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Abstract

We discuss the 2-point-particle-irreducible (2PPI) expansion, which sums bubble
graphs to all orders, in the context of SU(N) Yang-Mills theory in the Landau gauge.
Using the method we investigate the possible existence of a gluon condensate of mass di-
mension two,

〈
Aa

µ
Aa

µ

〉
, and the corresponding non-zero vacuum energy. This condensate

gives rise to a dynamically generated mass for the gluon.

1 Introduction.

Recently there has been growing evidence for the existence of a condensate of mass dimension
two in SU(N) Yang-Mills theory with N colours. An obvious candidate for such a condensate

is
〈
Aa

µAa
µ

〉
. The phenomenological background of this type of condensate can be found in

[1, 2, 3]. However, if one first considers simpler models such as massless λφ4 theory or the
Gross-Neveu model [4] and the role played by their quartic interaction in the formation of a
(local) composite quadratic condensate and the consequent dynamical mass generation for the
originally massless fields [4, 5, 6], it is clear that the possibility exists that the quartic gluon
interaction gives rise to a quadratic composite operator condensate in Yang Mills theory and
hence a dynamical mass for the gluons. The formation of such a dynamical mass is strongly
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correlated to a lower value of the vacuum energy. In other words the causal perturbative
Yang Mills vacuum is unstable. From this viewpoint, mass generation in connection with
gluon pairing has already been discussed a long time ago in, for example, [7, 8, 9, 10]. There
the analogy with the BCS superconductor and its gap equation was examined. It was shown
that the zero vacuum is tachyonic in nature and the gluons achieve a mass due to a non-
trivial solution of the gap equation. Moreover, recent work using lattice regularized Yang

Mills theory has indicated the existence of a non-zero condensate,
〈
Aa

µAa
µ

〉
, [11]. There the

authors invoked the operator product expansion, (OPE), on the gluon propagator as well as
on the effective coupling αs in the Landau gauge. Their work was based on the perception
that, even in the relatively high energy region (∼ 10GeV), a discrepancy existed between
the expected perturbative behaviour and the lattice results. It was shown that, within the
momentum range accessible to the OPE, that this discrepancy could be solved with a 1/q2

power correction∗. They concluded that a non-vanishing dimension two condensate must
exist. Further, the results of [12] give some evidence that instantons might be the mechanism
behind the low-momentum contribution to condensate. As has been argued in [3], only the
low-momentum content of the squared vector potential is accessible with the OPE. Moreover,

they argue that there are also short-distance non-perturbative contributions to
〈
A2

µ

〉
.

It is no coincidence the Landau gauge is used for the search for a dimension two con-
densate. Naively, the operator A2

µ is not gauge-invariant. Although this does not prevent

the condensate
〈
A2

µ

〉
showing up in gauge variant quantities like the gluon propagator, we

should instead consider the gauge-invariant operator (V T )−1 minU

∫
d4x

(
AU

µ

)2

, where V T

is the space-time volume and U is an arbitrary gauge transformation in order to assign some
physical meaning to the operator. Clearly from its structure this operator is non-local and
thus is difficult to handle. However, when we impose the Landau gauge, it reduces† to the

local operator A2
µ. Moreover, it has been shown that

〈
A2

µ

〉
is (on-shell) BRST invariant

[14, 15, 16, 17]. Another motivation for studying
〈
A2

µ

〉
is the perceived connection between

the gluon propagator and confinement. (See [18] and references therein.) More precisely,
the gluon propagator exhibits an infrared suppression, as has been reported in many lattice
simulations, [19, 20, 21] and using the Schwinger-Dyson approach, [22, 23, 24]. A dynamical
gluon mass might serve as an indication for such a suppression. An attempt has already been
made to explain confinement by a dual Ginzburg-Landau model or an effective string theory,

in the Landau gauge, with the help of
〈
A2

µ

〉
[25]. The fact that

〈
A2

µ

〉
might be central to

confinement, is supported by the observation that it undergoes a phase transition due to the
monopole condensation in three dimensional compact QED [2, 3].

From these various analyses the importance of
〈
A2

µ

〉
must have become clear. Therefore,

the aim of this article is to provide some analytical evidence that gluons do condense. To

our knowledge, [26] is the only paper which effectively calculates
〈
A2

µ

〉
, without referring

∗The 1

q4 power correction due to the 〈G2

µν〉 condensate is too weak at such energies to be the cause of the
discrepancy.

†Although this equality is somewhat disturbed by Gribov ambiguities [13]. In this paper Gribov copies are
neglected since we will work in the perturbative Landau gauge and sum a certain class of bubble diagrams in
this particular gauge. It is a pleasant feature of the Landau gauge that

〈
A2

µ

〉
can be given a gauge invariant

meaning. In another gauge, the bubbles will no longer correspond to
〈
A2

µ

〉
and the correspondence with〈

A2

µ

〉
min

is more of academic interest.
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to lattice regularization. In [26] the standard way of calculating the effective potential for a
particular quantity was followed, and all the problems concerning the fact that the considered
quantity was a composite operator were elegantly solved.

In a previous paper [27], we have discussed the 2PPI expansion for the Gross-Neveu model
and found results close to the exact values for the Gross-Neveu mass gap and the vacuum
energy. The 2PPI expansion does not rely on the effective action formalism of [26]. Instead
it is directly based on the path integral and the topology of its Feynman diagrammatical
expansion. In this paper we will discuss how to apply it to SU(N) Yang-Mills theories in the

Landau gauge. Of course, it is not our aim to provide a complete picture of
〈
A2

µ

〉
but rather

give further evidence for its existence since it lowers the vacuum energy.

2 The 2PPI expansion.

The SU(N) Yang Mills Lagrangian in d-dimensional Euclidean space time is given by

L(Aµ, ξ, ξ) =
1

4
Ga

µνGa
µν + Lgauge+F.P. (2.1)

where Ga
µν is the gluon field strength, 1 ≤ a ≤ N2 − 1, Lgauge+F.P. implements the Landau

gauge and its corresponding Faddeev-Popov part and ξ and ξ denote the ghosts and anti-
ghost fields respectively. Issues concerning the counterterm part of (2.1) will be discussed
later. First, we consider the diagrammatical expansion for the vacuum energy which we
denote by E. As is well known, this is a series consisting of one particle irreducible, (1PI),
diagrams. These 1PI diagrams can be divided into two disjoint classes:

• those diagrams not falling apart into two separate pieces when two lines meeting at the
same point x are cut, which we call 2-point-particle-irreducible, (2PPI); (an example
is given in Fig. 1)

• those diagrams falling apart into two separate pieces when two lines meeting at the
same point x are cut which we call 2-point-particle-reducible, (2PPR), while x is called
the 2PPR insertion point; (an example is given in Fig. 2).

We may now resum this series of 2PPR and 2PPI graphs, where the propagators are the
usual massless ones, by retaining only the 2PPI graphs, whereby the 2PPR insertions, or
bubbles, are resummed into an effective (mass)2 m2

2PPI ≡ m2. The bubble graph gluon
polarization is then given by

Πab
µν = − g2

2

[
feabfecd

(〈
Ac

µAd
ν

〉
−
〈
Ad

µAc
ν

〉)
+ feacfedb

(〈
Ad

µAc
ν

〉
−
〈
Ac

ρA
d
ρ

〉
δµν

)

+ feadfebc

(
δµν

〈
Ac

ρA
d
ρ

〉
−
〈
Ac

µAd
ν

〉)]
(2.2)

where fabc are the SU(N) structure constants. We define the vacuum expectation value of
A2

µ as

∆ =
〈
Aa

µAa
µ

〉
. (2.3)

The global SU(N) symmetry can then be used to show that

〈
Aa

µAb
ν

〉
=

δabδµν

d (N2 − 1)
∆ (2.4)
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Figure 1: A 2PPI vacuum bubble.

Figure 2: A 2PPR vacuum bubble. x is the 2PPR insertion point.

Substitution of (2.4) in (2.2) yields

Πab
µν = − g2 N

N2 − 1

d − 1

d
δabδµν∆ (2.5)

which results in an effective mass, m, running in the 2PPI propagators, given by

m2 = g2 N

N2 − 1

d − 1

d
∆ . (2.6)

If we let E2PPI be the sum of the 2PPI vacuum bubbles, calculated with the effective 2PPI
propagator, then this E2PPI is not equal to the vacuum energy E, because simply removing
all 2PPR insertions is too naive. For instance, there is a double counting problem which is
already visible in the 2PPR diagram of Fig. 2 where each bubble can be seen as a 2PPR
insertion on the other one. However, we can resolve this ambiguity. A dimensional argument
results in

E = E2PPI + cg2∆2 (2.7)

where c 6= 0 will accomodate the double counting. To determine the appropriate value of c,
we use the path integral which gives

∂E

∂g2
= − 1

4g
fabc

〈(
∂µAa

ν − ∂νAa
µ

)
Ab

µAc
ν

〉
− 1

2g
fabc

〈
∂µξ

a
ξcAb

µ

〉

+
1

4
fabcfade

〈
Ab

µAc
νA

d
µAe

ν

〉
. (2.8)

The first two terms contribute unambiguously to the 2PPI part. For the last term, we rewrite

〈
Ab

µAc
νA

d
µAe

ν

〉
=

〈
Ab

µAc
ν

〉 〈
Ad

µAe
ν

〉
+

〈
Ab

µAd
µ

〉
〈Ac

νA
e
ν〉

+
〈
Ab

µAe
ν

〉 〈
Ac

νA
d
µ

〉
+
〈
Ab

µAc
νAd

µAe
ν

〉

2PPI
. (2.9)
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Using (2.4) and the properties of the structure constants fabc, we obtain

∂E

∂g2
= − 1

4g
fabc

〈(
∂µAa

ν − ∂νA
a
µ

)
Ab

µAc
ν

〉

2PPI
− 1

2g
fabc

〈
∂µξ

a
ξcAb

µ

〉

2PPI

+
1

4
fabcfade

〈
Ab

µAc
νAd

µAe
ν

〉

2PPI
+

1

4

N

N2 − 1

d − 1

d
∆2

=
∂E2PPI

∂g2
+

1

4

N

N2 − 1

d − 1

d
∆2 . (2.10)

From (2.7), we derive

∂E

∂g2
=

∂E2PPI

∂g2
+

∂E2PPI

∂m2

∂m2

∂g2
+ c∆2 + 2cg2∆

∂∆

∂g2
. (2.11)

Combining (2.6), (2.10) and (2.11) gives

∂E2PPI

∂m2

(
N

N2 − 1

d − 1

d
∆ + g2 N

N2 − 1

d − 1

d

∂∆

∂g2

)
=

1

4

N

N2 − 1

d − 1

d
∆2 . (2.12)

Then a simple diagrammatical argument gives

∂E2PPI

∂m2
=

∆

2
. (2.13)

which is a local gap equation, summing the bubble graphs into m2. Using this together with
(2.12) finally gives

c = − 1

4

N

N2 − 1

d − 1

d
. (2.14)

It is easy to show that the following equivalence holds

∂E2PPI

∂m2
=

∆

2
⇔ ∂E

∂m2
= 0 . (2.15)

To summarize, we have summed the bubble insertions into an effective (mass)2, m2. The
vacuum energy is expressed by

E = E2PPI − g2

4

N

N2 − 1

d − 1

d
∆2 . (2.16)

We stress the fact that (2.16) is only meaningful if the gap equation (2.15) is satisfied. This
means we cannot consider m or ∆ as a real variable on which E depends. It is a quantity
which has to obey its gap equation, otherwise the 2PPI expansion loses its validity. This also
means that E(m), or equivalently E(∆), is not a function depending on m (∆), in contrast‡

with the usual concept of an effective potential V (ϕ) which is a function of the constant field
ϕ.

In order to ensure the usefulness of the 2PPI formalism for actual calculations, we should
prove it can be fully renormalized with the counterterms available from the original (bare)
Lagrangian, (2.1). However, it is sufficient to say that all our derived formulae remain valid
and are finite when the counterterms are included. This also implies the 2PPI mass m is

‡V (ϕ) also makes sense if dV
dϕ

6= 0.
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renormalized and gives rise to a finite, physical mass§, mphys. Furthermore, no new coun-
terterms are needed to remove the vacuum energy divergences. The renormalizability of the
2PPI expansion has been discussed in detail in [27] in the case of the Gross-Neveu model.
Since the arguments for Yang Mills theory are completely analogous, we refer to [27] for
technical details concerning the renormalization.

Another point worth emphasising here, is the renormalization group equation, (RGE),
for E. The first diagram of E2PPI is given by the O-bubble. Using the MS renormalization
scheme in dimensional regularization in d dimensions, we find

E =
3

4

N2 − 1

16π2
m4

(
ln

m2

µ2
− 5

6

)
− 1

4g2

d

d − 1

N2 − 1

N
m4 . (2.17)

Since E is a physical quantity, it should not depend on the subtraction scale µ. This is
expressed by the RGE

µ
dE

dµ
=

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ κ(g2)m2 ∂

∂m2

)
E = 0 (2.18)

where β(g2) governs the scaling behaviour of the coupling constant

β(g2) = µ
∂g2

∂µ
= − 2

(
β0g

4 + β1g
6 + β2g

8 + · · ·
)

(2.19)

and κ(g2) is the anomalous dimension of m2

µ
∂m2

∂µ
=

(
β(g2)

g2
+ γA2

µ
(g2)

)
m2 ≡ κ(g2)m2 (2.20)

γA2
µ
(g2) =

µ

∆

∂∆

∂µ
= γ0g

2 + γ1g
4 + γ2g

6 + · · · . (2.21)

The coefficients can be found in [28, 29] for β and in [26, 29, 30] for γA2
µ
,

β0 =
11

3

(
N

16π2

)
β1 =

34

3

(
N

16π2

)2

β2 =
2857

54

(
N

16π2

)3

(2.22)

γ0 =
35

6

(
N

16π2

)
γ1 =

449

24

(
N

16π2

)2

γ2 =

[
75607

864
− 9ζ(3)

16

](
N

16π2

)3

.

(2.23)

When we combine all this information and determine µdE
dµ

up to lowest order in g2, we find

µ
dE

dµ
6= 0 . (2.24)

Apparently, it seems that E does not obey its RGE. However, this is not a contradiction
because of the demand that the gap equation (2.15) must be satisfied. The gap equation

implies that ln m2

µ2 ∝ 1

g2 + constants. The consequence is that all leading logarithms contain

terms of order unity. Hence, we cannot show that the RGE for E is obeyed order by order.
The same phenomenon extends to higher orders. In other words, knowledge of µdE

dµ
up to a

certain order n, would require knowledge of all leading and subleading log terms to order n, to
show explicitly that µdE

dµ
= 0. We must therefore be careful not to interpret the non-vanishing

of the RGE as a reason to introduce a “non-perturbative” β-function, as is sometimes done,
[31].

§mphys is the pole of the gluon propagator.
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Figure 3: The first diagrams contributing to E2PPI

3 Results.

Up to 2-loop order in the 2PPI expansion (see Fig. 3), we find in the MS scheme

E(∆) = − 3

16

g2N

N2 − 1
∆

2
+

27

64

g4N2

16π2

∆
2

N2 − 1



ln
3
4

g2N
N2−1

∆

µ2
− 5

6



 +
9

16

g6N3

(16π2)2
∆

2

N2 − 1

×


−31

2



ln
3
4

g2N
N2−1

∆

µ2




2

+
259

8
ln

3
4

g2N
N2−1

∆

µ2
− 1043

32
+

891

16
s2 − 63

8
ζ(2)




(3.1)

where ζ(n) is the Riemann zeta function,

s2 =
4

9
√

3
Cℓ2

(
π

3

)
≈ 0.2604341 (3.2)

and Cℓ2(x) is the Clausen function. We have computed the relevant two loop vacuum bubble
diagrams to the finite part using the massive gluon and massless ghost propagators which are
respectively

− 1

p2 + m2

[
δµν − pµpν

p2

]
and

1

p2
(3.3)

in the Landau gauge. The expressions for the general massive and massless two loop bubble
integrals were derived from the results of [32] and implemented in the symbolic manipulation
language Form, [33]. It is easy to check that solving the gap equation ∂E

∂∆
= 0, with µ2 set

equal to 3
4

g2N
N2−1

∆ to kill potentially large logarithms, gives no solution at 1-loop or 2-loop,

apart from the trivial one ∆ = 0. This does not imply
〈
A2

µ

〉
does not exist but that the

MS scheme might not be the best choice for the 2PPI expansion. To address this we first
remove the freedom existing in how the mass parameter ∆ is renormalized by replacing ∆ by
a renormalization scheme and scale independent quantity ∆̃. This can be accommodated by¶

∆̃ = f
(
g2
)

∆ (3.4)

with

µ
∂f

∂µ
= − γA2

µ

(
g2
)

f . (3.5)

¶Barred quantities refer to the MS scheme, otherwise any other massless renormalization scheme is meant.
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A change in massless renormalization scheme corresponds to relations of the form

g2 = g2
(
1 + b0g

2 + b1g
4 + · · ·

)
(3.6)

∆ = ∆
(
1 + d0g

2 + d1g
4 + · · ·

)
(3.7)

f(g2) = f(g2)
(
1 + f0g

2 + f1g
4 + · · ·

)
. (3.8)

With these, it is easily checked that (3.4) is renormalization scheme and scale independent.
The explicit solution of (3.5) reads

f
(
g2
)

=
(
g2
) γ0

2β0





1 +
g2

2

(
−β1γ0

β2
0

+
γ1

β0

)
+

g4

4




1

2

(
−β1γ0

β2
0

+
γ1

β0

)2

+
γ0

(
β2

1

β2

0

− β2

β0

)

β0

− β1γ1

β2
0

+
γ2

β0


+ O

(
g6
)




. (3.9)

Since the gap equation is still a series expansion in g2N
16π2 and we hope to find (at least qualita-

tively) acceptable results, g2N
16π2 should be small. We will therefore choose to renormalize the

coupling constant in such a scheme so that E is of the form

E =
3

16

(
g2
)1−

γ0

β0
N

N2 − 1
∆̃2



−1 +
g2N

16π2
E1

1L +

(
g2N

16π2

)2 (
E1

2L + E2
2L2

)
+ . . .



 (3.10)

where

L = ln
3
4

(
g2
)1− γ0

2β0
N

N2−1
∆̃

µ2
. (3.11)

Otherwise, we remove all the terms of the form
(

g2N
16π2

)n
× constant, and only keep the terms

that contain a power of the logarithm L. This is always possible by calculating the MS
value of E as in (3.1) and using (3.6) to change the coupling constant renormalization by
a suitable choice for the coefficients bi. In other words the 1-loop MS contribution to E
allows one to determine b0. Once b0 is fixed, the 2-loop MS contribution to E can be used
to fix b1, and so on for the higher order contributions. We note that the gap equation
(2.15) is translated into ∂E

∂∆̃
= 0 since m2 ∝ ∆ ∝ ∆̃. In this gap equation, we will set

µ2 = 3
4

(
g2
)1− γ0

2β0
N

N2−1
∆̃ so that all logarithms vanish. In other words L = 0. Notice that one

cannot set µ2 = 3
4

(
g2
)1− γ0

2β0
N

N2−1
∆̃ in the expression (3.10) and use the RGE for E to sum

the logarithms when dE

d∆̃
= 0 is solved. As already explained in the previous section, the RGE

for E is not obeyed order by order, see also [27]. Once a solution ∆̃∗ of the gap equation is
found, then we will always have

Evac = − 3

16

(
g2
)1−

γ0

β0
N

N2 − 1
∆̃2

∗ . (3.12)
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If the constructed value for g2N
16π2 is small enough, then we can trust, at least qualitatively, the

results we will obtain. Now we are ready to rewrite (3.1) in terms of ∆̃. After a little algebra,
one finds

E =
3

16

(
g2
)1−

γ0

β0
N

N2 − 1
∆̃2

{
−1 +

[
9N

64π2

(
−5

6
+ L

)
− 2c1 − c4

]
g2

+

[
3N2

256π4

(
c3 +

259

8
L − 31

2
L2

)
− 2b0c1 − c2

1 − 2c2 +

(
9N

64π2

(
−5

6
+ L

)
− 2c1

)
c4

− c5 +
9N

64π2

((
−5

6
+ L

)
b0 + c1 + 2

(
−5

6
+ L

)
c1 + b0

(
1 − γ0

2β0

))]
g4 + O

(
g6
)}

(3.13)

with

c1 =
1

2

(
β1γ0

β2
0

− γ1

β0

)
(3.14)

c2 =
1

8

(
−β1γ0

β2
0

+
γ1

β0

)2

− 1

4




γ0

(
β2

1

β2

0

− β2

β0

)

β0


+

1

4

(
β1γ1

β2
0

− γ2

β0

)
(3.15)

c3 = − 1043

32
− 63

8
ζ(2) +

891

16
s2 (3.16)

c4 = b0

(
1 − γ0

β0

)
(3.17)

c5 = b1

(
1 − γ0

β0

)
− b2

0

γ0

2β0

(
1 − γ0

β0

)
. (3.18)

Next, we determine b0 and b1 so that (3.13) reduces to

E =
3

16

(
g2
)1−

γ0

β0 ∆̃2 N

N2 − 1

{
−1 + g2 9N

64π2
L + g4

[
3N2

256π4

(
259

8
L − 31

2
L2

)

+
9N

64π2
(b0 + c4 + 2c1)L

]
+ O

(
g6
)}

. (3.19)

We find that b0 is

b0 =
409

2288

N

π2
. (3.20)

We do not list the value for b1 since it is no longer required. From the β-function we find the
two loop expression for the coupling constant is

g2(µ) =
1

β0 ln µ2

Λ2

− β1

β0

ln ln µ2

Λ2

β2
0 ln2 µ2

Λ2

(3.21)

where Λ is the scale parameter of the corresponding massless renormalization scheme. We
will express everything in terms of the MS scale parameter ΛMS. In [34], it was shown that

Λ = ΛMSe
−

b0
2β0 . (3.22)
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We will also derive a value for the
〈

αs

π
G2

µν

〉
condensate from the trace anomaly

Θµµ =
β(g)

2g

(
Ga

ρσ

)2

. (3.23)

This anomaly allows us to deduce for N = 3 the following relation between the vacuum energy
and the gluon condensate 〈

αs

π
G2

µν

〉
= − 32

11
Evac . (3.24)

At 1-loop order, the results for N = 3 are

g2N

16π2

∣∣∣∣∣
1-loop

=
8

9
(3.25)

√
∆̃

∣∣∣∣
1-loop

≈ 1.004ΛMS ≈ 233MeV (3.26)

Evac|1-loop ≈ −0.0074Λ4

MS
≈ − 0.00002GeV4 (3.27)

〈
αs

π
G2

µν

〉∣∣∣∣
1-loop

≈ 0.02Λ4

MS
≈ 0.00007GeV4 (3.28)

while the scale parameter µ2 ≈ (184MeV)2. We have used ΛMS ≈ 233MeV which was the
value reported in [11]. We see that the 1-loop expansion parameter is quite large and we
conclude that we should go to the next order where the situation is improved. We find

g2N

16π2

∣∣∣∣∣
2-loop

≈ 0.131 (3.29)

√
∆̃

∣∣∣∣
2-loop

≈ 2.3ΛMS ≈ 536MeV (3.30)

Evac|2-loop ≈ −0.63Λ4

MS
≈ − 0.002GeV4 (3.31)

〈
αs

π
G2

µν

〉∣∣∣∣
2-loop

≈ 1.84Λ4

MS
≈ 0.005GeV4 . (3.32)

with µ2 ≈ (347MeV)2. Although there is a sizeable difference between 1-loop and 2-loop
results, the relative smallness of the 2-loop expansion parameter, indicates that the 2-loop
values are qualitatively trustworthy. It is well known that in order to find reliable perturbative
results, one must go beyond 1-loop, and even beyond 2-loop approximations. Therefore, one
should not attach a firm quantitative meaning to the numerical values. Let us compare
our results with what was found elsewhere with different methods. A combined lattice fit

resulted in

√〈
A2

µ

〉
≈ 1.64GeV, [11]. We cannot really compare this with our result for

√
∆̃, since the lattice value was obtained with the OPE at a scale µ = 10GeV in a specific

renormalization scheme (MOM). However, it is satisfactory that (3.30) is at least of the same
order of magnitude. More interesting is the comparison with what was found in [26] with the

local composite operator formalism for
〈
A2

µ

〉
. In the MS scheme at 2-loop order, it was found

that g2N
16π2 ≈ 0.141247 while Evac ≈ − 0.789Λ4

MS
which is in quite good agreement with our

results. An estimate of the tree level gluon mass of ∼ 500MeV was also given in [26] which

10



compares well with the lattice value of ∼ 600MeV of [35, 36]. With the 2PPI method, one
does not really have the concept of a tree level mass. Instead, the determination of mphys
would need the calculation of the highly non-trivial 2-loop 2PPI mass renormalization graphs
which is beyond the scope of this article.

In conclusion we note that the perturbative Yang-Mills vacuum is unstable and lowers

its value through a non-perturbative mass dimension two gluon condensate
〈
A2

µ

〉
. We have

omitted quark contributions in our analysis but it is straighforward to extend the 2PPI
expansion to QCD with quarks included. Indeed an idea of the effect they have could be
gained by an extension of [26].
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