Advanced search

Diversity of the human immunodeficiency virus type 1 (HIV-1) env sequence after vertical transmission in mother-child pairs infected with HIV-1 subtype A

(2003) JOURNAL OF VIROLOGY. 77(5). p.3050-3057
Author
Organization
Abstract
Although several virologic and immunologic factors associated with an increased risk of perinatal human immunodeficiency virus type I (HIV-1) transmission have been described, the mechanism of mother-to-child transmission is still unclear. More specifically, the question of whether selective pressures influence the transmission remains unanswered. The aim of this study was to assess the genetic diversity of the transmitted virus after in utero transmission and after peripartum transmission and to compare the viral heterogeneity in the child with the viral heterogeneity in the mother. To allow a very accurate characterization of the viral heterogeneity in a single sample, limiting-dilution sequencing of a 1,016-bp fragment of the env gene was performed. Thirteen children were tested, including 6 with in utero infections and 7 with peripartum infections. Samples were taken the day after birth and at the ages of 6 and 14 weeks. A homogeneous virus population was seen in six (46.2%) infants, of whom two were infected in utero and four were infected peripartum. A more heterogeneous virus population was detected in seven infants (53.8%), four infected in utero and three infected peripartum. The phylogenetic trees of the mother-child pairs presented a whole range of different tree topologies and showed infection of the child by one or more maternal variants. In conclusion, after HIV-1 transmission from mother to child a heterogeneous virus population was detected in approximately one-half of the children examined. Heterogeneous virus populations were found after peripartum infection as well as after in utero infection. Phylogenetic tree topologies argue against selection processes as the major mechanism driving mother-to-child transmission but support the hypothesis that virus variability is mainly driven by the inoculum level and/or exposure time.

Citation

Please use this url to cite or link to this publication:

Chicago
Verhofstede, Chris, Els Demecheleer, Nancy De Cabooter, P GAILLARD, F MWANYUMBA, Patricia Claeys, V. CHOHAN, K MANDALIYA, Marleen Temmerman, and Jean Plum. 2003. “Diversity of the Human Immunodeficiency Virus Type 1 (HIV-1) Env Sequence After Vertical Transmission in Mother-child Pairs Infected with HIV-1 Subtype A.” Journal of Virology 77 (5): 3050–3057.
APA
Verhofstede, C., Demecheleer, E., De Cabooter, N., GAILLARD, P., MWANYUMBA, F., Claeys, P., CHOHAN, V., et al. (2003). Diversity of the human immunodeficiency virus type 1 (HIV-1) env sequence after vertical transmission in mother-child pairs infected with HIV-1 subtype A. JOURNAL OF VIROLOGY, 77(5), 3050–3057.
Vancouver
1.
Verhofstede C, Demecheleer E, De Cabooter N, GAILLARD P, MWANYUMBA F, Claeys P, et al. Diversity of the human immunodeficiency virus type 1 (HIV-1) env sequence after vertical transmission in mother-child pairs infected with HIV-1 subtype A. JOURNAL OF VIROLOGY. AMER SOC MICROBIOLOGY; 2003;77(5):3050–7.
MLA
Verhofstede, Chris, Els Demecheleer, Nancy De Cabooter, et al. “Diversity of the Human Immunodeficiency Virus Type 1 (HIV-1) Env Sequence After Vertical Transmission in Mother-child Pairs Infected with HIV-1 Subtype A.” JOURNAL OF VIROLOGY 77.5 (2003): 3050–3057. Print.
@article{217214,
  abstract     = {Although several virologic and immunologic factors associated with an increased risk of perinatal human immunodeficiency virus type I (HIV-1) transmission have been described, the mechanism of mother-to-child transmission is still unclear. More specifically, the question of whether selective pressures influence the transmission remains unanswered. The aim of this study was to assess the genetic diversity of the transmitted virus after in utero transmission and after peripartum transmission and to compare the viral heterogeneity in the child with the viral heterogeneity in the mother. To allow a very accurate characterization of the viral heterogeneity in a single sample, limiting-dilution sequencing of a 1,016-bp fragment of the env gene was performed. Thirteen children were tested, including 6 with in utero infections and 7 with peripartum infections. Samples were taken the day after birth and at the ages of 6 and 14 weeks. A homogeneous virus population was seen in six (46.2\%) infants, of whom two were infected in utero and four were infected peripartum. A more heterogeneous virus population was detected in seven infants (53.8\%), four infected in utero and three infected peripartum. The phylogenetic trees of the mother-child pairs presented a whole range of different tree topologies and showed infection of the child by one or more maternal variants. In conclusion, after HIV-1 transmission from mother to child a heterogeneous virus population was detected in approximately one-half of the children examined. Heterogeneous virus populations were found after peripartum infection as well as after in utero infection. Phylogenetic tree topologies argue against selection processes as the major mechanism driving mother-to-child transmission but support the hypothesis that virus variability is mainly driven by the inoculum level and/or exposure time.},
  author       = {Verhofstede, Chris and Demecheleer, Els and De Cabooter, Nancy and GAILLARD, P and MWANYUMBA, F and Claeys, Patricia and CHOHAN, V. and MANDALIYA, K and Temmerman, Marleen and Plum, Jean},
  issn         = {0022-538X},
  journal      = {JOURNAL OF VIROLOGY},
  language     = {eng},
  number       = {5},
  pages        = {3050--3057},
  publisher    = {AMER SOC MICROBIOLOGY},
  title        = {Diversity of the human immunodeficiency virus type 1 (HIV-1) env sequence after vertical transmission in mother-child pairs infected with HIV-1 subtype A},
  volume       = {77},
  year         = {2003},
}

Web of Science
Times cited: