Advanced search

Wrapped feature selection for binary classification Bayesian regularisation neural networks: a database marketing application

(2000) Data mining II. p.353-362
Author
Organization

Citation

Please use this url to cite or link to this publication:

Chicago
VIAENE, S, B BAESENS, Dirk Van den Poel, G DEDENE, J VANDENBULCKE, and J VANTHIENEN. 2000. “Wrapped Feature Selection for Binary Classification Bayesian Regularisation Neural Networks: a Database Marketing Application.” In Data Mining II, ed. N. F. F. Ebecken and C. A. Brebbia, 353–362. Southampton ; Boston: WIT Press.
APA
VIAENE, S., BAESENS, B., Van den Poel, D., DEDENE, G., VANDENBULCKE, J., & VANTHIENEN, J. (2000). Wrapped feature selection for binary classification Bayesian regularisation neural networks: a database marketing application. In N. F. F. Ebecken & C. A. Brebbia (Eds.), Data mining II (pp. 353–362). Southampton ; Boston: WIT Press.
Vancouver
1.
VIAENE S, BAESENS B, Van den Poel D, DEDENE G, VANDENBULCKE J, VANTHIENEN J. Wrapped feature selection for binary classification Bayesian regularisation neural networks: a database marketing application. In: Ebecken NFF, Brebbia CA, editors. Data mining II. Southampton ; Boston: WIT Press; 2000. p. 353–62.
MLA
VIAENE, S, B BAESENS, Dirk Van den Poel, et al. “Wrapped Feature Selection for Binary Classification Bayesian Regularisation Neural Networks: a Database Marketing Application.” Data Mining II. Ed. N. F. F. Ebecken & C. A. Brebbia. Southampton ; Boston: WIT Press, 2000. 353–362. Print.
@incollection{294333,
  author       = {VIAENE, S and BAESENS, B and Van den Poel, Dirk and DEDENE, G and VANDENBULCKE, J and VANTHIENEN, J},
  booktitle    = {Data mining II},
  editor       = {Ebecken, N. F. F. and Brebbia, C. A.},
  isbn         = {185312821X},
  language     = {eng},
  pages        = {353--362},
  publisher    = {WIT Press},
  title        = {Wrapped feature selection for binary classification Bayesian regularisation neural networks: a database marketing application},
  year         = {2000},
}