Ghent University Academic Bibliography

Advanced

External finite element approximations of eigenvalue problems

Michèle Vanmaele UGent and Alexander Ženišek (1991) Internal report finite EPFL, Department of Mathematics, Lausanne, December, nr. 14.91.
Please use this url to cite or link to this publication:
author
organization
year
type
misc (report)
publication status
published
subject
in
Internal report finite EPFL, Department of Mathematics, Lausanne, December, nr. 14.91
publisher
Ecole polytechnique fédérale de Lausanne (EPFL)
place of publication
Lausanne, Switzerland
language
English
UGent publication?
yes
classification
V
id
226605
handle
http://hdl.handle.net/1854/LU-226605
date created
2004-05-24 13:24:00
date last changed
2017-09-06 10:39:02
@misc{226605,
  author       = {Vanmaele, Mich{\`e}le and \v{Z}eni\v{s}ek, Alexander},
  language     = {eng},
  publisher    = {Ecole polytechnique f{\'e}d{\'e}rale de Lausanne (EPFL)},
  series       = {Internal report finite EPFL, Department of Mathematics, Lausanne, December, nr. 14.91},
  title        = {External finite element approximations of eigenvalue problems},
  year         = {1991},
}

Chicago
Vanmaele, Michèle, and Alexander Ženišek. 1991. “External Finite Element Approximations of Eigenvalue Problems.” Internal Report Finite EPFL, Department of Mathematics, Lausanne, December, Nr. 14.91. Lausanne, Switzerland: Ecole polytechnique fédérale de Lausanne (EPFL).
APA
Vanmaele, Michèle, & Ženišek, A. (1991). External finite element approximations of eigenvalue problems. Internal report finite EPFL, Department of Mathematics, Lausanne, December, nr. 14.91. Lausanne, Switzerland: Ecole polytechnique fédérale de Lausanne (EPFL).
Vancouver
1.
Vanmaele M, Ženišek A. External finite element approximations of eigenvalue problems. Internal report finite EPFL, Department of Mathematics, Lausanne, December, nr. 14.91. Lausanne, Switzerland: Ecole polytechnique fédérale de Lausanne (EPFL); 1991.
MLA
Vanmaele, Michèle, and Alexander Ženišek. “External Finite Element Approximations of Eigenvalue Problems.” Internal report finite EPFL, Department of Mathematics, Lausanne, December, nr. 14.91 1991 : n. pag. Print.