynBioC, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Coupure Links 653, B-9000 Ghent, Belgium
E-mail: bart1.roman@ugent.be

Extending our work on the continuous flow synthesis of 3,4-diamino-1H-isochromen-1-ones and 1H-isochromeno[3,4-d]imidazol-1-ones (1),ii we recently developed a straightforward and convenient protocol for the conversion of the latter imidazoles into the corresponding imidazolium salts (2,3). Employing either a quaternization (a) or an anion metathesis (b) strategy, we successfully obtained an array of these novel salts. The influence of the nature of the anion on their melting point was investigated.

![Chemical structures]